List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4013850/publications.pdf Version: 2024-02-01

MARK ALEMMON

#	Article	IF	CITATIONS
1	Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature, 2022, 602, 518-522.	27.8	36
2	Dynamics of protein kinases and pseudokinases by HDX-MS. Methods in Enzymology, 2022, 667, 303-338.	1.0	2
3	Looking lively: emerging principles of pseudokinase signaling. Trends in Biochemical Sciences, 2022, 47, 875-891.	7.5	9
4	Computational studies of anaplastic lymphoma kinase mutations reveal common mechanisms of oncogenic activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2019132118.	7.1	3
5	Phosphatidylserine binding directly regulates TIM-3 function. Biochemical Journal, 2021, 478, 3331-3349.	3.7	19
6	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.9	25
7	ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes. Cell Reports, 2021, 37, 109834.	6.4	13
8	Structural basis for ligand reception by anaplastic lymphoma kinase. Nature, 2021, 600, 148-152.	27.8	21
9	Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics. Science Signaling, 2020, 13, .	3.6	45
10	Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Molecular Cell, 2020, 79, 390-405.e7.	9.7	56
11	Insulin and epidermal growth factor receptor family members share parallel activation mechanisms. Protein Science, 2020, 29, 1331-1344.	7.6	31
12	Drug Sensitivity and Allele Specificity of First-Line Osimertinib Resistance <i>EGFR</i> Mutations. Cancer Research, 2020, 80, 2017-2030.	0.9	46
13	Drug Sensitivity and Alleleâ€specificity of Firstâ€line Osimertinib Resistance EGFR Mutations. FASEB Journal, 2020, 34, 1-1.	0.5	Ο
14	Comparison of tyrosine kinase domain properties for the neurotrophin receptors TrkA and TrkB. Biochemical Journal, 2020, 477, 4053-4070.	3.7	4
15	Neuregulin Signaling Is a Mechanism of Therapeutic Resistance in Head and Neck Squamous Cell Carcinoma. Molecular Cancer Therapeutics, 2019, 18, 2124-2134.	4.1	9
16	Non-acylated Wnts Can Promote Signaling. Cell Reports, 2019, 26, 875-883.e5.	6.4	21
17	The EGFR Exon 19 Mutant L747-A750>P Exhibits Distinct Sensitivity to Tyrosine Kinase Inhibitors in Lung Adenocarcinoma. Clinical Cancer Research, 2019, 25, 6382-6391.	7.0	39
18	Computational algorithms for in silico profiling of activating mutations in cancer. Cellular and Molecular Life Sciences, 2019, 76, 2663-2679.	5.4	11

#	Article	IF	CITATIONS
19	Regulation of Kinase Activity in the Caenorhabditis elegans EGF Receptor, LET-23. Structure, 2018, 26, 270-281.e4.	3.3	5
20	Structures of β-klotho reveal a â€~zip code'-like mechanism for endocrine FGF signalling. Nature, 2018, 553, 501-505.	27.8	160
21	Smoothening out the patches. Science, 2018, 362, 26-27.	12.6	3
22	Flipping ATP to AMPlify Kinase Functions. Cell, 2018, 175, 641-642.	28.9	4
23	Structural Basis for MARK1 Kinase Autoinhibition by Its KA1 Domain. Structure, 2018, 26, 1137-1143.e3.	3.3	15
24	Dimerization of Tie2 mediated by its membrane-proximal FNIII domains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4382-4387.	7.1	29
25	Molecular determinants of KA1 domain-mediated autoinhibition and phospholipid activation of MARK1 kinase. Biochemical Journal, 2017, 474, 385-398.	3.7	21
26	EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell, 2017, 171, 683-695.e18.	28.9	276
27	Deletion Mutations Keep Kinase Inhibitors in the Loop. Cancer Cell, 2016, 29, 423-425.	16.8	5
28	Overcoming resistance to HER2 inhibitors through state-specific kinase binding. Nature Chemical Biology, 2016, 12, 923-930.	8.0	29
29	The Dark Side of Cell Signaling: Positive Roles for Negative Regulators. Cell, 2016, 164, 1172-1184.	28.9	97
30	The ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma. Cancer Discovery, 2016, 6, 96-107.	9.4	144
31	<scp>EGFR</scp> mutations cause a lethal syndrome of epithelial dysfunction with progeroid features. Molecular Genetics & amp; Genomic Medicine, 2015, 3, 452-458.	1.2	12
32	Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding Site. Structure, 2015, 23, 352-363.	3.3	40
33	Ligand regulation of a constitutively dimeric EGF receptor. Nature Communications, 2015, 6, 7380.	12.8	31
34	Complex Relationship between Ligand Binding and Dimerization in the Epidermal Growth Factor Receptor. Cell Reports, 2014, 9, 1306-1317.	6.4	78
35	The EGFR Family: Not So Prototypical Receptor Tyrosine Kinases. Cold Spring Harbor Perspectives in Biology, 2014, 6, a020768-a020768.	5.5	345
36	ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in Neuroblastoma. Cancer Cell, 2014, 26, 682-694.	16.8	302

