Chunmiao Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/401553/publications.pdf

Version: 2024-02-01

373 papers

14,705 citations

64 h-index 99 g-index

392 all docs

392 docs citations

times ranked

392

12783 citing authors

#	Article	IF	CITATIONS
1	Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 2019, 169, 483-493.	7.5	694
2	Water scarcity assessments in the past, present, and future. Earth's Future, 2017, 5, 545-559.	6.3	545
3	Global change and the groundwater management challenge. Water Resources Research, 2015, 51, 3031-3051.	4.2	282
4	Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resources Research, 2013, 49, 159-175.	4.2	274
5	MODFLOW/MT3DMS-Based Reactive Multicomponent Transport Modeling. Ground Water, 2003, 41, 247-257.	1.3	256
6	A dual-domain mass transfer approach for modeling solute transport in heterogeneous aquifers: Application to the Macrodispersion Experiment (MADE) site. Water Resources Research, 2000, 36, 2501-2515.	4.2	204
7	Engineering antifouling reverse osmosis membranes: A review. Desalination, 2021, 499, 114857.	8.2	192
8	Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins. Journal of Geophysical Research D: Atmospheres, 2018, 123, 890-914.	3.3	189
9	The foodâ€energyâ€water nexus: Transforming science for society. Water Resources Research, 2017, 53, 3550-3556.	4.2	180
10	Challenges in operationalizing the water–energy–food nexus. Hydrological Sciences Journal, 2017, 62, 1714-1720.	2.6	159
11	Global mapping reveals increase in lacustrine algal blooms over the past decade. Nature Geoscience, 2022, 15, 130-134.	12.9	158
12	Modelling the fate of oxidisable organic contaminants in groundwater. Advances in Water Resources, 2002, 25, 945-983.	3.8	157
13	Global trends in water and sediment fluxes of the world's large rivers. Science Bulletin, 2020, 65, 62-69.	9.0	156
14	Deceleration of China's human water use and its key drivers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7702-7711.	7.1	155
15	Analysis of Solute Transport in Flow Fields Influenced by Preferential Flowpaths at the Decimeter Scale. Ground Water, 2003, 41, 142-155.	1.3	149
16	Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area. Science of the Total Environment, 2020, 717, 135187.	8.0	145
17	Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 2019, 672, 551-562.	8.0	143
18	Can China Cope with Its Water Crisis?â€"Perspectives from the North China Plain. Ground Water, 2010, 48, 350-354.	1.3	141

#	Article	IF	CITATIONS
19	Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environmental Modelling and Software, 2015, 63, 170-184.	4.5	141
20	PFAS and their substitutes in groundwater: Occurrence, transformation and remediation. Journal of Hazardous Materials, 2021, 412, 125159.	12.4	137
21	COVID-19 waste management: Effective and successful measures in Wuhan, China. Resources, Conservation and Recycling, 2020, 163, 105071.	10.8	132
22	MIL-53(Fe) incorporated in the lamellar BiOBr: Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine. Chemical Engineering Journal, 2019, 374, 975-982.	12.7	130
23	Lessons Learned from 25 Years of Research at the MADE Site. Ground Water, 2011, 49, 649-662.	1.3	128
24	The occurrence, potential toxicity, and toxicity mechanism of bisphenol S, a substitute of bisphenol A: A critical review of recent progress. Ecotoxicology and Environmental Safety, 2019, 173, 192-202.	6.0	126
25	Analysis of streamflow variations in the Heihe River Basin, northwest China: Trends, abrupt changes, driving factors and ecological influences. Journal of Hydrology: Regional Studies, 2015, 3, 106-124.	2.4	118
26	A Field Demonstration of the Simulation Optimization Approach for Remediation System Design. Ground Water, 2002, 40, 258-266.	1.3	117
27	Immunotoxicity of bisphenol S and F are similar to that of bisphenol A during zebrafish early development. Chemosphere, 2018, 194, 1-8.	8.2	116
28	Natural Attenuation of BTEX Compounds: Model Development and Field-Scale Application. Ground Water, 1999, 37, 707-717.	1.3	112
29	Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water. Water Research, 2020, 175, 115699.	11.3	112
30	Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths. Water Resources Research, 2011, 47, .	4.2	111
31	A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites. Agricultural and Forest Meteorology, 2019, 265, 171-182.	4.8	111
32	Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chemical Engineering Journal, 2021, 418, 129425.	12.7	108
33	GROUND WATER MANAGEMENT OPTIMIZATION USING GENETIC ALGORITHMS AND SIMULATED ANNEALING: FORMULATION AND COMPARISON. Journal of the American Water Resources Association, 1998, 34, 519-530.	2.4	107
34	Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community. Science of the Total Environment, 2019, 653, 334-341.	8.0	100
35	Influence of mineral matter on pyrolysis of palm oil wastes. Combustion and Flame, 2006, 146, 605-611.	5.2	97
36	Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain. Journal of Hydrology, 2016, 537, 260-270.	5.4	95

3

#	Article	IF	Citations
37	Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Applied Geochemistry, 2011, 26, 884-897.	3.0	91
38	Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. Journal of Contaminant Hydrology, 2005, 77, 41-65.	3.3	89
39	Optimal Remediation Policy Selection under General Conditions. Ground Water, 1997, 35, 757-764.	1.3	88
40	Parameter structure identification using tabu search and simulated annealing. Advances in Water Resources, 1996, 19, 215-224.	3.8	87
41	A modeling study of seawater intrusion in Alabama Gulf Coast, USA. Environmental Geology, 2009, 57, 119-130.	1.2	87
42	Dissolved Oxygen Imaging in a Porous Medium to Investigate Biodegradation in a Plume with Limited Electron Acceptor Supply. Environmental Science & Electron Acceptor Supply. Environmental Science & Electron Acceptor Supply.	10.0	85
43	Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach. Agricultural Water Management, 2016, 163, 380-392.	5.6	85
44	Review: Safe and sustainable groundwater supply in China. Hydrogeology Journal, 2018, 26, 1301-1324.	2.1	85
45	Exploring scaleâ€dependent ecohydrological responses in a large endorheic river basin through integrated surface waterâ€groundwater modeling. Water Resources Research, 2015, 51, 4065-4085.	4.2	79
46	Health impacts of indoor air pollution from household solid fuel on children and women. Journal of Hazardous Materials, 2021, 416, 126127.	12.4	78
47	Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos. Science of the Total Environment, 2019, 651, 1457-1468.	8.0	77
48	Ground Water Sustainability: Methodology and Application to the North China Plain. Ground Water, 2008, 46, 897-909.	1.3	76
49	Effects of Density and Viscosity in Modeling Heat as a Groundwater Tracer. Ground Water, 2010, 48, 380-389.	1.3	76
50	Optimizing water resources management in large river basins with integrated surface waterâ€groundwater modeling: A surrogateâ€based approach. Water Resources Research, 2015, 51, 2153-2173.	4.2	76
51	Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn. Journal of Hydrology, 2016, 533, 103-113.	5.4	76
52	Heavy metal contamination in surface sediments: A comprehensive, large-scale evaluation for the Bohai Sea, China. Environmental Pollution, 2020, 260, 113986.	7.5	76
53	Delineating Alluvial Aquifer Heterogeneity Using Resistivity and GPR Data. Ground Water, 2005, 43, 050914063638004-???.	1.3	7 3
54	Deforestation-induced warming over tropical mountain regions regulated by elevation. Nature Geoscience, 2021, 14, 23-29.	12.9	73

