Pedro Leme Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/401272/publications.pdf

Version: 2024-02-01

124 papers 2,695 citations

172457 29 h-index 243625 44 g-index

128 all docs

128 docs citations

times ranked

128

3094 citing authors

#	Article	IF	CITATIONS
1	Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. European Respiratory Journal, 2021, 58, 2003725.	6.7	117
2	Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Frontiers in Physiology, 2021, 12, 593223.	2.8	113
3	Immunomodulation after ischemic stroke: potential mechanisms and implications for therapy. Critical Care, 2016, 20, 391.	5 . 8	97
4	Comparative Effects of Volutrauma and Atelectrauma on Lung Inflammation in Experimental Acute Respiratory Distress Syndrome. Critical Care Medicine, 2016, 44, e854-e865.	0.9	87
5	Albumin versus crystalloid solutions in patients with the acute respiratory distress syndrome: a systematic review and meta-analysis. Critical Care, 2014, 18, R10.	5 . 8	80
6	Pros and cons of corticosteroid therapy for COVID-19 patients. Respiratory Physiology and Neurobiology, 2020, 280, 103492.	1.6	80
7	Brain–heart interaction after acute ischemic stroke. Critical Care, 2020, 24, 163.	5 . 8	77
8	Power to mechanical power to minimize ventilator-induced lung injury?. Intensive Care Medicine Experimental, 2019, 7, 38.	1.9	75
9	Methylprednisolone improves lung mechanics and reduces the inflammatory response in pulmonary but not in extrapulmonary mild acute lung injury in mice*. Critical Care Medicine, 2008, 36, 2621-2628.	0.9	69
10	Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: a narrative review. British Journal of Anaesthesia, 2021, 127, 353-364.	3 . 4	64
11	Biological Impact of Transpulmonary Driving Pressure in Experimental Acute Respiratory Distress Syndrome. Anesthesiology, 2015, 123, 423-433.	2.5	60
12	Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Research and Therapy, 2017, 8, 220.	5 . 5	52
13	Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats. Critical Care, 2018, 22, 249.	5.8	52
14	Biologic Impact of Mechanical Power at High and Low Tidal Volumes in Experimental Mild Acute Respiratory Distress Syndrome. Anesthesiology, 2018, 128, 1193-1206.	2.5	51
15	Recruitment Maneuvers Modulate Epithelial and Endothelial Cell Response According to Acute Lung Injury Etiology*. Critical Care Medicine, 2013, 41, e256-e265.	0.9	50
16	Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury. Intensive Care Medicine, 2009, 35, 1120-1128.	8.2	47
17	Mechanisms of ventilator-induced lung injury in healthy lungs. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2015, 29, 301-313.	4.0	45
18	Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury. Critical Care Medicine, 2009, 37, 1011-1017.	0.9	44

