Long Mao

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4012838/publications.pdf
Version: 2024-02-01
36
papers
all docs

1	A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science, 2002, 296, 79-92.	6.0	3,146
2	A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science, 2002, 296, 92-100.	6.0	2,866
3	Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496, 91-95.	13.7	714
4	JOINTLESS is a MADS-box gene controlling tomato flower abscissionzone development. Nature, 2000, 406, 910-913.	13.7	314
5	mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat. Plant Cell, 2014, 26, 1878-1900.	3.1	308
6	The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants, 2017, 3, 946-955.	4.7	164
7	Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum) 499-511.	$\begin{gathered} 10.7 \\ 1.4 \end{gathered}$	$\begin{aligned} & 4 \text { rgBT } \\ & 153 \end{aligned}$

11 Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement.Nature Biotechnology, 2022, 40, 422-431.
10212 Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon. Plant Cell, 2013, 25,3.1

92
4363-4377.
$5.8 \quad 70$

Regulation of FT splicing by an endogenous cue in temperate grasses. Nature Communications, 2017, 8,
5.8

70
$13 \quad 14320$.

Making the Bread: Insights from Newly Synthesized Allohexaploid Wheat. Molecular Plant, 2015, 8, 847-859.

> Grass MicroRNA Gene Paleohistory Unveils New Insights into Gene Dosage Balance in Subgenome Partitioning after Whole-Genome Duplication. Plant Cell, 2012, 24, 1776-1792.
3.1

53

DNA methylation dynamics during the interaction of wheat progenitor <i>Aegilops tauschii</i> with
the obligate biotrophic fungus 〈i>Blumeria graminis</i> f. sp. <i>tritici</i>. New Phytologist, 2019, 221,
3.5

51
1023-1035.

19 Novel insights from non-conserved microRNAs in plants. Frontiers in Plant Science, 2014, 5, 586.

The wheat <i>AGL6<|i>â€like MADSâ€box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnology Journal, 2022, 20, 75-88.
4.1

38

Wheat functional genomics in the era of next generation sequencing: An update. Crop Journal, 2018, 6,
7-14.
Wheat functional genomics in the era of next generation sequencing: An update. Crop Journal, 2018, 6 ,
7-14.
2.3

35

The Battle to Sequence the Bread Wheat Genome: A Tale of the Three Kingdoms. Genomics, Proteomics and Bioinformatics, 2020, 18, 221-229.

The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by
genome doubling in synthetic hexaploid wheat. BMC Genomics, 2017, 18, 149.

TalAA21 represses TaARF25â€mediated expression of <i>TaERFs</i> required for grain size and weight development in wheat. Plant Journal, 2021, 108, 1754-1767.

```
A MADS-box gene<i>NtSVP</i> regulates pedicel elongation by directly suppressing a<i>KNAT1</i>-like
25 KNOX gene<i>NtBPL</i>in tobacco (<i>Nicotiana tabacum</i>L.). Journal of Experimental Botany, 2015, 66, 6233-6244.
```

26 <i>Matrilineal</i> empowers wheat pollen with haploid induction potency by triggering postmitosis reactive oxygen species activity. New Phytologist, 2022, 233, 2405-2414.
3.5

26
Comprehensive analysis of <i>Q<|i>gene nearâ eisogenic lines reveals key molecular pathways for whe
domestication and improvement. Plant Journal, 2020, 102, 299-310.
$28 \quad \begin{aligned} & \text { Characterization of Squamosa Promoter Binding Protein-LIKE genes in wheat. Journal of Plant } \\ & \text { Biology, 2015, 58, 220-229. }\end{aligned}$
29 High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of
superior wheat quality. Communications Biology, 2021, 4, 1242.
30 The soft glumes of common wheat are sterile-lemmas as determined by the domestication gene Q. Crop2.313
Journal, 2019, 7, 113-117.Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat2.312allohexaploidization. Crop Journal, 2015, 3, 1-9.A transcriptomic view of the ability of nascent hexaploid wheat to tolerate aneuploidy. BMC Plant1.610
Biology, 2020, 20, 97.Mapping QTLs for enhancing early biomass derived from Aegilops tauschii in synthetic hexaploidwheat. PLoS ONE, 2020, 15, e0234882.
1.1The improved assembly of 7DL chromosome provides insight into the structure and evolution of breadwheat. Plant Biotechnology Journal, 2020, 18, 732-742.
Transcriptome Analysis of Developing Wheat Grains at Rapid Expanding Phase Reveals Dynamic Gene
Expression Patterns. Biology, 2022, 11, 281.1.3