#	Article	IF	CITATIONS
55	Systematic assessment of the uncertainty in integrated surface waterâ€groundwater modeling based on the probabilistic collocation method. Water Resources Research, 2014, 50, 5848-5865.	4.2	72
56	Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China. Geochimica Et Cosmochimica Acta, 2018, 225, 52-65.	3.9	72
57	Amino-functionalized sewage sludge-derived biochar as sustainable efficient adsorbent for Cu(II) removal. Waste Management, 2019, 90, 17-28.	7.4	72
58	Conceptual and numerical models for groundwater flow in an arid inland river basin. Hydrological Processes, 2015, 29, 1480-1492.	2.6	71
59	An integrated global and local optimization approach for remediation system design. Water Resources Research, 1999, 35, 137-148.	4.2	70
60	A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty. Advances in Water Resources, 2006, 29, 899-911.	3.8	67
61	The comparative toxicities of BPA, BPB, BPS, BPF, and BPAF on the reproductive neuroendocrine system of zebrafish embryos and its mechanisms. Journal of Hazardous Materials, 2021, 406, 124303.	12.4	67
62	A field $\hat{a} \in s$ cale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resources Research, 2010, 46, .	4.2	66
63	Limits of applicability of the advection-dispersion model in aquifers containing connected high-conductivity channels. Water Resources Research, 2004, 40, .	4.2	65
64	Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater. Science of the Total Environment, 2019, 684, 351-359.	8.0	63
65	Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts. Remote Sensing of Environment, 2020, 248, 111998.	11.0	63
66	Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China. Science of the Total Environment, 2010, 408, 6108-6116.	8.0	57
67	Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO ₂ measurements. Science Advances, 2018, 4, eaao1167.	10.3	57
68	Determination of Environmental Micro(Nano)Plastics by Matrix-Assisted Laser Desorption/Ionization–Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2020, 92, 14346-14356.	6.5	57
69	Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia. Nature Sustainability, 2021, 4, 892-899.	23.7	56
70	Insights into the adsorption mechanism of tannic acid by a green synthesized nano-hydroxyapatite and its effect on aqueous Cu(II) removal. Science of the Total Environment, 2021, 778, 146189.	8.0	56
71	Controlling processes in a CaCO3 precipitating stream in Huanglong Natural Scenic District, Sichuan, China. Journal of Hydrology, 2000, 230, 34-54.	5.4	55
72	Quantifying nitrogen leaching response to fertilizer additions in China's cropland. Environmental Pollution, 2016, 211, 241-251.	7.5	54

#	Article	IF	CITATIONS
73	Single and joint toxic effects of four antibiotics on some metabolic pathways of zebrafish (Danio) Tj ETQq1 1	0.784314 rgB1	Г¦Qverlock
74	How Will Climate Change Affect the Water Availability in the Heihe River Basin, Northwest China?. Journal of Hydrometeorology, 2016, 17, 1517-1542.	1.9	53
75	Effect of inherent minerals on sewage sludge pyrolysis: Product characteristics, kinetics and thermodynamics. Waste Management, 2018, 80, 175-185.	7.4	53
76	Utility of bromide and heat tracers for aquifer characterization affected by highly transient flow conditions. Water Resources Research, 2012, 48, .	4.2	51
77	Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals. Energy, 2018, 153, 921-932.	8.8	51
78	Macromolecular humic acid modified nano-hydroxyapatite for simultaneous removal of Cu(II) and methylene blue from aqueous solution: Experimental design and adsorption study. International Journal of Biological Macromolecules, 2020, 150, 849-860.	7.5	51
79	Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review. Critical Reviews in Environmental Science and Technology, 2021, 51, 857-896.	12.8	51
80	Evaluation of the applicability of the dualâ€domain mass transfer model in porous media containing connected highâ€conductivity channels. Water Resources Research, 2007, 43, .	4.2	50
81	Integrated geophysical and geological investigation of a heterogeneous fluvial aquifer in Columbus Mississippi. Journal of Applied Geophysics, 2007, 62, 58-73.	2.1	50
82	A lithofacies approach for modeling nonâ€ <scp>F</scp> ickian solute transport in a heterogeneous alluvial aquifer. Water Resources Research, 2016, 52, 552-565.	4.2	50
83	Numerical Simulation of a Natural Gradient Tracer Experiment for the Natural Attenuation Study: Flow and Physical Transport. Ground Water, 2001, 39, 534-545.	1.3	49
84	Hydrogeochemical signatures and evolution of groundwater impacted by the Bayan Obo tailing pond in northwest China. Science of the Total Environment, 2016, 543, 357-372.	8.0	49
85	Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China. Journal of Hydrology, 2017, 551, 784-792.	5.4	49
86	Radium and nitrogen isotopes tracing fluxes and sources of submarine groundwater discharge driven nitrate in an urbanized coastal area. Science of the Total Environment, 2021, 763, 144616.	8.0	49
87	What controls the partitioning between baseflow and mountain block recharge in the Qinghaiâ€√ibet Plateau?. Geophysical Research Letters, 2017, 44, 8352-8358.	4.0	48
88	Raman–deuterium isotope probing to study metabolic activities of single bacterial cells in human intestinal microbiota. Microbial Biotechnology, 2020, 13, 572-583.	4.2	48
89	A review of specific storage in aquifers. Journal of Hydrology, 2020, 581, 124383.	5.4	48
90	Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an New Area, China, and their relationship with antibiotic resistance genes. Science of the Total Environment, 2022, 807, 151011.	8.0	47

#	Article	IF	Citations
91	Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nature Sustainability, 2022, 5, 444-451.	23.7	47
92	Antibiotic enhanced dopamine polymerization for engineering antifouling and antimicrobial membranes. Chinese Chemical Letters, 2020, 31, 851-854.	9.0	46
93	Transcriptomic Responses of Bisphenol S Predict Involvement of Immune Function in the Cardiotoxicity of Early Life-Stage Zebrafish (<i>Danio rerio</i>). Environmental Science & Eamp; Technology, 2020, 54, 2869-2877.	10.0	46
94	Enhanced Cr(VI) removal from water using a green synthesized nanocrystalline chlorapatite: Physicochemical interpretations and fixed-bed column mathematical model study. Chemosphere, 2021, 264, 128421.	8.2	45
95	Integrated hydrological modeling of the North China Plain and implications for sustainable water management. Hydrology and Earth System Sciences, 2013, 17, 3759-3778.	4.9	44
96	One-step construction of hierarchical porous channels on electrospun MOF/polymer/graphene oxide composite nanofibers for effective arsenate removal from water. Chemical Engineering Journal, 2022, 435, 134830.	12.7	44
97	A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs. Physica A: Statistical Mechanics and Its Applications, 2018, 502, 356-369.	2.6	43
98	Spatial fractional Darcy's law to quantify fluid flow in natural reservoirs. Physica A: Statistical Mechanics and Its Applications, 2019, 519, 119-126.	2.6	43
99	Effect of low-level H2O2 and Fe(II) on the UV treatment of tetracycline antibiotics and the toxicity of reaction solutions to zebrafish embryos. Chemical Engineering Journal, 2020, 394, 125021.	12.7	43
100	MT3DMS: Model Use, Calibration, and Validation. Transactions of the ASABE, 2012, 55, 1549-1559.	1.1	42
101	Urban water sustainability: framework and application. Ecology and Society, 2016, 21, .	2.3	42
102	Improving Estimation of Submarine Groundwater Discharge Using Radium and Radon Tracers: Application in Jiaozhou Bay, China. Journal of Geophysical Research: Oceans, 2017, 122, 8263-8277.	2.6	42
103	Bisphenol S-induced chronic inflammatory stress in liver via peroxisome proliferator-activated receptor Î ³ using fish inÂvivo and inÂvitro models. Environmental Pollution, 2019, 246, 963-971.	7.5	42
104	Evidence linking exposure of fish primary macrophages to antibiotics activates the NF-kB pathway. Environment International, 2020, 138, 105624.	10.0	42
105	Pollution assessment and sources of dissolved heavy metals in coastal water of a highly urbanized coastal area: The role of groundwater discharge. Science of the Total Environment, 2022, 807, 151070.	8.0	42
106	A general approach to advective–dispersive transport with multirate mass transfer. Advances in Water Resources, 2005, 28, 33-42.	3.8	41
107	Novel Calcium Oxide-Enhancement Phosphorus Recycling Technique through Sewage Sludge Pyrolysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 9167-9177.	6.7	41
108	Investigation of Small-Scale Preferential Flow with a Forced-Gradient Tracer Test. Ground Water, 2011, 49, 503-514.	1.3	40