#	Article	IF	CITATIONS
19	Recruitment maneuvers in acute respiratory distress syndrome: The safe way is the best way. World Journal of Critical Care Medicine, 2015, 4, 278.	1.8	44
20	Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Critical Care, 2010, 14, R114.	5.8	41
21	Effects of chronic <scp>I</scp> -NAME treatment lung tissue mechanics, eosinophilic and extracellular matrix responses induced by chronic pulmonary inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1197-L1205.	2.9	40
22	Impact of pressure profile and duration of recruitment maneuvers on morphofunctional and biochemical variables in experimental lung injury*. Critical Care Medicine, 2011, 39, 1074-1081.	0.9	40
23	The basics of respiratory mechanics: ventilator-derived parameters. Annals of Translational Medicine, 2018, 6, 376-376.	1.7	39
24	Characterization of a Mouse Model of Emphysema Induced by Multiple Instillations of Low-Dose Elastase. Frontiers in Physiology, 2016, 7, 457.	2.8	36
25	Impact of Different Tidal Volume Levels at Low Mechanical Power on Ventilator-Induced Lung Injury in Rats. Frontiers in Physiology, 2018, 9, 318.	2.8	36
26	Lung Functional and Biologic Responses to Variable Ventilation in Experimental Pulmonary and Extrapulmonary Acute Respiratory Distress Syndrome. Critical Care Medicine, 2016, 44, e553-e562.	0.9	34
27	Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opinion on Investigational Drugs, 2020, 29, 49-61.	4.1	34
28	Effects of Intravascular Volume Replacement on Lung and Kidney Function and Damage in Nonseptic Experimental Lung Injury. Anesthesiology, 2013, 118, 395-408.	2.5	31
29	Effects of Obesity on Pulmonary Inflammation and Remodeling in Experimental Moderate Acute Lung Injury. Frontiers in Immunology, 2019, 10, 1215.	4.8	31
30	Modulation of Stress versus Time Product during Mechanical Ventilation Influences Inflammation as Well as Alveolar Epithelial and Endothelial Response in Rats. Anesthesiology, 2015, 122, 106-116.	2.5	30
31	The Effects of Short-Term Propofol and Dexmedetomidine on Lung Mechanics, Histology, and Biological Markers in Experimental Obesity. Anesthesia and Analgesia, 2016, 122, 1015-1023.	2.2	30
32	Biological Response to Time-Controlled Adaptive Ventilation Depends on Acute Respiratory Distress Syndrome Etiology*. Critical Care Medicine, 2018, 46, e609-e617.	0.9	30
33	Effects of sigh during pressure control and pressure support ventilation in pulmonary and extrapulmonary mild acute lung injury. Critical Care, 2014, 18, 474.	5.8	28
34	Impact of obesity on airway and lung parenchyma remodeling in experimental chronic allergic asthma. Respiratory Physiology and Neurobiology, 2011, 177, 141-148.	1.6	26
35	The effects of salbutamol on epithelial ion channels depend on the etiology of acute respiratory distress syndrome but not the route of administration. Respiratory Research, 2014, 15, 56.	3.6	26
36	Impact of Different Ventilation Strategies on Driving Pressure, Mechanical Power, and Biological Markers During Open Abdominal Surgery in Rats. Anesthesia and Analgesia, 2017, 125, 1364-1374.	2.2	25