#	Article	IF	CITATIONS
37	Putting together structures of epidermal growth factor receptors. Current Opinion in Structural Biology, 2014, 29, 95-101.	5.7	44
38	TIPE3 Is the Transfer Protein of Lipid Second Messengers that Promote Cancer. Cancer Cell, 2014, 26, 465-478.	16.8	93
39	Mechanism for activation of mutated epidermal growth factor receptors in lung cancer. Proceedings of the United States of America, 2013, 110, E3595-604.	7.1	116
40	Receptor tyrosine kinases with intracellular pseudokinase domains. Biochemical Society Transactions, 2013, 41, 1029-1036.	3.4	68
41	Assessing the range of kinase autoinhibition mechanisms in the insulin receptor family. Biochemical Journal, 2012, 448, 213-220.	3.7	75
42	Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene, 2012, 31, 4859-4867.	5.9	61
43	Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochemical Journal, 2012, 448, 417-423.	3.7	228
44	Occupy EGFR: Figure 1 Cancer Discovery, 2012, 2, 398-400.	9.4	8
45	Finding the missing links in EGFR. Nature Structural and Molecular Biology, 2012, 19, 1-3.	8.2	45
46	Conditional Peripheral Membrane Proteins: Facing up to Limited Specificity. Structure, 2012, 20, 15-27.	3.3	151
47	Protein Kinase C Regulation: C1 Meets C-tail. Structure, 2011, 19, 144-146.	3.3	10
48	Molecular dynamics analysis of conserved hydrophobic and hydrophilic bond-interaction networks in ErbB family kinases. Biochemical Journal, 2011, 436, 241-251.	3.7	27
49	KSR Plays CRAF-ty. Science, 2011, 332, 1043-1044.	12.6	9
50	Differential Inhibitor Sensitivity of Anaplastic Lymphoma Kinase Variants Found in Neuroblastoma. Science Translational Medicine, 2011, 3, 108ra114.	12.4	199
51	Mutations in or near the Transmembrane Domain Alter PMEL Amyloid Formation from Functional to Pathogenic. PLoS Genetics, 2011, 7, e1002286.	3.5	46
52	Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. EMBO Journal, 2010, 29, 3054-3067.	7.8	116
53	Pleckstrin Homology (PH) Domains. , 2010, , 1093-1101.		2
54	ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7692-7697.	7.1	395

#	Article	IF	CITATIONS
55	Identification of the Rac-GEF P-Rex1 as an Essential Mediator of ErbB Signaling in Breast Cancer. Molecular Cell, 2010, 40, 877-892.	9.7	194
56	Cell Signaling by Receptor Tyrosine Kinases. Cell, 2010, 141, 1117-1134.	28.9	4,613
57	Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor. Cell, 2010, 142, 568-579.	28.9	162
58	Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids. Cell, 2010, 143, 966-977.	28.9	150
59	N-terminal Domains Elicit Formation of Functional Pmel17 Amyloid Fibrils. Journal of Biological Chemistry, 2009, 284, 35543-35555.	3.4	101
60	A possible effector role for the pleckstrin homology (PH) domain of dynamin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13359-13364.	7.1	55
61	Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in <i>S. cerevisiae</i> . Journal of Cell Biology, 2009, 185, 995-1012.	5.2	87
62	Functional selectivity of EGF family peptide growth factors: Implications for cancer. , 2009, 122, 1-8.		225
63	Ligand-induced ErbB receptor dimerization. Experimental Cell Research, 2009, 315, 638-648.	2.6	185
64	Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biology, 2009, 10, 67.	3.0	105
65	ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor. Nature, 2009, 461, 287-291.	27.8	69
66	The Juxtamembrane Region of the EGF Receptor Functions as an Activation Domain. Molecular Cell, 2009, 34, 641-651.	9.7	262
67	Loss of pleckstrin defines a novel pathway for PKC-mediated exocytosis. Blood, 2009, 113, 3577-3584.	1.4	44
68	Autoâ€inhibition of dynamin GTPase activity is regulated by PH domain interactions. FASEB Journal, 2009, 23, 697.3.	0.5	0
69	Regulation of the epidermal growth factor receptor intracellular domain. FASEB Journal, 2009, 23, 883.2.	0.5	0
70	Structural basis for EGFR ligand sequestration by Argos. FASEB Journal, 2009, 23, 883.7.	0.5	0
71	ErbB2/HER2/Neu resembles an autoinhibited invertebrate EGF receptor. FASEB Journal, 2009, 23, 884.3.	0.5	0
72	Phosphoinositideâ€mimicking peptide sequences are binding targets for PH domains. FASEB Journal, 2009, 23, 873.7.	0.5	0