#	Article	IF	Citations
109	Can urbanization solve inter-sector water conflicts? Insight from a case study in Hebei Province, North China Plain. Water Policy, 2007, 9, 75-93.	1.5	39
110	Geological modeling of submeter scale heterogeneity and its influence on tracer transport in a fluvial aquifer. Water Resources Research, 2010, 46, .	4.2	39
111	In vivo actions of Bisphenol F on the reproductive neuroendocrine system after long-term exposure in zebrafish. Science of the Total Environment, 2019, 665, 995-1002.	8.0	39
112	Reducing Long-Term Remedial Costs by Transport Modeling Optimization. Ground Water, 2006, 44, 864-875.	1.3	38
113	Hydrological and land use control of watershed exports of dissolved organic matter in a large arid river basin in northwestern China. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 466-478.	3.0	38
114	Energy for water utilization in China and policy implications for integrated planning. International Journal of Water Resources Development, 2016, 32, 477-494.	2.0	38
115	Simultaneous stabilization of Pb and improvement of soil strength using nZVI. Science of the Total Environment, 2019, 651, 877-884.	8.0	38
116	Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China. Journal of Hydrology, 2017, 555, 185-197.	5.4	37
117	Groundwater-pumping optimization for land-subsidence control in Beijing plain, China. Hydrogeology Journal, 2018, 26, 1061-1081.	2.1	37
118	Large <scp>CO₂</scp> release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration. Limnology and Oceanography, 2021, 66, 14-29.	3.1	37
119	Environmental emission, fate and transformation of microplastics in biotic and abiotic compartments: Global status, recent advances and future perspectives. Science of the Total Environment, 2021, 791, 148422.	8.0	37
120	Toxic chemicals from uncontrolled e-waste recycling: Exposure, body burden, health impact. Journal of Hazardous Materials, 2022, 426, 127792.	12.4	37
121	Concerns about phytoplankton bloom trends in global lakes. Nature, 2021, 590, E35-E47.	27.8	36
122	Novel hybrid coupling of ecohydrology and socioeconomy at river basin scale: A watershed system model for the Heihe River basin. Environmental Modelling and Software, 2021, 141, 105058.	4.5	36
123	Role of Groundwater in the Dryland Ecohydrological System: A Case Study of the Heihe River Basin. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6760-6776.	3.3	35
124	Trace Analysis of Multiclass Antibiotics in Food Products by Liquid Chromatography-Tandem Mass Spectrometry: Method Development. Journal of Agricultural and Food Chemistry, 2021, 69, 1656-1666.	5.2	35
125	Uncertainty of natural tracer methods for quantifying river–aquifer interaction in a large river. Journal of Hydrology, 2016, 535, 135-147.	5.4	34
126	Alkali metal-driven release behaviors of volatiles during sewage sludge pyrolysis. Journal of Cleaner Production, 2018, 203, 860-872.	9.3	34

#	Article	IF	Citations
127	Integration of groundwater into China's south-north water transfer strategy. Science of the Total Environment, 2019, 658, 550-557.	8.0	34
128	Pollution characteristics, mechanism of toxicity and health effects of the ultrafine particles in the indoor environment: Current status and future perspectives. Critical Reviews in Environmental Science and Technology, 2022, 52, 436-473.	12.8	34
129	Carboxylated Nanodiamond-Enhanced Photocatalytic Membranes with Improved Antifouling and Self-Cleaning Properties. Industrial & Engineering Chemistry Research, 2020, 59, 3538-3549.	3.7	34
130	Analysis of Ground-Water Remedial Alternatives at a Superfund Site. Ground Water, 1991, 29, 838-848.	1.3	33
131	Numerical Simulation of Tracer Tests in Heterogeneous Aquifer. Journal of Environmental Engineering, ASCE, 1998, 124, 510-516.	1.4	33
132	Tidal groundwater flow and its ecological effects in a brackish marsh at the mouth of a large sub-tropical river. Journal of Hydrology, 2017, 555, 198-212.	5.4	33
133	The inÂvivo action of chronic bisphenol F showing potential immune disturbance in juvenile common carp (Cyprinus carpio). Chemosphere, 2018, 205, 506-513.	8.2	33
134	Comprehensive hydrologic calibration of SWAT and water balance analysis in mountainous watersheds in northwest China. Physics and Chemistry of the Earth, 2015, 79-82, 76-85.	2.9	32
135	Maternal exposure to environmental antibiotic mixture during gravid period predicts gastrointestinal effects in zebrafish offspring. Journal of Hazardous Materials, 2020, 399, 123009.	12.4	32
136	Ramanâ€activated sorting of antibioticâ€resistant bacteria in human gut microbiota. Environmental Microbiology, 2020, 22, 2613-2624.	3.8	32
137	Role of Groundwater in Sustaining Northern Himalayan Rivers. Geophysical Research Letters, 2021, 48, e2020GL092354.	4.0	32
138	Extension of the Method of Characteristics for Simulation of Solute Transport in Three Dimensions. Ground Water, 1993, 31, 456-465.	1.3	31
139	Analysis of Particle Tracking Errors Associated with Spatial Discretization. Ground Water, 1994, 32, 821-828.	1.3	31
140	Behavior of the mass transfer coefficient during the MADEâ€2 experiment: New insights. Water Resources Research, 2008, 44, .	4.2	31
141	Comparison of parameter sensitivities between a laboratory and fieldâ€scale model of uranium transport in a dual domain, distributed rate reactive system. Water Resources Research, 2010, 46, .	4.2	31
142	A niched Pareto tabu search for multi-objective optimal design of groundwater remediation systems. Journal of Hydrology, 2013, 490, 56-73.	5.4	30
143	Effect of Calcium Hydroxide on the Pyrolysis Behavior of Sewage Sludge: Reaction Characteristics and Kinetics. Energy &	5.1	30
144	Metabolism disruption analysis of zebrafish larvae in response to BPA and BPA analogs based on RNA-Seq technique. Ecotoxicology and Environmental Safety, 2019, 174, 181-188.	6.0	30