#	Article	IF	CITATIONS
37	Ventilator-induced Lung Injury: Power to the Mechanical Power. Anesthesiology, 2016, 125, 1070-1071.	2.5	24
38	The biological effects of higher and lower positive end-expiratory pressure in pulmonary and extrapulmonary acute lung injury with intra-abdominal hypertension. Critical Care, 2014, 18, R121.	5.8	23
39	Effects of pressure support ventilation on ventilator-induced lung injury in mild acute respiratory distress syndrome depend on level of positive end-expiratory pressure. European Journal of Anaesthesiology, 2018, 35, 298-306.	1.7	23
40	Gradually Increasing Tidal Volume May Mitigate Experimental Lung Injury in Rats. Anesthesiology, 2019, 130, 767-777.	2.5	22
41	Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Frontiers in Immunology, 2021, 12, 782074.	4.8	22
42	Effects of oleanolic acid on pulmonary morphofunctional and biochemical variables in experimental acute lung injury. Respiratory Physiology and Neurobiology, 2011, 179, 129-136.	1.6	21
43	Effects of short-term propofol and dexmedetomidine on pulmonary morphofunction and biological markers in experimental mild acute lung injury. Respiratory Physiology and Neurobiology, 2014, 203, 45-50.	1.6	20
44	Physiological and Pathophysiological Consequences of Mechanical Ventilation. Seminars in Respiratory and Critical Care Medicine, 2022, 43, 321-334.	2.1	20
45	Degree of endothelium injury promotes fibroelastogenesis in experimental acute lung injury. Respiratory Physiology and Neurobiology, 2010, 173, 179-188.	1.6	18
46	Therapeutic effects of LASSBio-596 in an elastase-induced mouse model of emphysema. Frontiers in Physiology, 2015, 6, 267.	2.8	18
47	Fast Versus Slow Recruitment Maneuver at Different Degrees of Acute Lung Inflammation Induced by Experimental Sepsis. Anesthesia and Analgesia, 2016, 122, 1089-1100.	2.2	18
48	Variability in Tidal Volume Affects Lung and Cardiovascular Function Differentially in a Rat Model of Experimental Emphysema. Frontiers in Physiology, 2017, 8, 1071.	2.8	18
49	Static and Dynamic Transpulmonary Driving Pressures Affect Lung and Diaphragm Injury during Pressure-controlled versus Pressure-support Ventilation in Experimental Mild Lung Injury in Rats. Anesthesiology, 2020, 132, 307-320.	2.5	18
50	Comparison between effects of pressure support and pressure-controlled ventilation on lung and diaphragmatic damage in experimental emphysema. Intensive Care Medicine Experimental, 2016, 4, 35.	1.9	17
51	Sepsis Impairs Thyroid Hormone Signaling and Mitochondrial Function in the Mouse Diaphragm. Thyroid, 2020, 30, 1079-1090.	4.5	17
52	Ischaemic stroke-induced distal organ damage: pathophysiology and new therapeutic strategies. Intensive Care Medicine Experimental, 2020, 8, 23.	1,9	17
53	Impact of lung remodelling on respiratory mechanics in a model of severe allergic inflammation. Respiratory Physiology and Neurobiology, 2008, 160, 239-248.	1.6	15
54	Differential Regulation of Thyroid Hormone Metabolism Target Genes during Non-thyroidal Illness Syndrome Triggered by Fasting or Sepsis in Adult Mice. Frontiers in Physiology, 2017, 8, 828.	2.8	15

#	Article	IF	CITATIONS
55	Elastic power but not driving power is the key promoter of ventilator-induced lung injury in experimental acute respiratory distress syndrome. Critical Care, 2020, 24, 284.	5.8	15
56	Mitochondria-Rich Fraction Isolated From Mesenchymal Stromal Cells Reduces Lung and Distal Organ Injury in Experimental Sepsis*. Critical Care Medicine, 2021, 49, e880-e890.	0.9	15
57	Regional distribution of transpulmonary pressure. Annals of Translational Medicine, 2018, 6, 385-385.	1.7	15
58	Glutamine Therapy Reduces Inflammation and Extracellular Trap Release in Experimental Acute Respiratory Distress Syndrome of Pulmonary Origin. Nutrients, 2019, 11, 831.	4.1	14
59	The renin–angiotensin–aldosterone system: Role in pathogenesis and potential therapeutic target in COVIDâ€19. Pharmacology Research and Perspectives, 2020, 8, e00623.	2.4	13
60	Emerging therapies for COVID-19 pneumonia. Expert Opinion on Investigational Drugs, 2020, 29, 633-637.	4.1	13
61	Novel Synthetic and Natural Therapies for Traumatic Brain Injury. Current Neuropharmacology, 2021, 19, 1661-1687.	2.9	13
62	Nitazoxanide in Patients Hospitalized With COVID-19 Pneumonia: A Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. Frontiers in Medicine, 2022, 9, 844728.	2.6	13
63	How to minimise ventilator-induced lung injury in transplanted lungs. European Journal of Anaesthesiology, 2015, 32, 828-836.	1.7	12
64	A mortality score for acute respiratory distress syndrome: predicting the future without a crystal ball. Journal of Thoracic Disease, 2016, 8, 1872-1876.	1.4	12
65	Comparison between Variable and Conventional Volume-Controlled Ventilation on Cardiorespiratory Parameters in Experimental Emphysema. Frontiers in Physiology, 2016, 7, 277.	2.8	12
66	Moderate Aerobic Training Improves Cardiorespiratory Parameters in Elastase-Induced Emphysema. Frontiers in Physiology, 2016, 7, 329.	2.8	12
67	Sevoflurane, Compared With Isoflurane, Minimizes Lung Damage in Pulmonary but Not in Extrapulmonary Acute Respiratory Distress Syndrome in Rats. Anesthesia and Analgesia, 2017, 125, 491-498.	2.2	12
68	Ghrelin therapy improves lung and cardiovascular function in experimental emphysema. Respiratory Research, 2017, 18, 185.	3.6	12
69	Effects of crystalloid, hyper-oncotic albumin, and iso-oncotic albumin on lung and kidney damage in experimental acute lung injury. Respiratory Research, 2019, 20, 155.	3.6	12
70	Understanding the pathophysiology of typical acute respiratory distress syndrome and severe COVID-19. Expert Review of Respiratory Medicine, 2022, , 1-10.	2.5	12
71	Impact of Bacillus Calmette–Guérin Moreau vaccine on lung remodeling in experimental asthma. Respiratory Physiology and Neurobiology, 2013, 189, 614-623.	1.6	11
72	The impact of fluid status and decremental PEEP strategy on cardiac function and lung and kidney damage in mild-moderate experimental acute respiratory distress syndrome. Respiratory Research, 2021, 22, 214.	3.6	11