5

#	Article	IF	CITATIONS
73	Characterization of Novel PtdIns(4,5)P 2 Effector Domains. FASEB Journal, 2009, 23, 873.6.	0.5	0
74	Structural basis for EGFR ligand sequestration by Argos. Nature, 2008, 453, 1271-1275.	27.8	48
75	Membrane recognition by phospholipid-binding domains. Nature Reviews Molecular Cell Biology, 2008, 9, 99-111.	37.0	1,298
76	Mechanism of Activation and Inhibition of the HER4/ErbB4 Kinase. Structure, 2008, 16, 460-467.	3.3	159
77	A New Twist in the Transmembrane Signaling Tool-Kit. Cell, 2007, 130, 213-215.	28.9	13
78	Pleckstrin homology (PH) domains and phosphoinositides. Biochemical Society Symposia, 2007, 74, 81.	2.7	191
79	Pleckstrin homology (PH) domains and phosphoinositides. Biochemical Society Symposia, 2007, 74, 81-93.	2.7	202
80	EGF-independent activation of cell-surface EGF receptors harboring mutations found in gefitinib-sensitive lung cancer. Oncogene, 2007, 26, 1567-1576.	5.9	78
81	Ligand-Induced Structural Transitions in ErbB Receptor Extracellular Domains. Structure, 2007, 15, 942-954.	3.3	88
82	Nuclear Signaling by Receptor Tyrosine Kinases: The First Robin of Spring. Cell, 2006, 127, 45-48.	28.9	87
83	Palmitoylation of the EGFR Ligand Spitz by Rasp Increases Spitz Activity by Restricting Its Diffusion. Developmental Cell, 2006, 10, 167-176.	7.0	105
84	Determining selectivity of phosphoinositide-binding domains. Methods, 2006, 39, 122-133.	3.8	114
85	The Dbs PH domain contributes independently to membrane targeting and regulation of guanine nucleotide-exchange activity. Biochemical Journal, 2006, 400, 563-572.	3.7	42
86	Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends in Biochemical Sciences, 2006, 31, 52-63.	7.5	203
87	Essential Role for Rac in Heregulin β1 Mitogenic Signaling: a Mechanism That Involves Epidermal Growth Factor Receptor and Is Independent of ErbB4. Molecular and Cellular Biology, 2006, 26, 831-842.	2.3	82
88	On the nature of low- and high-affinity EGF receptors on living cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5735-5740.	7.1	91
89	Specificity of the Myotubularin Family of Phosphatidylinositol-3-phosphatase Is Determined by the PH/GRAM Domain. Journal of Biological Chemistry, 2006, 281, 31762-31769.	3.4	32
90	Argos Mutants Define an Affinity Threshold for Spitz Inhibition in Vivo. Journal of Biological Chemistry, 2006, 281, 28993-29001.	3.4	6

