Ginestra Bianconi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4014478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Statistical physics of exchangeable sparse simple networks, multiplex networks, and simplicial complexes. Physical Review E, 2022, 105, 034310.	2.1	4
2	Critical time-dependent branching process modelling epidemic spreading with containment measures*. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 224006.	2.1	1
3	Geometry, Topology andÂSimplicial Synchronization. Understanding Complex Systems, 2022, , 269-299.	0.6	7
4	Grand Canonical Ensembles of Sparse Networks and Bayesian Inference. Entropy, 2022, 24, 633.	2.2	5
5	Message-passing approach to epidemic tracing and mitigation with apps. Physical Review Research, 2021, 3, .	3.6	35
6	D-dimensional oscillators in simplicial structures: Odd and even dimensions display different synchronization scenarios. Chaos, Solitons and Fractals, 2021, 146, 110888.	5.1	22
7	Higher-order simplicial synchronization of coupled topological signals. Communications Physics, 2021, 4, .	5.3	64
8	Higher-order percolation processes on multiplex hypergraphs. Physical Review E, 2021, 104, 034306.	2.1	48
9	The topological Dirac equation of networks and simplicial complexes. Journal of Physics Complexity, 2021, 2, 035022.	2.2	14
10	Probing the spectral dimension of quantum network geometries. Journal of Physics Complexity, 2021, 2, 015001.	2.2	4
11	Beyond COVID-19: network science and sustainable exit strategies. Journal of Physics Complexity, 2021, 2, 021001.	2.2	14
12	The physics of higher-order interactions in complex systems. Nature Physics, 2021, 17, 1093-1098.	16.7	287
13	Universal Nonlinear Infection Kernel from Heterogeneous Exposure on Higher-Order Networks. Physical Review Letters, 2021, 127, 158301.	7.8	51
14	Local topological moves determine global diffusion properties of hyperbolic higher-order networks. Physical Review E, 2021, 104, 054302.	2.1	15
15	Link overlap influences opinion dynamics on multiplex networks of Ashkin-Teller spins. Physical Review E, 2021, 104, 064304.	2.1	4
16	Spectral detection of simplicial communities via Hodge Laplacians. Physical Review E, 2021, 104, 064303.	2.1	12
17	Renormalization group theory of percolation on pseudofractal simplicial and cell complexes. Physical Review E, 2020, 102, 012308.	2.1	8
18	Epidemics with containment measures. Physical Review E, 2020, 102, 032305.	2.1	14

#	Article	IF	CITATIONS
19	Epidemic plateau in critical susceptible-infected-removed dynamics with nontrivial initial conditions. Physical Review E, 2020, 102, 052309.	2.1	18
20	The higher-order spectrum of simplicial complexes: a renormalization group approach. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 295001.	2.1	16
21	Explosive Higher-Order Kuramoto Dynamics on Simplicial Complexes. Physical Review Letters, 2020, 124, 218301.	7.8	146
22	Simplicial complexes: higher-order spectral dimension and dynamics. Journal of Physics Complexity, 2020, 1, 015002.	2.2	47
23	Classical information theory of networks. Journal of Physics Complexity, 2020, 1, 025001.	2.2	13
24	The spectral dimension of simplicial complexes: a renormalization group theory. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 014005.	2.3	18
25	Non-Markovian majority-vote model. Physical Review E, 2020, 102, 062311.	2.1	10
26	Welcome to JPhys Complexity. Journal of Physics Complexity, 2020, 1, 010201.	2.2	0
27	Enhancing the robustness of a multiplex network leads to multiple discontinuous percolation transitions. Physical Review E, 2019, 100, 020301.	2.1	7
28	Renormalization group for link percolation on planar hyperbolic manifolds. Physical Review E, 2019, 100, 022306.	2.1	15
29	Quantum statistics in Network Geometry with Fractional Flavor. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 103403.	2.3	6
30	Statistical mechanics of bipartite z-matchings. Europhysics Letters, 2019, 126, 28001.	2.0	5
31	Large deviation theory of percolation on multiplex networks. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 023405.	2.3	7
32	Beyond the clustering coefficient: A topological analysis of node neighbourhoods in complex networks. Chaos, Solitons and Fractals: X, 2019, 1, 100004.	2.1	48
33	Synchronization in network geometries with finite spectral dimension. Physical Review E, 2019, 99, 022307.	2.1	51
34	Multiplex network analysis of the UK overâ€theâ€counter derivatives market. International Journal of Finance and Economics, 2019, 24, 1520-1544.	3.5	18
35	Percolation on branching simplicial and cell complexes and its relation to interdependent percolation. Physical Review E, 2019, 100, 062311.	2.1	20
36	Rare events and discontinuous percolation transitions. Physical Review E, 2018, 97, 022314.	2.1	27