#	Article	IF	CITATIONS
145	Hydrogeology of the Pearl River Delta, southern China. Journal of Maps, 2020, 16, 388-395.	2.0	30
146	Simulating PFAS adsorption kinetics, adsorption isotherms, and nonideal transport in saturated soil with tempered one-sided stable density (TOSD) based models. Journal of Hazardous Materials, 2021, 411, 125169.	12.4	30
147	Human daily dietary intakes of antibiotic residues: Dominant sources and health risks. Environmental Research, 2022, 212, 113387.	7.5	30
148	Surficial processes and CO2 flux in soil ecosystem. Journal of Hydrology, 2000, 234, 54-70.	5.4	29
149	Comment on "Investigating the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, using a three-dimensional inverse flow and transport model―by Heidi Christiansen Barlebo, Mary C. Hill, and Dan Rosbjerg. Water Resources Research, 2006, 42, .	4.2	29
150	PGO: A parallel computing platform for global optimization based on genetic algorithm. Computers and Geosciences, 2007, 33, 357-366.	4.2	29
151	Influence of calcite on uranium(VI) reactive transport in the groundwater–river mixing zone. Journal of Contaminant Hydrology, 2014, 156, 27-37.	3.3	29
152	High-quality bacterial genomes of a partial-nitritation/anammox system by an iterative hybrid assembly method. Microbiome, 2020, 8, 155.	11.1	29
153	How do social media and individual behaviors affect epidemic transmission and control?. Science of the Total Environment, 2021, 761, 144114.	8.0	29
154	Charting the complexity of the activated sludge microbiome through a hybrid sequencing strategy. Microbiome, 2021, 9, 205.	11.1	29
155	Exploring spatial heterogeneity and temporal dynamics of human-hydrological interactions in large river basins with intensive agriculture: A tightly coupled, fully integrated modeling approach. Journal of Hydrology, 2020, 591, 125313.	5.4	28
156	Recent Developments and Future Directions for MT3DMS and Related Transport Codes. Ground Water, 2009, 47, 620-625.	1.3	27
157	Relative importance of dispersion and rateâ€limited mass transfer in highly heterogeneous porous media: Analysis of a new tracer test at the Macrodispersion Experiment (MADE) site. Water Resources Research, 2010, 46, .	4.2	27
158	Genome-wide identification of the interactions between key genes and pathways provide new insights into the toxicity of bisphenol F and S during early development in zebrafish. Chemosphere, 2018, 213, 559-567.	8.2	27
159	The Nexus of Water, Ecosystems, and Agriculture in Endorheic River Basins: A System Analysis Based on Integrated Ecohydrological Modeling. Water Resources Research, 2018, 54, 7534-7556.	4.2	27
160	Sulfadiazine biodegradation by Phanerochaete chrysosporium: Mechanism and degradation product identification. Chemosphere, 2019, 237, 124418.	8.2	27
161	Translocation, bioaccumulation, and distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in plants. IScience, 2022, 25, 104061.	4.1	27
162	Comparison of Time Nonlocal Transport Models for Characterizing Non-Fickian Transport: From Mathematical Interpretation to Laboratory Application. Water (Switzerland), 2018, 10, 778.	2.7	26

#	Article	IF	Citations
163	Quantifying mass transfer in permeable media containing conductive dendritic networks. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	25
164	Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison. Chaos, Solitons and Fractals, 2018, 115, 306-312.	5.1	25
165	Impacts of the influx of e-waste into Hong Kong after China has tightened up entry regulations. Critical Reviews in Environmental Science and Technology, 2020, 50, 105-134.	12.8	25
166	A field demonstration of the entropy-weighted fuzzy DRASTIC method for groundwater vulnerability assessment. Hydrological Sciences Journal, 2012, 57, 1420-1432.	2.6	24
167	Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations. Journal of Asian Earth Sciences, 2016, 127, 119-136.	2.3	24
168	Analysis of interceptor ditches for control of groundwater pollution. Journal of Hydrology, 1988, 98, 67-81.	5.4	23
169	Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions. Journal of Contaminant Hydrology, 2011, 123, 11-19.	3.3	23
170	System dynamics analysis of water supply and demand in the North China Plain. Water Policy, 2012, 14, 214-231.	1.5	23
171	Development of a visualization tool for integrated surface water–groundwater modeling. Computers and Geosciences, 2016, 86, 1-14.	4.2	23
172	A comprehensive graphical modeling platform designed for integrated hydrological simulation. Environmental Modelling and Software, 2018, 108, 154-173.	4.5	23
173	Solute Transport With Linear Reactions in Porous Media With Layered Structure: A Semianalytical Model. Water Resources Research, 2019, 55, 5102-5118.	4.2	23
174	Analysis of Water Management Scenarios Using Coupled Hydrological and System Dynamics Modeling. Water Resources Management, 2019, 33, 4849-4863.	3.9	23
175	A distributed-order time fractional derivative model for simulating bimodal sub-diffusion in heterogeneous media. Journal of Hydrology, 2020, 591, 125504.	5.4	23
176	Alleviating water scarcity and poverty in drylands through telecouplings: Vegetable trade and tourism in northwest China. Science of the Total Environment, 2020, 741, 140387.	8.0	23
177	Effects of extreme temperature on China's tea production. Environmental Research Letters, 2021, 16, 044040.	5.2	23
178	Antibiotic Chlortetracycline Causes Transgenerational Immunosuppression via NF-κB. Environmental Science & Environmental Scie	10.0	23
179	Abnormal fluid pressures caused by deposition and erosion of sedimentary basins. Journal of Hydrology, 1998, 204, 124-137.	5.4	22
180	Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions. Water Resources Research, 2014, 50, 1006-1024.	4.2	22

#	Article	IF	CITATIONS
181	Sustainability of global Golden Inland Waterways. Nature Communications, 2020, 11, 1553.	12.8	22
182	Sustainability of Groundwater Resources in the North China Plain., 2011,, 69-87.		22
183	Groundwater and surface-water interactions in a confined alluvial aquifer between two rivers: effects of groundwater flow dynamics on high iron anomaly. Hydrogeology Journal, 2007, 15, 495-513.	2.1	21
184	HYDRUS: Software for Flow and Transport Modeling in Variably Saturated Media. Ground Water, 2010, 48, 787-791.	1.3	21
185	Numerical modeling of regional groundwater flow in the Heihe River Basin, China: Advances and new insights. Science China Earth Sciences, 2015, 58, 3-15.	5.2	21
186	Seawater-groundwater Exchange in a Silty Tidal Flat in the South Coast of Laizhou Bay, China. Journal of Coastal Research, 2016, 74, 136-148.	0.3	21
187	Super-diffusion affected by hydrofacies mean length and source geometry in alluvial settings. Journal of Hydrology, 2020, 582, 124515.	5.4	21
188	Submarine groundwater discharge and associated nutrient fluxes in the Greater Bay Area, China revealed by radium and stable isotopes. Geoscience Frontiers, 2021, 12, 101223.	8.4	21
189	Comparing the effects of humic acid and oxalic acid on Pb(II) immobilization by a green synthesized nanocrystalline hydroxyapatite. Chemosphere, 2021, 285, 131411.	8.2	21
190	Perfluorooctane Sulfonamide (PFOSA) Induces Cardiotoxicity via Aryl Hydrocarbon Receptor Activation in Zebrafish. Environmental Science & Eamp; Technology, 2022, 56, 8438-8448.	10.0	21
191	Debating complexity in modeling. Eos, 1999, 80, 29.	0.1	20
192	Rainfall Intensity Temporal Patterns Affect Shallow Landslide Triggering and Hazard Evolution. Geophysical Research Letters, 2020, 47, e2019GL085994.	4.0	20
193	Nonlocal transport models for capturing solute transport in oneâ€dimensional sand columns: Model review, applicability, limitations and improvement. Hydrological Processes, 2020, 34, 5104-5122.	2.6	20
194	Improvement of evaluation of water age and submarine groundwater discharge: A case study in Daya Bay, China. Journal of Hydrology, 2020, 586, 124775.	5.4	20
195	Hydrogeological constraints and opportunities for "Sponge City―development: Shenzhen, southern China. Journal of Hydrology: Regional Studies, 2020, 28, 100679.	2.4	20
196	Investigation of submarine groundwater discharge and associated nutrient inputs into Laizhou Bay (China) using radium quartet. Marine Pollution Bulletin, 2020, 157, 111359.	5.0	20
197	Adaptive Multirate Mass Transfer (aMMT) Model: A New Approach to Upscale Regionalâ€Scale Transport Under Transient Flow Conditions. Water Resources Research, 2020, 56, e2019WR026000.	4.2	20
198	Bowknot-like Zr/La bimetallic organic frameworks for enhanced arsenate and phosphate removal: Combined experimental and DFT studies. Journal of Colloid and Interface Science, 2022, 614, 47-57.	9.4	20

