Long Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4012838/publications.pdf

Version: 2024-02-01

		279487	329751
36	8,906	23	37
papers	citations	h-index	g-index
38	38	38	7945
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science, 2002, 296, 79-92.	6.0	3,146
2	A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science, 2002, 296, 92-100.	6.0	2,866
3	Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496, 91-95.	13.7	714
4	JOINTLESS is a MADS-box gene controlling tomato flower abscissionzone development. Nature, 2000, 406, 910-913.	13.7	314
5	mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat. Plant Cell, 2014, 26, 1878-1900.	3.1	308
6	The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants, 2017, 3, 946-955.	4.7	164
7	Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum) Tj ETQq1 499-511.	1 0.78431 1.4	14 rgBT /Cive 153
8	Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral Patterning Identified Stage-Specific Regulatory Genes. Plant Physiology, 2017, 174, 1779-1794.	2.3	121
9	The <scp>SEPALLATA MADS</scp> â€box protein <scp>SLMBP</scp> 21 forms protein complexes with <scp>JOINTLESS</scp> and <scp>MACROCALYX</scp> as a transcription activator for development of the tomato flower abscission zone. Plant Journal, 2014, 77, 284-296.	2.8	112
10	Synthetic Hexaploid Wheat: Yesterday, Today, and Tomorrow. Engineering, 2018, 4, 552-558.	3.2	104
11	Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nature Biotechnology, 2022, 40, 422-431.	9.4	102
12	Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon. Plant Cell, 2013, 25, 4363-4377.	3.1	92
13	Regulation of FT splicing by an endogenous cue in temperate grasses. Nature Communications, 2017, 8, 14320.	5. 8	70
14	Making the Bread: Insights from Newly Synthesized Allohexaploid Wheat. Molecular Plant, 2015, 8, 847-859.	3.9	59
15	Grass MicroRNA Gene Paleohistory Unveils New Insights into Gene Dosage Balance in Subgenome Partitioning after Whole-Genome Duplication. Plant Cell, 2012, 24, 1776-1792.	3.1	53
16	DNA methylation dynamics during the interaction of wheat progenitor <i>Aegilops tauschii</i> with the obligate biotrophic fungus <i>Blumeria graminis</i> f. sp. <i>tritici</i> New Phytologist, 2019, 221, 1023-1035.	3.5	51
17	Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 2022, 15, 504-519.	3.9	48
18	Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2018, 9, 1282.	1.7	46

#	Article	IF	Citations
19	Novel insights from non-conserved microRNAs in plants. Frontiers in Plant Science, 2014, 5, 586.	1.7	44
20	The wheat <i>AGL6</i> à€like MADSâ€box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnology Journal, 2022, 20, 75-88.	4.1	38
21	Wheat functional genomics in the era of next generation sequencing: An update. Crop Journal, 2018, 6, 7-14.	2.3	35
22	The Battle to Sequence the Bread Wheat Genome: A Tale of the Three Kingdoms. Genomics, Proteomics and Bioinformatics, 2020, 18, 221-229.	3.0	31
23	The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat. BMC Genomics, 2017, 18, 149.	1.2	30
24	TalAA21 represses TaARF25â€mediated expression of <i>TaERFs</i> required for grain size and weight development in wheat. Plant Journal, 2021, 108, 1754-1767.	2.8	28
25	A MADS-box gene <i>NtSVP</i> regulates pedicel elongation by directly suppressing a <i>KNAT1</i> like KNOX gene <i>NtBPL</i> in tobacco (<i>Nicotiana tabacum</i> L). Journal of Experimental Botany, 2015, 66, 6233-6244.	2.4	26
26	<i>Matrilineal</i> empowers wheat pollen with haploid induction potency by triggering postmitosis reactive oxygen species activity. New Phytologist, 2022, 233, 2405-2414.	3. 5	26
27	Comprehensive analysis of <i>Q</i> gene nearâ€isogenic lines reveals key molecular pathways for wheat domestication and improvement. Plant Journal, 2020, 102, 299-310.	2.8	21
28	Characterization of Squamosa Promoter Binding Protein-LIKE genes in wheat. Journal of Plant Biology, 2015, 58, 220-229.	0.9	19
29	High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Communications Biology, 2021, 4, 1242.	2.0	14
30	The soft glumes of common wheat are sterile-lemmas as determined by the domestication gene Q. Crop Journal, 2019, 7, 113-117.	2.3	13
31	Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. Crop Journal, 2015, 3, 1-9.	2.3	12
32	A transcriptomic view of the ability of nascent hexaploid wheat to tolerate aneuploidy. BMC Plant Biology, 2020, 20, 97.	1.6	10
33	Mapping QTLs for enhancing early biomass derived from Aegilops tauschii in synthetic hexaploid wheat. PLoS ONE, 2020, 15, e0234882.	1.1	7
34	The improved assembly of 7DL chromosome provides insight into the structure and evolution of bread wheat. Plant Biotechnology Journal, 2020, 18, 732-742.	4.1	6
35	Transcriptome Analysis of Developing Wheat Grains at Rapid Expanding Phase Reveals Dynamic Gene Expression Patterns. Biology, 2022, 11, 281.	1.3	4
36	InDels Identification and Association Analysis with Spike and Awn Length in Chinese Wheat Mini-Core Collection. International Journal of Molecular Sciences, 2022, 23, 5587.	1.8	3