0

#	Article	IF	CITATIONS
37	Complex network view of evolving manifolds. Physical Review E, 2018, 97, 032316.	2.1	17
38	Centralities of nodes and influences of layers in large multiplex networks. Journal of Complex Networks, 2018, 6, 733-752.	1.8	48
39	Topological percolation on hyperbolic simplicial complexes. Physical Review E, 2018, 98, .	2.1	40
40	Controlling the uncertain response of real multiplex networks to random damage. Physical Review E, 2018, 98, .	2.1	16
41	Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data. Entropy, 2018, 20, 257.	2.2	4
42	Complex Network Geometry and Frustrated Synchronization. Scientific Reports, 2018, 8, 9910.	3.3	52
43	Dense power-law networks and simplicial complexes. Physical Review E, 2018, 97, 052303.	2.1	31
44	Network Geometry and Complexity. Journal of Statistical Physics, 2018, 173, 783-805.	1.2	30
45	Multilayer Network Models. , 2018, , 190-225.		19
46	Interdependent Multilayer Networks. , 2018, , 226-259.		2
47	Multilink communities of multiplex networks. PLoS ONE, 2018, 13, e0193821.	2.5	29
48	Centrality Measures. , 2018, , .		0
49	Multilayer Networks in Nature, Society and Infrastructures. , 2018, , .		0
50	Classical Percolation, Generalized Percolation and Cascades. , 2018, , .		0
51	The Mathematical Definition. , 2018, , 100-116.		1
52	The Dynamics on Single Networks. , 2018, , .		0
53	Epidemic Spreading. , 2018, , .		0

54 Complex Systems as Multilayer Networks. , 2018, , .

4

#	Article	IF	CITATIONS
55	Synchronization, Non-linear Dynamics and Control. , 2018, , .		Ο
56	Structural Correlations of Multiplex Networks. , 2018, , 129-145.		0
57	Opinion Dynamics and Game Theory. , 2018, , .		0
58	The Structure of Single Networks. , 2018, , 9-46.		1
59	Basic Structural Properties. , 2018, , 117-128.		0
60	Redundant Interdependencies Boost the Robustness of Multiplex Networks. Physical Review X, 2017, 7, .	8.9	47
61	Epidemic spreading and bond percolation on multilayer networks. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 034001.	2.3	27
62	Emergent Hyperbolic Network Geometry. Scientific Reports, 2017, 7, 41974.	3.3	99
63	Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nature Communications, 2017, 8, 1615.	12.8	120
64	Fluctuations in percolation of sparse complex networks. Physical Review E, 2017, 96, 012302.	2.1	17
65	Weighted growing simplicial complexes. Physical Review E, 2017, 95, 062301.	2.1	48
66	Publisher's Note: Redundant Interdependencies Boost the Robustness of Multiplex Networks [Phys. Rev. X 7 , 011013 (2017)]. Physical Review X, 2017, 7, .	8.9	5
67	Functional Multiplex PageRank. Europhysics Letters, 2016, 116, 28004.	2.0	47
68	Control of Multilayer Networks. Scientific Reports, 2016, 6, 20706.	3.3	47
69	Extracting information from multiplex networks. Chaos, 2016, 26, 065306.	2.5	34
70	Percolation in real multiplex networks. Physical Review E, 2016, 94, 060301.	2.1	29
71	Network analysis and modelling: Special issue of <i>European Journal of Applied Mathematics</i> . European Journal of Applied Mathematics, 2016, 27, 807-811.	2.9	5
72	Message passing theory for percolation models on multiplex networks with link overlap. Physical Review E, 2016, 94, 032301.	2.1	52