#	Article	IF	Citations
199	Crab bioturbation drives coupled iron-phosphate-sulfide cycling in mangrove and salt marsh soils. Geoderma, 2022, 424, 115990.	5.1	20
200	Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer. Journal of Contaminant Hydrology, 2006, 85, 72-88.	3.3	19
201	China's "Love Canal" Moment?. Science, 2013, 340, 810-810.	12.6	19
202	On the limits of heat as a tracer to estimate reach-scale river-aquifer exchange flux. Water Resources Research, 2015, 51, 7401-7416.	4.2	19
203	An integrated ecohydrological modeling approach to exploring the dynamic interaction between groundwater and phreatophytes. Ecological Modelling, 2017, 356, 127-140.	2.5	19
204	Nitrate attenuation in low-permeability sediments based on isotopic and microbial analyses. Science of the Total Environment, 2018, 618, 15-25.	8.0	19
205	Contaminant transport in heterogeneous aquifers: A critical review of mechanisms and numerical methods of non-Fickian dispersion. Science China Earth Sciences, 2021, 64, 1224-1241.	5. 2	19
206	The Current State of Modeling. Ground Water, 2012, 50, 330-333.	1.3	18
207	Reactive transport modeling of thorium in a cloud computing environment. Journal of Geochemical Exploration, 2014, 144, 63-73.	3.2	18
208	Airborne Thermal Remote Sensing for Estimation of Groundwater Discharge to a River. Ground Water, 2016, 54, 363-373.	1.3	18
209	Spatial variations of river–groundwater interactions from upstream mountain to midstream oasis and downstream desert in Heihe River basin, China. Hydrology Research, 2016, 47, 501-520.	2.7	18
210	The Water–Energy Nexus of Megacities Extends Beyond Geographic Boundaries: A Case of Beijing. Environmental Engineering Science, 2019, 36, 778-788.	1.6	18
211	An empirical porosity–depth model for Earth's crust. Hydrogeology Journal, 2020, 28, 2331-2339.	2.1	18
212	Evaluating Distributed Policies for Conjunctive Surface Waterâ€Groundwater Management in Large River Basins: Water Uses Versus Hydrological Impacts. Water Resources Research, 2022, 58, .	4.2	18
213	Enrofloxacin Induces Intestinal Microbiota-Mediated Immunosuppression in Zebrafish. Environmental Science & Enrofloxacin Induces Intestinal Microbiota (1988) 1988 1989 1989 1989 1989 1989 1989	10.0	18
214	An efficient approach for successively perturbed groundwater models. Advances in Water Resources, 1998, 21, 499-508.	3.8	17
215	A process-based reactive hybrid transport model for coupled discrete conduit–continuum systems. Journal of Hydrology, 2007, 347, 23-34.	5.4	17
216	Water demand predictions for megacities: system dynamics modeling and implications. Water Policy, 2018, 20, 53-76.	1.5	17

#	Article	IF	CITATIONS
217	Impact of absorbing and reflective boundaries on fractional derivative models: Quantification, evaluation and application. Advances in Water Resources, 2019, 128, 129-144.	3.8	17
218	Role of Interceptor Ditches in Limiting the Spread of Contaminants in Ground Water. Ground Water, 1988, 26, 734-742.	1.3	16
219	Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: Physical versus chemical nonequilibrium model. Water Resources Research, 2011, 47, .	4.2	16
220	Effect of groundwater quality on sustainability of groundwater resource: A case study in the North China Plain. Journal of Contaminant Hydrology, 2015, 179, 132-147.	3.3	16
221	Spatiotemporal variation of river temperature as a predictor of groundwater/surface-water interactions in an arid watershed in China. Hydrogeology Journal, 2015, 23, 999-1007.	2.1	16
222	Analysis of groundwater–lake interaction by distributed temperature sensing in Badain Jaran Desert, Northwest China. Hydrological Processes, 2016, 30, 1330-1341.	2.6	16
223	An improved method for the calculation of unsaturated–saturated water flow by coupling the FEM and FDM. Scientific Reports, 2019, 9, 14995.	3.3	16
224	Analysis of groundwater resources in densely populated urban watersheds with a complex tectonic setting: Shenzhen, southern China. Hydrogeology Journal, 2019, 27, 183-194.	2.1	16
225	Real-time simulation of surface water and groundwater with data assimilation. Advances in Water Resources, 2019, 127, 13-25.	3.8	16
226	Plans to protect China's depleted groundwater. Science, 2022, 375, 827-827.	12.6	16
227	Sustainability analysis of groundwater resources in a coastal aquifer, Alabama. Environmental Geology, 2008, 54, 43-52.	1.2	15
228	Application of Tempered-Stable Time Fractional-Derivative Model to Upscale Subdiffusion for Pollutant Transport in Field-Scale Discrete Fracture Networks. Mathematics, 2018, 6, 5.	2.2	15
229	The Impacts of Water Demand and Its Implications for Future Surface Water Resource Management: The Case of Tanzania's Wami Ruvu Basin (WRB). Water (Switzerland), 2019, 11, 1280.	2.7	15
230	Development of fresh groundwater lens in coastal reclaimed islands. Journal of Hydrology, 2019, 573, 365-375.	5.4	15
231	Assessing the interlinkage of green and blue water in an arid catchment in Northwest China. Environmental Geochemistry and Health, 2020, 42, 933-953.	3.4	15
232	Addressing the water conflict between agriculture and ecosystems under environmental flow regulation: An integrated modeling study. Environmental Modelling and Software, 2020, 134, 104874.	4.5	15
233	The urgency to address the occupational health of chinese seafarers for sustainable development. Marine Policy, 2021, 129, 104518.	3.2	15
234	Exploring the impacts of the inequality of water permit allocation and farmers' behaviors on the performance of an agricultural water market. Journal of Hydrology, 2021, 599, 126303.	5.4	15