#	Article	IF	CITATIONS
73	Oleanolic acid improves pulmonary morphofunctional parameters in experimental sepsis by modulating oxidative and apoptotic processes. Respiratory Physiology and Neurobiology, 2013, 189, 484-490.	1.6	10
74	Variable ventilation improves pulmonary function and reduces lung damage without increasing bacterial translocation in a rat model of experimental pneumonia. Respiratory Research, 2016, 17, 158.	3.6	10
75	Respiratory and Systemic Effects of LASSBio596 Plus Surfactant in Experimental Acute Respiratory Distress Syndrome. Cellular Physiology and Biochemistry, 2016, 38, 821-835.	1.6	10
76	Endotoxin-Induced Emphysema Exacerbation: A Novel Model of Chronic Obstructive Pulmonary Disease Exacerbations Causing Cardiopulmonary Impairment and Diaphragm Dysfunction. Frontiers in Physiology, 2019, 10, 664.	2.8	10
77	Impact of experimental obesity on diaphragm structure, function, and bioenergetics. Journal of Applied Physiology, 2020, 129, 1062-1074.	2.5	10
78	Optimal mechanical ventilation strategies to minimize ventilator-induced lung injury in non-injured and injured lungs. Expert Review of Respiratory Medicine, 2016, 10, 1243-1245.	2.5	9
79	Effects of the FGF receptorâ€1 inhibitor, infigratinib, with or without sildenafil, in experimental pulmonary arterial hypertension. British Journal of Pharmacology, 2019, 176, 4462-4473.	5.4	9
80	Niclosamide attenuates lung vascular remodeling in experimental pulmonary arterial hypertension. European Journal of Pharmacology, 2020, 887, 173438.	3.5	9
81	In situ Evidence of Collagen V and Interleukin-6/Interleukin-17 Activation in Vascular Remodeling of Experimental Pulmonary Hypertension. Pathobiology, 2020, 87, 356-366.	3.8	9
82	Post-Adipose-Derived Stem Cells (ADSC) Stimulated by Collagen Type V (Col V) Mitigate the Progression of Osteoarthritic Rabbit Articular Cartilage. Frontiers in Cell and Developmental Biology, 2021, 9, 606890.	3.7	8
83	Circulating Plasma miRNA and Clinical/Hemodynamic Characteristics Provide Additional Predictive Information About Acute Pulmonary Thromboembolism, Chronic Thromboembolic Pulmonary Hypertension and Idiopathic Pulmonary Hypertension. Frontiers in Pharmacology, 2021, 12, 648769.	3.5	8
84	Understanding the Mysteries of Mechanical Power. Anesthesiology, 2020, 132, 949-950.	2.5	8
85	Early impact of abdominal compartment syndrome on liver, kidney and lung damage in a rodent model. Anaesthesiology Intensive Therapy, 2017, 49, 130-138.	1.0	8
86	Time-Controlled Adaptive Ventilation Versus Volume-Controlled Ventilation in Experimental Pneumonia. Critical Care Medicine, 2021, 49, 140-150.	0.9	8
87	Comparative effects of dexmedetomidine and propofol on brain and lung damage in experimental acute ischemic stroke. Scientific Reports, 2021, 11, 23133.	3.3	8
88	Controlled invasive mechanical ventilation strategies in obese patients undergoing surgery. Expert Review of Respiratory Medicine, 2017, 11, 443-452.	2.5	7
89	Effects of pressure support and pressure-controlled ventilation on lung damage in a model of mild extrapulmonary acute lung injury with intra-abdominal hypertension. PLoS ONE, 2017, 12, e0178207.	2.5	7
90	Fluids in ARDS: more pros than cons. Intensive Care Medicine Experimental, 2020, 8, 32.	1.9	7