#	Article	IF	CITATIONS
73	Correlated edge overlaps in multiplex networks. Physical Review E, 2016, 94, 012303.	2.1	31
74	Multiplex networks with heterogeneous activities of the nodes. Physical Review E, 2016, 93, 032302.	2.1	24
75	Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes. Physical Review E, 2016, 93, 062311.	2.1	128
76	The role of dimensionality in neuronal network dynamics. Scientific Reports, 2016, 6, 29640.	3.3	81
77	Network geometry with flavor: From complexity to quantum geometry. Physical Review E, 2016, 93, 032315.	2.1	81
78	Emergence of Multiplex Communities in Collaboration Networks. PLoS ONE, 2016, 11, e0147451.	2.5	33
79	Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free. Scientific Reports, 2015, 5, 13979.	3.3	41
80	Complex quantum network geometries: Evolution and phase transitions. Physical Review E, 2015, 92, 022815.	2.1	40
81	Mesoscopic structures reveal the network between the layers of multiplex data sets. Physical Review E, 2015, 92, 042806.	2.1	26
82	Interdisciplinary and physics challenges of network theory. Europhysics Letters, 2015, 111, 56001.	2.0	99
83	Degree correlations in signed social networks. Physica A: Statistical Mechanics and Its Applications, 2015, 422, 25-39.	2.6	22
84	Supersymmetric multiplex networks described by coupled Bose and Fermi statistics. Physical Review E, 2015, 91, 012810.	2.1	5
85	Mutually connected component of networks of networks with replica nodes. Physical Review E, 2015, 91, 012804.	2.1	32
86	Emergent Complex Network Geometry. Scientific Reports, 2015, 5, 10073.	3.3	92
87	Statistical mechanics of random geometric graphs: Geometry-induced first-order phase transition. Physical Review E, 2015, 91, 042136.	2.1	8
88	Multiscale characterization of ageing and cancer progression by a novel network entropy measure. Molecular BioSystems, 2015, 11, 1824-1831.	2.9	22
89	Emergence of Soft Communities from Geometric Preferential Attachment. Scientific Reports, 2015, 5, 9421.	3.3	75
90	Critical behavior at a dynamic vortex insulator-to-metal transition. Science, 2015, 349, 1202-1205.	12.6	40

#	Article	IF	CITATIONS
91	Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature, 2015, 525, 359-362.	27.8	250
92	Weighted Multiplex Networks. PLoS ONE, 2014, 9, e97857.	2.5	167
93	Correlations between weights and overlap in ensembles of weighted multiplex networks. Physical Review E, 2014, 90, 062817.	2.1	27
94	Condensation and topological phase transitions in a dynamical network model with rewiring of the links. Physical Review E, 2014, 89, 042810.	2.1	11
95	Nonlinear growth and condensation in multiplex networks. Physical Review E, 2014, 90, 042807.	2.1	38
96	Emergence of overlap in ensembles of spatial multiplexes and statistical mechanics of spatial interacting network ensembles. Physical Review E, 2014, 89, 012806.	2.1	64
97	Multiple percolation transitions in a configuration model of a network of networks. Physical Review E, 2014, 89, 062814.	2.1	114
98	Entropy distribution and condensation in random networks with a given degree distribution. Physical Review E, 2014, 89, 062807.	2.1	27
99	Triadic closure as a basic generating mechanism of communities in complex networks. Physical Review E, 2014, 90, 042806.	2.1	136
100	The structure and dynamics of multilayer networks. Physics Reports, 2014, 544, 1-122.	25.6	2,469
101	Network Controllability Is Determined by the Density of Low In-Degree and Out-Degree Nodes. Physical Review Letters, 2014, 113, 078701.	7.8	109
102	Dangerous liaisons?. Nature Physics, 2014, 10, 712-714.	16.7	34
103	Percolation on Interdependent Networks with a Fraction of Antagonistic Interactions. Journal of Statistical Physics, 2013, 152, 1069-1083.	1.2	15
104	Models, Entropy and Information of Temporal Social Networks. Understanding Complex Systems, 2013, , 95-117.	0.6	7
105	Growing Multiplex Networks. Physical Review Letters, 2013, 111, 058701.	7.8	234
106	Superconductor-insulator transition in a network of 2d percolation clusters. Europhysics Letters, 2013, 101, 26003.	2.0	20
107	Phase transition of light on complex quantum networks. Physical Review E, 2013, 87, 022104.	2.1	19
108	Statistical mechanics of multiplex networks: Entropy and overlap. Physical Review E, 2013, 87, 062806.	2.1	283