#	Article	IF	CITATIONS
235	A field demonstration of groundwater vulnerability assessment using transport modeling and groundwater age modeling, Beijing Plain, China. Environmental Earth Sciences, 2015, 73, 5245-5253.	2.7	14
236	Groundwater-surface water exchanges and associated nutrient fluxes in Dan'ao Estuary, Daya Bay, China. Continental Shelf Research, 2018, 166, 83-91.	1.8	14
237	Assessment of Groundwater Susceptibility to Non-Point Source Contaminants Using Three-Dimensional Transient Indexes. International Journal of Environmental Research and Public Health, 2018, 15, 1177.	2.6	14
238	Can groundwater be protected from the pressure of china's urban growth?. Environment International, 2020, 143, 105911.	10.0	14
239	Irrigation alters source-composition characteristics of groundwater dissolved organic matter in a large arid river basin, Northwestern China. Science of the Total Environment, 2021, 767, 144372.	8.0	14
240	Population ageing determines changes in heat vulnerability to future warming. Environmental Research Letters, 2020, 15, 114043.	5.2	14
241	Groundwater Recharge and Mixing in Arid and Semiarid Regions: Heihe River Basin, Northwest China. Acta Geologica Sinica, 2016, 90, 971-987.	1.4	13
242	Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling. Geophysical Research Letters, 2017, 44, 8359-8368.	4.0	13
243	An Integrated Modeling Approach to Study the Surface Water-Groundwater Interactions and Influence of Temporal Damping Effects on the Hydrological Cycle in the Miho Catchment in South Korea. Water (Switzerland), 2018, 10, 1529.	2.7	13
244	Epistemological dimensions of the water–energy–food nexus approach: reply to discussions of "Challenges in operationalizing the water–energy–food nexusâ€ . Hydrological Sciences Journal, 2018, 63, 1868-1871.	2.6	13
245	Remediation of surface water contaminated by pathogenic microorganisms using calcium peroxide: Matrix effect, micro-mechanisms and morphological-physiological changes. Water Research, 2022, 211, 118074.	11.3	13
246	Correct Delineation of Capture Zones Using Particle Tracking under Transient Conditions. Ground Water, 2014, 52, 332-334.	1.3	12
247	Ecoâ€hydrological effects associated with environmental flow management: A case study from the arid desert region of China. Ecohydrology, 2018, 11, e1914.	2.4	12
248	A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge. Water (Switzerland), 2018, 10, 503.	2.7	12
249	Experiment and multicomponent model based analysis on the effect of flow rate and nitrate concentration on denitrification in low-permeability media. Journal of Contaminant Hydrology, 2020, 235, 103727.	3.3	12
250	Distributions, quality assessments and fluxes of heavy metals carried by submarine groundwater discharge in different types of wetlands in Jiaozhou Bay, China. Marine Pollution Bulletin, 2020, 157, 111310.	5.0	12
251	Effects of Groundwater Pumping on Ground Surface Temperature: A Regional Modeling Study in the North China Plain. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031764.	3.3	12
252	An empirical specific storage-depth model for the Earth's crust. Journal of Hydrology, 2021, 592, 125784.	5.4	12

#	Article	IF	Citations
253	Satelliteâ€Observed Decreases in Water Turbidity in the Pearl River Estuary: Potential Linkage With Seaâ€Level Rise. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016842.	2.6	12
254	How does plastic film mulching affect crop water productivity in an arid river basin?. Agricultural Water Management, 2021, 258, 107218.	5.6	12
255	Photocatalysis of aqueous PFOA by common catalysts of In2O3, Ga2O3, TiO2, CeO2 and CdS: influence factors and mechanistic insights. Environmental Geochemistry and Health, 2022, 44, 2943-2953.	3.4	12
256	Assessing progress towards sustainable development in Shenzhen 2005–2019. Journal of Cleaner Production, 2022, 349, 131496.	9.3	12
257	The Different Characteristics of Aquifer Parameters and Their Implications on Pumping-Test Analysis. Ground Water, 1997, 35, 25-29.	1.3	11
258	Contaminant transport models under random sources. Ground Water, 2005, 43, 423-433.	1.3	11
259	SGeMS: A Free and Versatile Tool for Threeâ€Dimensional Geostatistical Applications. Ground Water, 2009, 47, 8-12.	1.3	11
260	Application of Hydrological Model PRMS to Simulate Daily Rainfall Runoff in Zamask-Yingluoxia Subbasin of the Heihe River Basin. Water (Switzerland), 2017, 9, 769.	2.7	11
261	Identification of Pollutant Source for Superâ€Diffusion in Aquifers and Rivers with Bounded Domains. Water Resources Research, 2018, 54, 7092-7108.	4.2	11
262	Groundwater Complexity in Urban Catchments: Shenzhen, Southern China. Ground Water, 2020, 58, 470-481.	1.3	11
263	Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: Strategies and relevance. Journal of Hydrology, 2021, 595, 126045.	5.4	11
264	Dynamics of seasonally frozen ground in the Yarlung Zangbo River Basin on the Qinghai-Tibet Plateau: historical trend and future projection. Environmental Research Letters, 2020, 15, 104081.	5.2	11
265	A preliminary investigation on the climate-discharge relationship in the upper region of the Yarlung Zangbo River basin. Journal of Hydrology, 2021, 603, 127066.	5.4	11
266	Divergent and Changing Importance of Glaciers and Snow as Natural Water Reservoirs in the Eastern and Southern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	11
267	Hydrochemical and isotopic evidence of origin of thermal karst water at Taiyuan, northern China. Journal of Earth Science (Wuhan, China), 2009, 20, 879-889.	3.2	10
268	Coal mine water management: optimization models and field application in North China. Hydrological Sciences Journal, 2010, 55, 609-623.	2.6	10
269	Not All Mass Transfer Rate Coefficients Are Created Equal. Ground Water, 2011, 49, 772-774.	1.3	10
270	Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: A case study in southern China. Science of the Total Environment, 2012, 414, 624-631.	8.0	10

#	Article	IF	CITATIONS
271	Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics. Water Resources Research, 2016, 52, 6419-6439.	4.2	10
272	Hydrological responses to climate shifts for a minimally disturbed mountainous watershed in northwestern China. Hydrological Sciences Journal, 2017, 62, 1440-1455.	2.6	10
273	Statistical Analysis of Extreme Events in Precipitation, Stream Discharge, and Groundwater Head Fluctuation: Distribution, Memory, and Correlation. Water (Switzerland), 2019, 11, 707.	2.7	10
274	Applying a Regional Transport Modeling Framework to Manage Nitrate Contamination of Groundwater. Ground Water, 2021, 59, 292-307.	1.3	10
275	Foraging trip duration of honeybee increases during a poor air quality episode and the increase persists thereafter. Ecology and Evolution, 2021, 11, 1492-1500.	1.9	10
276	U.S.–China Collaboration is Vital to Global Plans for a Healthy Environment and Sustainable Development. Environmental Science & Environment & Environmental Science & Environmental Science & Environment & Environmental Science & Environmental	10.0	10
277	Analysis of physicochemical factors regulating transport behaviors of sulfonamide antibiotics in saturated porous media. Journal of Hydrology, 2021, 599, 126381.	5.4	10
278	Using machine learning to reveal spatiotemporal complexity and driving forces of water quality changes in Hong Kong marine water. Journal of Hydrology, 2021, 603, 126841.	5.4	10
279	High-resolution mapping of wildfire drivers in California based on machine learning. Science of the Total Environment, 2022, 833, 155155.	8.0	10
280	Development and application of a master-slave parallel hybrid multi-objective evolutionary algorithm for groundwater remediation design. Environmental Earth Sciences, 2013, 70, 2481-2494.	2.7	9
281	Nitrate removal by a permeable reactive barrier of Fe0: A model-based evaluation. Journal of Earth Science (Wuhan, China), 2017, 28, 447-456.	3.2	9
282	Quantifying fate and transport of nitrate in saturated soil systems using fractional derivative model. Applied Mathematical Modelling, 2020, 81, 279-295.	4.2	9
283	Transcriptomic analysis of bisphenol AF on early growth and development of zebrafish (Danio rerio) larvae. Environmental Science and Ecotechnology, 2020, 4, 100054.	13.5	9
284	Highâ€Resolution Mapping of Ice Cover Changes in Over 33,000 Lakes Across the North Temperate Zone. Geophysical Research Letters, 2021, 48, e2021GL095614.	4.0	9
285	Emergence of significant soil moisture depletion in the near future. Environmental Research Letters, 2020, 15, 124048.	5.2	9
286	DENSITY-DRIVEN TRANSPORT OF DISSOLVED CHEMICALS THROUGH UNSATURATED SOIL. Soil Science, 1999, 164, 376-390.	0.9	9
287	A Dual Heterogeneous Domain Model for Upscaling Anomalous Transport With Multiâ€Peaks in Heterogeneous Aquifers. Water Resources Research, 2022, 58, .	4.2	9
288	REPLY TO the preceding Discussion by Robert D. McCaleb of "Analysis of Ground-Water Remedial Alternatives at a Superfund Site". Ground Water, 1992, 30, 440-442.	1.3	8