#	Article	IF	CITATIONS
91	Specificity of the Myotubularin Family of Phosphatidylinositol-3-phosphatase Is Determined by the PH/GRAM Domain. Journal of Biological Chemistry, 2006, 281, 31762-31769.	3.4	14
92	Membrane activity of the phospholipase C-δ1 pleckstrin homology (PH) domain. Biochemical Journal, 2005, 389, 435-441.	3.7	56
93	PH Domains. , 2005, , 337-363.		2
94	Epidermal Growth Factor Receptor Dimerization and Activation Require Ligand-Induced Conformational Changes in the Dimer Interface. Molecular and Cellular Biology, 2005, 25, 7734-7742.	2.3	247
95	Pleckstrin Homology Domains: Two Halves Make a Hole?. Cell, 2005, 120, 574-576.	28.9	36
96	Computational analysis of EGFR inhibition by Argos. Developmental Biology, 2005, 284, 523-535.	2.0	37
97	The tethered configuration of the EGF receptor extracellular domain exerts only a limited control of receptor function. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 923-928.	7.1	96
98	The p21-activated Protein Kinase-related Kinase Cla4 Is a Coincidence Detector of Signaling by Cdc42 and Phosphatidylinositol 4-Phosphate. Journal of Biological Chemistry, 2004, 279, 17101-17110.	3.4	57
99	Inhibition of nuclear import and cell-cycle progression by mutated forms of the dynamin-like GTPase MxB. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8957-8962.	7.1	111
100	A structure-based model for ligand binding and dimerization of EGF receptors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 929-934.	7.1	111
101	Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO Journal, 2004, 23, 1922-1933.	7.8	302
102	Argos inhibits epidermal growth factor receptor signalling by ligand sequestration. Nature, 2004, 430, 1040-1044.	27.8	127
103	ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Letters, 2004, 569, 332-336.	2.8	126
104	Genome-Wide Analysis of Membrane Targeting by S. cerevisiae Pleckstrin Homology Domains. Molecular Cell, 2004, 13, 677-688.	9.7	315
105	Phosphoinositide Recognition Domains. Traffic, 2003, 4, 201-213.	2.7	500
106	Genome-wide analysis of signaling domain function. Current Opinion in Chemical Biology, 2003, 7, 103-109.	6.1	15
107	EGF Activates Its Receptor by Removing Interactions that Autoinhibit Ectodomain Dimerization. Molecular Cell, 2003, 11, 507-517.	9.7	675
108	An Open-and-Shut Case? Recent Insights into the Activation of EGF/ErbB Receptors. Molecular Cell, 2003, 12, 541-552.	9.7	774

#	Article	IF	CITATIONS
109	SH2 and PTB Domains in Tyrosine Kinase Signaling. Science Signaling, 2003, 2003, RE12.	3.6	228
110	Loss of Phosphatidylinositol 3-Phosphate Binding by the C-terminal Tiam-1 Pleckstrin Homology Domain Prevents in Vivo Rac1 Activation without Affecting Membrane Targeting. Journal of Biological Chemistry, 2003, 278, 11457-11464.	3.4	59
111	The EGF Receptor Family as Therapeutic Targets in Breast Cancer. Breast Disease, 2003, 18, 33-43.	0.8	18
112	Pleckstrin Homology (PH) Domains. , 2003, , 161-169.		0
113	Phosphoinositide Binding by the Pleckstrin Homology Domains of Ipl and Tih1. Journal of Biological Chemistry, 2002, 277, 49935-49944.	3.4	45
114	The Single Transmembrane Domains of ErbB Receptors Self-associate in Cell Membranes. Journal of Biological Chemistry, 2002, 277, 4704-4712.	3.4	269
115	Pleckstrin homology domains and the cytoskeleton. FEBS Letters, 2002, 513, 71-76.	2.8	229
116	Normalization of nomenclature for peptide motifs as ligands of modular protein domains. FEBS Letters, 2002, 513, 141-144.	2.8	118
117	High-Affinity Binding of a FYVE Domain to Phosphatidylinositol 3-Phosphate Requires Intact Phospholipid but Not FYVE Domain Oligomerization. Biochemistry, 2001, 40, 8581-8587.	2.5	82
118	Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. Biochemical Society Transactions, 2001, 29, 377-384.	3.4	96
119	[48] Analysis of phosphoinositide binding by Pleckstrin homology domain from dynamin. Methods in Enzymology, 2001, 329, 457-468.	1.0	11
120	Quantitative Analysis of the Effect of Phosphoinositide Interactions on the Function of Dbl Family Proteins. Journal of Biological Chemistry, 2001, 276, 45868-45875.	3.4	83
121	All Phox Homology (PX) Domains from Saccharomyces cerevisiae Specifically Recognize Phosphatidylinositol 3-Phosphate. Journal of Biological Chemistry, 2001, 276, 44179-44184.	3.4	187
122	Crystal Structure of Fibroblast Growth Factor 9 Reveals Regions Implicated in Dimerization and Autoinhibition. Journal of Biological Chemistry, 2001, 276, 4322-4329.	3.4	62
123	Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochemical Journal, 2000, 350, 1.	3.7	230
124	Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochemical Journal, 2000, 350, 1-18.	3.7	656
125	Extracellular domains drive homo- but not hetero-dimerization of erbB receptors. EMBO Journal, 2000, 19, 4632-4643.	7.8	126
126	The Role of the Pleckstrin Homology Domain in Membrane Targeting and Activation of Phospholipase Cl²1. Journal of Biological Chemistry, 2000, 275, 14873-14881.	3.4	59