#	Article	IF	CITATIONS
109	Percolation on interacting, antagonistic networks. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P05005.	2.3	40
110	Selection for Replicases in Protocells. PLoS Computational Biology, 2013, 9, e1003051.	3.2	27
111	Connect and win: The role of social networks in political elections. Europhysics Letters, 2013, 102, 16002.	2.0	56
112	Percolation in multiplex networks with overlap. Physical Review E, 2013, 88, 052811.	2.1	163
113	Multiplex PageRank. PLoS ONE, 2013, 8, e78293.	2.5	164
114	The Dynamics of Group Formation Among Leeches. Frontiers in Physiology, 2012, 3, 133.	2.8	11
115	Differential network entropy reveals cancer system hallmarks. Scientific Reports, 2012, 2, 802.	3.3	154
116	Monochromaticity in neutral evolutionary network models. Physical Review E, 2012, 86, 066101.	2.1	1
117	Features and heterogeneities in growing network models. Physical Review E, 2012, 85, 066110.	2.1	11
118	Enhancement of <i>T</i> _c in the superconductor–insulator phase transition on scale-free networks. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012, P07021.	2.3	24
119	Superconductor-insulator transition on annealed complex networks. Physical Review E, 2012, 85, 061113.	2.1	62
120	Phase diagram of the Bose-Hubbard model on complex networks. Europhysics Letters, 2012, 99, 18001.	2.0	26
121	Dynamics of Ranking Processes in Complex Systems. Physical Review Letters, 2012, 109, 128701.	7.8	54
122	A comparison between the quasi-species evolution and stochastic quantization of fields. European Physical Journal B, 2012, 85, 1.	1.5	3
123	Quantum mechanics formalism for biological evolution. Chaos, Solitons and Fractals, 2012, 45, 555-560.	5.1	8
124	Evolution and control of oxygen order in a cuprateÂsuperconductor. Nature Materials, 2011, 10, 733-736.	27.5	148
125	Entropy rate of nonequilibrium growing networks. Physical Review E, 2011, 84, 066113.	2.1	13
126	Shannon and von Neumann entropy of random networks with heterogeneous expected degree. Physical Review E, 2011, 83, 036109.	2.1	112

#	Article	IF	CITATIONS
127	Social Interactions Model and Adaptability of Human Behavior. Frontiers in Physiology, 2011, 2, 101.	2.8	13
128	Modeling microevolution in a changing environment: the evolving quasispecies and the diluted champion process. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P08022.	2.3	7
129	Social network dynamics of face-to-face interactions. Physical Review E, 2011, 83, 056109.	2.1	93
130	Unified framework for quasispecies evolution and stochastic quantization. Physical Review E, 2011, 83, 056104.	2.1	8
131	Entropy of Dynamical Social Networks. PLoS ONE, 2011, 6, e28116.	2.5	38
132	Scale-free structural organization of oxygen interstitials in La2CuO4+y. Nature, 2010, 466, 841-844.	27.8	236
133	Mean-field methods in evolutionary duplication-innovation-loss models for the genome-level repertoire of protein domains. Physical Review E, 2010, 81, 021919.	2.1	4
134	Dynamical and bursty interactions in social networks. Physical Review E, 2010, 81, 035101.	2.1	109
135	Network resilience against intelligent attacks constrained by the degree-dependent node removal cost. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 395001.	2.1	13
136	Critical Fluctuations in Spatial Complex Networks. Physical Review Letters, 2010, 104, 218701.	7.8	44
137	Bose-Einstein distribution, condensation transition, and multiple stationary states in multiloci evolution of diploid populations. Physical Review E, 2010, 82, 036109.	2.1	8
138	Gibbs entropy of network ensembles by cavity methods. Physical Review E, 2010, 82, 011116.	2.1	30
139	Statistical mechanics of the "Chinese restaurant process†Lack of self-averaging, anomalous finite-size effects, and condensation. Physical Review E, 2009, 80, 066118.	2.1	8
140	A minimal model for congestion phenomena on complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P08023.	2.3	18
141	The percolation transition in correlated hypergraphs. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P07028.	2.3	10
142	Percolation transition and distribution of connected components in generalized random network ensembles. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 195007.	2.1	8
143	Non-neutral theory of biodiversity. Europhysics Letters, 2009, 87, 28001.	2.0	13
144	Entropy of network ensembles. Physical Review E, 2009, 79, 036114.	2.1	156