#	Article	IF	Citations
289	Internet Data Sources for Ground Water Modeling. Ground Water, 2006, 44, 136-138.	1.3	8
290	Role of Ethics in Groundwater Management. Ground Water, 2010, 48, 1-1.	1.3	8
291	Characteristics and controlling factors of dispersion in bounded heterogeneous porous media. Water Resources Research, 2010, 46, .	4.2	8
292	Sources and Dynamics of Dissolved Inorganic Carbon, Nitrogen, and Phosphorus in a Large Agricultural River Basin in Arid Northwestern China. Water (Switzerland), 2017, 9, 415.	2.7	8
293	Lagrangian solver for vector fractional diffusion in bounded anisotropic aquifers: Development and application. Fractional Calculus and Applied Analysis, 2019, 22, 1607-1640.	2.2	8
294	Event-Driven Hyporheic Exchange during Single and Seasonal Rainfall in a Gaining Stream. Water Resources Management, 2020, 34, 4617-4631.	3.9	8
295	Hillslopes in Headwaters of Qinghaiâ€Tibetan Plateau as Hotspots for Subsurface Dissolved Organic Carbon Processing During Permafrost Thaw. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006222.	3.0	8
296	Hydrogeological Criteria to Improve the Sponge City Strategy of China. Frontiers in Environmental Science, 2021, 9, .	3.3	8
297	Effect of Uncertain Hydraulic Conductivity on the Simulated Fate and Transport of BTEX Compounds at a Field Site. Journal of Environmental Engineering, ASCE, 2005, 131, 767-776.	1.4	7
298	Signals of shortâ€term climatic periodicities detected in the groundwater of North China Plain. Hydrological Processes, 2016, 30, 515-533.	2.6	7
299	Effects of agricultural activities on the temporal variations of streamflow: trends and long memory. Stochastic Environmental Research and Risk Assessment, 2019, 33, 1553-1564.	4.0	7
300	Simulating multi-dimensional anomalous diffusion in nonstationary media using variable-order vector fractional-derivative models with Kansa solver. Advances in Water Resources, 2019, 133, 103423.	3.8	7
301	Numerical Simulations of Seasonally Oscillated Groundwater Dynamics in Coastal Confined Aquifers. Ground Water, 2020, 58, 550-559.	1.3	7
302	Hydrogeological insights and modelling for sustainable use of a stressed carbonate aquifer in the Mediterranean area: From passive withdrawals to active management. Journal of Hydrology: Regional Studies, 2020, 32, 100749.	2.4	7
303	Climate change, environmental impact, and human health. Environmental Geochemistry and Health, 2020, 42, 715-717.	3.4	7
304	Open Science: Open Data, Open Models, …and Open Publications?. Water Resources Research, 2021, 57, e2020WR029480.	4.2	7
305	Efficient, parallelized global optimization of groundwater pumping in a regional aquifer with land subsidence constraints. Journal of Environmental Management, 2022, 310, 114753.	7.8	7
306	LONG-TERM GROUNDWATER MANAGEMENT BY A MODFLOW BASED DYNAMIC OPTIMIZATION TOOL. Journal of the American Water Resources Association, 1999, 35, 99-111.	2.4	6

#	Article	IF	Citations
307	Integrated catchment management: path to enlightenment. Hydrological Processes, 2011, 25, 2635-2640.	2.6	6
308	Comparison of Simulated Spatial Patterns Using Rain Gauge and Polarimetric-Radar-Based Precipitation Data in Catchment Hydrological Modeling. Journal of Hydrometeorology, 2018, 19, 1273-1288.	1.9	6
309	Quantifying Transport of Arsenic in Both Natural Soils and Relatively Homogeneous Porous Media using Stochastic Models. Soil Science Society of America Journal, 2018, 82, 1057-1070.	2.2	6
310	Application of fractional differential equation to interpret the dynamics of dissolved heavy-metal uptake in streams at a wide range of scales. European Physical Journal Plus, 2019, 134, 1.	2.6	6
311	Analysis of the groundwater flow system in a high-altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau. Journal of Hydrology: Regional Studies, 2021, 36, 100871.	2.4	6
312	Hydrochemistry of the Lhasa River, Tibetan Plateau: Spatiotemporal Variations of Major Ions Compositions and Controlling Factors Using Multivariate Statistical Approaches. Water (Switzerland), 2021, 13, 3660.	2.7	6
313	The Lasting Signatures of Past Landslides on Soil Stripping From Landscapes. Water Resources Research, 2021, 57, .	4.2	6
314	Lagrangian simulation of multi-step and rate-limited chemical reactions in multi-dimensional porous media. Water Science and Engineering, 2018, 11, 101-113.	3.2	5
315	Co-transport of biogenic nano-hydroxyapatite and Pb(II) in saturated sand columns: Controlling factors and stochastic modeling. Chemosphere, 2021, 275, 130078.	8.2	5
316	A Simple and Efficient Method for Correction of Basin-Scale Evapotranspiration on the Tibetan Plateau. Remote Sensing, 2021, 13, 3958.	4.0	5
317	How does soil water content influence permafrost evolution on the Qinghai-Tibet plateau under climate warming?. Environmental Research Letters, 0, , .	5.2	5
318	Model Viewer: A Three-Dimensional Visualization Tool for Ground Water Modelers. Ground Water, 2004, 42, 164-166.	1.3	4
319	SEAWAT-2000: Variable-Density Flow Processes and Integrated MT3DMS Transport Processes. Ground Water, 2004, 42, 642-645.	1.3	4
320	Ground water vistas: A graphical user interface for the MODFLOW family of ground water flow and transport models. Ground Water, 2005, 43, 165-168.	1.3	4
321	Inequal Responses of Drylands to Radiative Forcing Geoengineering Methods. Geophysical Research Letters, 2019, 46, 14011-14020.	4.0	4
322	Mathematical modeling of organic liquid dissolution in heterogeneous source zones. Journal of Contaminant Hydrology, 2020, 235, 103716.	3.3	4
323	Fractional-derivative models for non-Fickian transport in a single fracture and its extension. Journal of Hydrology, 2020, 590, 125396.	5 . 4	4
324	An improved numerical model for groundwater flow simulation with MPFA method on arbitrary polygon grids. Journal of Hydrology, 2022, 606, 127399.	5.4	4

