
Antonio J Herrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4014047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammatory Animal Models of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S165-S182.	2.8	9
2	Microglia: Agents of the CNS Pro-Inflammatory Response. Cells, 2020, 9, 1717.	4.1	174
3	Reformulating Pro-Oxidant Microglia in Neurodegeneration. Journal of Clinical Medicine, 2019, 8, 1719.	2.4	47
4	Divergent Effects of Metformin on an Inflammatory Model of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 440.	3.7	43
5	Potential Use of Nanomedicine for the Anti-inflammatory Treatment of Neurodegenerative Diseases. Current Pharmaceutical Design, 2018, 24, 1589-1616.	1.9	21
6	Caspase-8 inhibition represses initial human monocyte activation in septic shock model. Oncotarget, 2016, 7, 37456-37470.	1.8	16
7	Chronic stress alters the expression levels of longevity-related genes in the rat hippocampus. Neurochemistry International, 2016, 97, 181-192.	3.8	26
8	Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicology and Applied Pharmacology, 2016, 298, 19-30.	2.8	72
9	Relevance of chronic stress and the two faces of microglia in Parkinson's disease. Frontiers in Cellular Neuroscience, 2015, 9, 312.	3.7	36
10	Synergistic Deleterious Effect of Chronic Stress and Sodium Azide in the Mouse Hippocampus. Chemical Research in Toxicology, 2015, 28, 651-661.	3.3	4
11	Neuromelanin activates proinflammatory microglia through a caspase-8-dependent mechanism. Journal of Neuroinflammation, 2015, 12, 5.	7.2	38
12	Collateral Damage: Contribution of Peripheral Inflammation to Neurodegenerative Diseases. Current Topics in Medicinal Chemistry, 2015, 15, 2193-2210.	2.1	37
13	Chronic stress as a risk factor for Alzheimer's disease. Reviews in the Neurosciences, 2014, 25, 785-804.	2.9	132
14	Role of dopamine in the recruitment of immune cells to the nigro-striatal dopaminergic structures. NeuroToxicology, 2014, 41, 89-101.	3.0	25
15	Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. Journal of Neuroinflammation, 2014, 11, 34.	7.2	157
16	Intracranial Injection of LPS in Rat as Animal Model of Neuroinflammation. Methods in Molecular Biology, 2013, 1041, 295-305.	0.9	34
17	Immunohistochemical Detection of Microglia. Methods in Molecular Biology, 2013, 1041, 281-289.	0.9	2
18	Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. NeuroToxicology, 2012, 33, 347-360.	3.0	87

ANTONIO J HERRERA

#	Article	IF	CITATIONS
19	Peripheral Inflammation Increases the Damage in Animal Models of Nigrostriatal Dopaminergic Neurodegeneration: Possible Implication in Parkinson's Disease Incidence. Parkinson's Disease, 2011, 2011, 1-10.	1.1	35
20	Ulcerative colitis exacerbates lipopolysaccharideâ€induced damage to the nigral dopaminergic system: potential risk factor in Parkinson`s disease. Journal of Neurochemistry, 2010, 114, 1687-1700.	3.9	169
21	Degeneration of dopaminergic neurons induced by thrombin injection in the substantia nigra of the rat is enhanced by dexamethasone: Role of monoamine oxidase enzyme. NeuroToxicology, 2010, 31, 55-66.	3.0	17
22	The intranigral injection of tissue plasminogen activator induced blood–brain barrier disruption, inflammatory process and degeneration of the dopaminergic system of the rat. NeuroToxicology, 2009, 30, 403-413.	3.0	21
23	Simvastatin prevents the inflammatory process and the dopaminergic degeneration induced by the intranigral injection of lipopolysaccharide. Journal of Neurochemistry, 2008, 105, 445-459.	3.9	81
24	The intrastriatal injection of thrombin in rat induced a retrograde apoptotic degeneration of nigral dopaminergic neurons through synaptic elimination. Journal of Neurochemistry, 2008, 105, 750-762.	3.9	12
25	Endogenous dopamine enhances the neurotoxicity of 3-nitropropionic acid in the striatum through the increase of mitochondrial respiratory inhibition and free radicals production. NeuroToxicology, 2007, 29, 244-58.	3.0	30
26	Stress Increases Vulnerability to Inflammation in the Rat Prefrontal Cortex. Journal of Neuroscience, 2006, 26, 5709-5719.	3.6	187
27	Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in perivascular and parenchymal astrocytes: Protective effect by estradiol treatment in ovariectomized animals. Journal of Neuroscience Research, 2005, 80, 235-246.	2.9	101
28	Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. Journal of Neural Transmission, 2005, 112, 111-119.	2.8	95
29	Dopamineâ€dependent neurotoxicity of lipopolysaccharide in substantia nigra. FASEB Journal, 2005, 19, 1-22.	0.5	35
30	Deprenyl enhances the striatal neuronal damage produced by quinolinic acid. Molecular Brain Research, 2005, 141, 48-57.	2.3	2
31	Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiology of Disease, 2004, 16, 190-201.	4.4	187
32	Thrombin induces in vivo degeneration of nigral dopaminergic neurones along with the activation of microglia. Journal of Neurochemistry, 2003, 84, 1201-1214.	3.9	75
33	Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats. Molecular Brain Research, 2002, 103, 116-129.	2.3	42
34	The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rhâ€TNFâ€Î±, ILâ€Iβ and IFNâ€Î³. Journal of Neurochemistry 81, 150-157.	, 2002,	227
35	The Single Intranigral Injection of LPS as a New Model for Studying the Selective Effects of Inflammatory Reactions on Dopaminergic System. Neurobiology of Disease, 2000, 7, 429-447.	4.4	373
36	Language bias discredits the peer-review system. Nature, 1999, 397, 467-467.	27.8	16

ANTONIO J HERRERA

#	Article	IF	CITATIONS
37	Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochemistry International, 1997, 30, 549-555.	3.8	81
38	The effect of experimental ischaemia and excitatory amino acid agonists on the GABA and serotonin immunoreactivities in the rabbit retina. Neuroscience, 1994, 59, 1071-1081.	2.3	61
39	NADPH diaphorase localization and nitric oxide synthetase activity in the retina and anterior uvea of the rabbit eye. Brain Research, 1993, 610, 194-198.	2.2	106
40	Ageing and monoamine turnover in the lateral geniculate nucleus and visual cortex of the rat. Neurochemistry International, 1993, 22, 531-539.	3.8	11
41	Effects of a short period of vitamin E-deficient diet in the turnover of different neurotransmitters in substantia nigra and striatum of the rat. Neuroscience, 1993, 53, 179-185.	2.3	16
42	Changes in neurotransmitter levels associated with the deficiency of some essential amino acids in the diet. British Journal of Nutrition, 1992, 68, 409-420.	2.3	23
43	The influence of age on neurotransmitter turnover in the rat's superior colliculus. Neurobiology of Aging, 1991, 12, 289-294.	3.1	7
44	Effects of neonatal bilateral eye enucleation on postnatal development of the monoamines in posterior thalamus of the rat. Journal of Neural Transmission, 1991, 85, 231-242.	2.8	3
45	Neonatal enucleation alters catecholamine and serotonin metabolism in the lateral geniculate and visual cortex in developing rats. Neurochemistry International, 1990, 17, 415-424.	3.8	6
46	Effects of enucleation on postnatal development of catecholamines and serotonin metabolism in the superior colliculus of the rat. Brain Research, 1990, 523, 281-287.	2.2	5