#	Article	IF	CITATIONS
145	On the rich-club effect in dense and weighted networks. European Physical Journal B, 2009, 67, 271-275.	1.5	46
146	Congestion phenomena on complex networks. Physical Review E, 2009, 79, 015101.	2.1	107
147	Effects of Tobin taxes in minority game markets. Journal of Economic Behavior and Organization, 2009, 70, 231-240.	2.0	26
148	Entropy measures for networks: Toward an information theory of complex topologies. Physical Review E, 2009, 80, 045102.	2.1	227
149	Assessing the relevance of node features for network structure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11433-11438.	7.1	210
150	GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks. Science, 2009, 326, 1419-1424.	12.6	593
151	Most probable degree distribution at fixed structural entropy. Pramana - Journal of Physics, 2008, 70, 1135-1142.	1.8	4
152	Algorithm for counting large directed loops. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 224003.	2.1	5
153	Entropies of complex networks with hierarchically constrained topologies. Physical Review E, 2008, 78, 016114.	2.1	50
154	Dynamics of condensation in growing complex networks. Physical Review E, 2008, 78, 056102.	2.1	11
155	Multi-asset minority games. Quantitative Finance, 2008, 8, 225-231.	1.7	16
156	The entropy of randomized network ensembles. Europhysics Letters, 2008, 81, 28005.	2.0	164
157	Flux distribution of metabolic networks close to optimal biomass production. Physical Review E, 2008, 78, 035101.	2.1	7
158	Local Structure of Directed Networks. Physical Review Letters, 2008, 100, 118701.	7.8	61
159	Viable flux distribution in metabolic networks. Networks and Heterogeneous Media, 2008, 3, 361-369.	1.1	5
160	Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics, 2007, 23, 1640-1647.	4.1	100
161	A statistical mechanics approach for scale-free networks and finite-scale networks. Chaos, 2007, 17, 026114.	2.5	14
162	LINEAR AND NONLINEAR METHODS FOR GENE REGULATORY NETWORK INFERENCE. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 533-538.	0.4	1

#	Article	IF	CITATIONS
163	Theory of rumour spreading in complex social networks. Physica A: Statistical Mechanics and Its Applications, 2007, 374, 457-470.	2.6	591
164	Scale-free networks with an exponent less than two. Physical Review E, 2006, 73, 046113.	2.1	58
165	Number of cliques in random scale-free network ensembles. Physica D: Nonlinear Phenomena, 2006, 224, 1-6.	2.8	15
166	Emergence of large cliques in random scale-free networks. Europhysics Letters, 2006, 74, 740-746.	2.0	46
167	Effect of degree correlations on the loop structure of scale-free networks. Physical Review E, 2006, 73, 066127.	2.1	14
168	On the non-trivial dynamics of complex networks. Physica A: Statistical Mechanics and Its Applications, 2005, 346, 116-122.	2.6	6
169	Self-Organized-Critical network dynamics. AIP Conference Proceedings, 2005, , .	0.4	0
170	Loops structure of the Internet at the Autonomous System Level. Physical Review E, 2005, 71, 066116.	2.1	33
171	Emergence of weight-topology correlations in complex scale-free networks. Europhysics Letters, 2005, 71, 1029-1035.	2.0	55
172	Loops of any size and Hamilton cycles in random scale-free networks. Journal of Statistical Mechanics: Theory and Experiment, 2005, 2005, P06005.	2.3	55
173	Clogging and self-organized criticality in complex networks. Physical Review E, 2004, 70, 035105.	2.1	42
174	Number of cycles in off-equilibrium scale-free networks and in the Internet at the Autonomous System Level. European Physical Journal B, 2004, 38, 223-230.	1.5	10
175	Effect of Temperature and X-Ray Illumination on the Oxygen Ordering in La2CuO4.1Superconductor. Journal of Superconductivity and Novel Magnetism, 2004, 17, 137-142.	0.5	6
176	Ecology of active and passive players and their impact on information selection. Physica A: Statistical Mechanics and Its Applications, 2004, 332, 519-532.	2.6	7
177	Number of Loops of Sizehin Growing Scale-Free Networks. Physical Review Letters, 2003, 90, 078701.	7.8	82
178	Size of quantum networks. Physical Review E, 2003, 67, 056119.	2.1	6
179	The strain of CuO2lattice: the second variable for the phase diagram of cuprate perovskites. Journal of Physics A, 2003, 36, 9133-9142.	1.6	78
180	TEMPERATURE AND X-RAY ILLUMINATION EFFECTS IN OXYGEN DOPED La2CuO4. International Journal of Modern Physics B, 2003, 17, 836-841.	2.0	3