#	Article	IF	CITATIONS
325	Continuous Loss of Global Lake Ice Across Two Centuries Revealed by Satellite Observations and Numerical Modeling. Geophysical Research Letters, 2022, 49, .	4.0	4
326	MODFLOW 2001 and Other Modeling Odysseys. Ground Water, 2003, 41, 113-113.	1.3	3
327	AqQA: Quality Assurance and Presentation Graphics for Ground Water Analyses. Ground Water, 2004, 42, 326-328.	1.3	3
328	Foreword: Understanding through Modeling. Ground Water, 2006, 44, 769-770.	1.3	3
329	Foreword: Groundwater Modeling and Public Policy. Ground Water, 2010, 48, 625-626.	1.3	3
330	Performance evaluation of inertial pumps used for sampling groundwater from small-diameter wells. Environmental Earth Sciences, 2016, 75, 1.	2.7	3
331	Upscaling Heat Flow in Porous Media With Periodic Surface Temperature Fluctuation Using a Oneâ€Dimensional Subordinated Heat Transfer Equation. Water Resources Research, 2021, 57, e2020WR027266.	4.2	3
332	Analysis of hydraulic conductivity characteristics of alluvial sequence in North China Plain. Environmental Earth Sciences, 2021, 80, 1.	2.7	3
333	Global environmental changes slow down the pace of globalization highlighted by a new composite indicator. Journal of Cleaner Production, 2021, 318, 128538.	9.3	3
334	Efficient simulation of groundwater solute transport using the multipoint flux approximation method with arbitrary polygon grids. Journal of Hydrology, 2021, 601, 126637.	5.4	3
335	Accounting for Aquifer Heterogeneity in Solute Transport Modeling. , 2006, , 26-1-26-18.		3
336	Submarine Groundwater and River Discharges Affect Carbon Cycle in a Highly Urbanized and River-Dominated Coastal Area. Frontiers in Marine Science, 2021, 8, .	2.5	3
337	The Role of Aquifers in Sustaining the Sponge City Concept in Chinese High-Density Housing. Water (Switzerland), 2022, 14, 929.	2.7	3
338	Subglacial Meltwater Recharge in the Dongkemadi River Basin, Yangtze River Source Region. Ground Water, 2022, 60, 434-450.	1.3	3
339	Water-Saving Potential of Different Agricultural Management Practices in an Arid River Basin. Water (Switzerland), 2022, 14, 2072.	2.7	3
340	TopoDrive and Particle Flow: Simple Tools for Learning Ground Water Modeling. Ground Water, 2002, 40, 222-223.	1.3	2
341	SVFlux and ChemFlux: Software for Two-Dimensional/Three-Dimensional Finite Element Variably Saturated Flow and Transport Modeling. Ground Water, 2004, 42, 804-808.	1.3	2
342	IGW/DL: A Digital Library for Teaching and Learning Hydrogeology and Groundwater Modeling. Ground Water, 2010, 48, 339-342.	1.3	2

#	Article	IF	CITATIONS
343	Using Distributed Temperature Sensing for Hydrogeological Studies in China. Ground Water, 2015, 53, 17-18.	1.3	2
344	Effective removal of methyl siloxane from water by sewage activated sludge microbes: biodegradation behavior and characteristics of microbial community. Bioresource Technology Reports, 2019, 7, 100209.	2.7	2
345	<i>Groundwater Modeling and Beyond</i> : <scp>MODFLOWâ€andâ€More</scp> â€2019 Special Issue. Ground Water, 2020, 58, 325-326.	1.3	2
346	Progress made in groundwater flow and transport modeling. Eos, 1995, 76, 393-393.	0.1	1
347	Analysis of Underpressured Reservoirs for Waste Disposal. Hydrogeology Journal, 1997, 5, 19-31.	2.1	1
348	Soft constraints in identification of distributed parameters. , 0, , .		1
349	MF2K-GWM: A Ground Water Management Modeling Tool Based on MODFLOW-2000. Ground Water, 2007, 45, 122-124.	1.3	1
350	Zhang Hongren and the Introduction of Transient Flow Theory to China. Ground Water, 2008, 46, 341-343.	1.3	1
351	Reflections: 2002-2010. Ground Water, 2011, 49, 129-132.	1.3	1
352	HPC Environment on Azure Cloud for Hydrological Parameter Estimation. , 2014, , .		1
353	A field-scale long-term study on radionuclide transport through weathered granites at a site in southern China. Environmental Earth Sciences, 2014, 72, 4427-4439.	2.7	1
354	Precipitation storm property distributions with heavy tails follow tempered stable density relationships. Journal of Physics: Conference Series, 2018, 1053, 012119.	0.4	1
355	Evaluation of Water and Energy Nexus in Wami Ruvu River Basin, Tanzania. Sustainability, 2019, 11, 3109.	3.2	1
356	Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment. , 2019, , 101-111.		1
357	Optimization of management strategies for reducing nitrogen loading in China. Science of the Total Environment, 2020, 703, 134620.	8.0	1
358	On the nanoparticle transport and release in layered heterogeneous porous media under transient chemical conditions. Journal of Hydrology, 2020, 586, 124889.	5.4	1
359	Ecohydrology. Springer Geography, 2017, , 407-417.	0.4	1
360	A neural network based parametrization method for distributed parameter identification. , 0, , .		0

#	Article	IF	CITATIONS
361	Application of Evolutionary Algorithms for Remediation System Design Optimization on the Massachusetts Military Reservation. , 2001 , , 1 .		O
362	Congratulation for Our Deputy Editor-in-Chief Chunmiao Zheng Receiving Two Prestigious International Awards. Acta Geologica Sinica, 2014, 88, 1920-1921.	1.4	0
363	EcoPartnership on water quality management and conservation in the U.S. and China. Journal of Renewable and Sustainable Energy, 2015, 7, 041516.	2.0	0
364	Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China. Proceedings of the International Association of Hydrological Sciences, 2015, 368, 361-365.	1.0	0
365	Analytical Solution of Tidal Loading Effect in a Submarine Leaky Confined Aquifer System. Geofluids, 2019, 2019, 1-15.	0.7	O
366	Evaluation of groundwater remediation strategies at petroleum contaminated sites based on groundwater modelling approach. IOP Conference Series: Earth and Environmental Science, 2019, 344, 012162.	0.3	0
367	Evaluation of Different Roof Materials for the Mitigation of Urban Warming in a Subtropical Monsoon Climate. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031972.	3.3	O
368	Numerical simulation of uranium transport in flooded underground mines. , 2002, , 273-282.		0
369	Application of Flow and Transport Optimization Codes to Groundwater Pump and Treat System Optimization. , 2003, , .		O
370	Groundwater Impacts radioactive radioactive waste groundwater impacts of Radioactive Wastes radioactive radioactive waste and Associated Environmental Modeling Assessment., 2012,, 4774-4784.		0
371	IMPACTS OF URBANIZATION ON THE GROUNDWATER RESOURCE: THE CASE OF SHENZHEN, CHINA. , 2017, , .		O
372	Identifying Non-Darcian Flow and Non-Fickian Pressure Propagation in Field-Scale Discrete Fracture Networks. Journal of Geoscience and Environment Protection, 2018, 06, 59-69.	0.5	0
373	Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment., 2018, , 1-12.		0