#	Article	IF	CITATIONS
127	Structural Basis for Discrimination of 3-Phosphoinositides by Pleckstrin Homology Domains. Molecular Cell, 2000, 6, 373-384.	9.7	333
128	Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Current Biology, 1999, 9, 261-265.	3.9	114
129	Structural bases for specific phosphoinositide binding by PH domains. Biochemical Society Transactions, 1999, 27, A73-A73.	3.4	0
130	Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO Journal, 1998, 17, 5374-5387.	7.8	325
131	Activation of phospholipase Cgamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO Journal, 1998, 17, 414-422.	7.8	507
132	Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Current Biology, 1998, 8, 1399-1404.	3.9	247
133	The Pleckstrin Homology Domains of Dynamin Isoforms Require Oligomerization for High Affinity Phosphoinositide Binding. Journal of Biological Chemistry, 1998, 273, 27725-27733.	3.4	182
134	Specificity and Promiscuity in Phosphoinositide Binding by Pleckstrin Homology Domains. Journal of Biological Chemistry, 1998, 273, 30497-30508.	3.4	398
135	Kit Receptor Dimerization Is Driven by Bivalent Binding of Stem Cell Factor. Journal of Biological Chemistry, 1997, 272, 6311-6317.	3.4	98
136	Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene, 1997, 14, 687-696.	5.9	71
137	Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO Journal, 1997, 16, 281-294.	7.8	314
138	Specific role for the PH domain of dynamin-1 in the regulation of rapid endocytosis in adrenal chromaffin cells. EMBO Journal, 1997, 16, 1565-1574.	7.8	75
139	Identification of the Binding Site for Acidic Phospholipids on the PH Domain of Dynamin: Implications for Stimulation of GTPase Activity. Journal of Molecular Biology, 1996, 255, 14-21.	4.2	251
140	PH Domains: Diverse Sequences with a Common Fold Recruit Signaling Molecules to the Cell Surface. Cell, 1996, 85, 621-624.	28.9	473
141	Alaâ€insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helixâ€helix interactions in integral membrane proteins. Protein Science, 1996, 5, 1339-1341.	7.6	71
142	Thermodynamic Studies of SHC Phosphotyrosine Interaction Domain Recognition of the NPXpY Motif. Journal of Biological Chemistry, 1996, 271, 4770-4775.	3.4	33
143	Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10472-10476.	7.1	544
144	Solution structure of pleckstrin homology domain of dynamin by heteronuclear NMR spectroscopy Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 816-820.	7.1	94

#	Article	IF	CITATIONS
145	Scratching the surface with the PH domain. Nature Structural and Molecular Biology, 1995, 2, 715-718.	8.2	59
146	Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal Proceedings of the United States of America, 1995, 92, 3199-3203.	7.1	273
147	Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors?. Cell, 1995, 83, 357-360.	28.9	484
148	Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell, 1995, 83, 1037-1046.	28.9	613
149	Regulation of signal transduction and signal diversity by receptor oligomerization. Trends in Biochemical Sciences, 1994, 19, 459-463.	7.5	438
150	A dimerization motif for transmembrane α–helices. Nature Structural Biology, 1994, 1, 157-163.	9.7	294
151	Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell, 1994, 79, 1015-1024.	28.9	667
152	Crystal structure at 2.2 Ã resolution of the pleckstrin homology domain from human dynamin. Cell, 1994, 79, 199-209.	28.9	285
153	Specificity and promiscuity in membrane helix interactions. FEBS Letters, 1994, 346, 17-20.	2.8	54
154	Thermodynamic Studies of Tyrosyl-Phosphopeptide Binding to the SH2 Domain of p56lck. Biochemistry, 1994, 33, 5070-5076.	2.5	68
155	Specificity and promiscuity in membrane helix interactions. Quarterly Reviews of Biophysics, 1994, 27, 157-218.	5.7	182
156	Sequence specificity in the dimerization of transmembrane .alphahelixes. Biochemistry, 1992, 31, 12719-12725.	2.5	520
157	The glycophorin A transmembrane domain dimer: Sequence-specific propensity for a right-handed supercoil of helixes. Biochemistry, 1992, 31, 12726-12732.	2.5	177
158	Helix-helix interactions inside lipid bilayers. Current Opinion in Structural Biology, 1992, 2, 511-518.	5.7	55