#	Article	IF	CITATIONS
181	Growing Cayley trees described by a Fermi distribution. Physical Review E, 2002, 66, 036116.	2.1	22
182	DISORDER TO ORDER-LIKE TRANSITION IN La2CuO4.1 SUPERCONDUCTOR INDUCED BY HIGH INTENSITY X-RAYS. International Journal of Modern Physics B, 2002, 16, 1627-1632.	2.0	0
183	Lattice-Charge Stripes in the High-Tc Superconductors. , 2002, , 9-25.		2
184	Photo-Induced Phase Transition to a Striped Polaron Crystal in Cuprates. Phase Transitions, 2002, 75, 927-933.	1.3	9
185	Quantum statistics in complex networks. Physical Review E, 2002, 66, 056123.	2.1	39
186	Mean field solution of the Ising model on aÂBarabÃįsi–Albert network. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 303, 166-168.	2.1	151
187	Bose-Einstein Condensation in Complex Networks. Physical Review Letters, 2001, 86, 5632-5635.	7.8	593
188	Competition and multiscaling in evolving networks. Europhysics Letters, 2001, 54, 436-442.	2.0	780
189	A quantum phase transition driven by the electron lattice interaction gives high TC superconductivity. Journal of Alloys and Compounds, 2001, 317-318, 537-541.	5.5	57
190	The strain quantum critical point for superstripes. AIP Conference Proceedings, 2001, , .	0.4	2
191	Coexistence of stripes and superconductivity: Tc amplification in a superlattice of superconducting stripes. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1719-1722.	1.2	54
192	Transformation of strings into an inhomogeneous phase of stripes and itinerant carriers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 275, 118-123.	2.1	50
193	Evidence for the strain critical point in high Tc superconductors. European Physical Journal B, 2000, 18, 617-624.	1.5	48
194	Charge stripes formation by x-ray illumination in high T[sub c] superconductors. , 2000, , .		1
195	SELF-ORGANIZED NETWORKS AS A REPRESENTATION OF QUANTUM STATISTICS. International Journal of Modern Physics B, 2000, 14, 3356-3361.	2.0	4
196	METALLIC STRIPES IN OXYGEN DOPED La2CuO4. International Journal of Modern Physics B, 2000, 14, 3438-3443.	2.0	12
197	THE STRAIN QUANTUM CRITICAL POINT FOR SUPERSTRIPES IN THE PHASE DIAGRAM OF ALL CUPRATE PEROVSKITES. International Journal of Modern Physics B, 2000, 14, 3342-3355.	2.0	51
198	The stripe critical point for cuprates. Journal of Physics Condensed Matter, 2000, 12, 10655-10666.	1.8	78

#	Article	IF	CITATIONS
199	Power-Law Distribution of the World Wide Web. Science, 2000, 287, 2115.	12.6	774
200	Renormalization-group study of one-dimensional systems with roughening transitions. Physical Review E, 1999, 60, 3719-3726.	2.1	1
201	Non perturbative renormalization group approach to surface growth. Computer Physics Communications, 1999, 121-122, 358-362.	7.5	1
202	Multiplex Network Analysis of the UK OTC Derivatives Market. SSRN Electronic Journal, 0, , .	0.4	6