Malgorzata Pawelczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4015479/publications.pdf

Version: 2024-02-01

23 papers

350 citations

840776 11 h-index 794594 19 g-index

23 all docs 23 docs citations

times ranked

23

405 citing authors

#	Article	IF	CITATIONS
1	Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases. Journal of Medicinal Chemistry, 2014, 57, 8140-8151.	6.4	49
2	\hat{l}_{\pm} -Aminoalkylphosphonates as a tool in experimental optimisation of P1 side chain shape of potential inhibitors in S1 pocket of leucine- and neutral aminopeptidases. European Journal of Medicinal Chemistry, 2005, 40, 764-771.	5 . 5	43
3	Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C. Amino Acids, 2014, 46, 931-943.	2.7	37
4	Individual stereoisomers of phosphinic dipeptide inhibitor of leucine aminopeptidase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1550-1554.	2.2	28
5	A synthetic method for diversification of the P1 \hat{a} substituent in phosphinic dipeptides as a tool for exploration of the specificity of the S1 \hat{a} binding pockets of leucine aminopeptidases. Bioorganic and Medicinal Chemistry, 2007, 15, 3187-3200.	3.0	26
6	Stereoselective synthesis of 1-aminoalkanephosphonic acids with two chiral centers and their activity towards leucine aminopeptidase. Chirality, 2003, 15, S104-S107.	2.6	24
7	A structural insight into the P1 S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases. European Journal of Medicinal Chemistry, 2016, 117, 187-196.	5.5	24
8	Synthesis and activity of phosphinic tripeptide inhibitors of cathepsin C. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3113-3116.	2.2	20
9	Purification and partial characterization of aminopeptidase from barley (Hordeum vulgare L.) seeds. Plant Physiology and Biochemistry, 2013, 65, 75-80.	5.8	15
10	Synthesis of Tetrapeptidep-nitrophenylanilides containing dehydroalanine and dehydrophenylalanine and their influence on cathepsin C activity. Journal of Peptide Science, 2001, 7, 141-145.	1.4	12
11	A three-component Mannich-type condensation leading to phosphinic dipeptidesâ€"extended transition state analogue inhibitors of aminopeptidases. Tetrahedron Letters, 2011, 52, 3141-3145.	1.4	12
12	Unusual activity pattern of leucine aminopeptidase inhibitors based on phosphorus containing derivatives of methionine and norleucine. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 155-161.	5.2	11
13	Synthesis of dehydrodipeptide esters and their evaluation as inhibitors of cathepsin C. Medicinal Chemistry Research, 2015, 24, 3157-3165.	2.4	9
14	Toward very potent, non-covalent organophosphonate inhibitors ofÂcathepsin C and related enzymes by 2-amino-1-hydroxy-alkanephosphonates dipeptides. Biochimie, 2013, 95, 1640-1649.	2.6	8
15	Substrate specificity screening of oat (Avena sativa) seeds aminopeptidase demonstrate unusually broad tolerance in S1 pocket. Plant Physiology and Biochemistry, 2012, 54, 6-9.	5 . 8	6
16	Substituted phosphonic analogues of phenylglycine as inhibitors of phenylalanine ammonia lyase from potatoes. Biochimie, 2018, 151, 119-127.	2.6	6
17	Phosphonic Acid Analogues of Phenylglycine as Inhibitors of Aminopeptidases: Comparison of Porcine Aminopeptidase N, Bovine Leucine Aminopeptidase, Tomato Acidic Leucine Aminopeptidase and Aminopeptidase from Barley Seeds. Pharmaceuticals, 2019, 12, 139.	3.8	6
18	Addition of thiols to the double bond of dipeptide C-terminal dehydroalanine as a source of new inhibitors of cathepsin C. Biochimie, 2017, 139, 46-55.	2.6	4

#	Article	IF	CITATIONS
19	Influence of bioremediation stimulators in soil on development of oat seedlings (Avena sativa) and their aminopeptidase activity / WpÅ,yw pozostaÅ,oÅvci substancji ropopochodnych w glebie na rozwój owsa i aktywnoÅvć aminopeptydazowÄ Archives of Environmental Protection, 2015, 41, 24-28.	1.1	3
20	The influence of α-aminophosphonic acids on the activity of aminopeptidase from barley seeds—an approach to determine the enzyme specificity. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	3
21	Phosphinotripeptidic Inhibitors of Leucylaminopeptidases. International Journal of Molecular Sciences, 2021, 22, 5090.	4.1	2
22	N-Benzyl Residues as the P1′ Substituents in Phosphorus-Containing Extended Transition State Analog Inhibitors of Metalloaminopeptidases. Molecules, 2020, 25, 4334.	3.8	1
23	Synthesis of Hybrid Tripeptide Peptidomimetics Containing Dehydroamino Acid and Aminophosphonic Acid in the Chain and Evaluation of Their Activity toward Cathepsin C. Chemistry and Biodiversity, 2022, 19, .	2.1	1