#	Article	IF	CITATIONS
91	Immunomodulatory effects of anesthetic agents in perioperative medicine. Minerva Anestesiologica, 2020, 86, 181-195.	1.0	7
92	Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion. Frontiers in Physiology, 2017, 8, 257.	2.8	6
93	Iso-Oncotic Albumin Mitigates Brain and Kidney Injury in Experimental Focal Ischemic Stroke. Frontiers in Neurology, 2020, 11, 1001.	2.4	6
94	Identification of Autoimmunity to Peptides of Collagen V $\hat{l}\pm 1$ Chain as Newly Biomarkers of Early Stage of Systemic Sclerosis. Frontiers in Immunology, 2020, 11, 604602.	4.8	6
95	Impact of positive biphasic pressure during low and high inspiratory efforts in Pseudomonas aeruginosa-induced pneumonia. PLoS ONE, 2021, 16, e0246891.	2.5	6
96	Pathological pulmonary vascular remodeling is induced by type V collagen in a model of scleroderma. Pathology Research and Practice, 2021, 220, 153382.	2.3	6
97	Immunomodulatory effects of anesthetics in obese patients. World Journal of Critical Care Medicine, 2017, 6, 140.	1.8	6
98	Impact of different intratracheal flows during lung decellularization on extracellular matrix composition and mechanics. Regenerative Medicine, 2018, 13, 519-530.	1.7	5
99	FG-4497: a new target for acute respiratory distress syndrome?. Expert Review of Respiratory Medicine, 2015, 9, 405-409.	2.5	5
100	Intraoperative immunomodulatory effects of sevoflurane versus total intravenous anesthesia with propofol in bariatric surgery (the OBESITA trial): study protocol for a randomized controlled pilot trial. Trials, 2019, 20, 300.	1.6	4
101	Controversies when using mechanical ventilation in obese patients with and without acute distress respiratory syndrome. Expert Review of Respiratory Medicine, 2019, 13, 471-479.	2.5	4
102	Effects of Protective Mechanical Ventilation With Different PEEP Levels on Alveolar Damage and Inflammation in a Model of Open Abdominal Surgery: A Randomized Study in Obese Versus Non-obese Rats. Frontiers in Physiology, 2019, 10, 1513.	2.8	4
103	In Situ Overexpression of Matricellular Mechanical Proteins Demands Functional Immune Signature and Mitigates Non-Small Cell Lung Cancer Progression. Frontiers in Immunology, 2021, 12, 714230.	4.8	4
104	Recruitment maneuvers for acute respiratory distress syndrome: the panorama in 2016. Revista Brasileira De Terapia Intensiva, 2016, 28, 104-6.	0.3	4
105	Fluids in acute respiratory distress syndrome. Current Opinion in Critical Care, 2014, 20, 104-112.	3.2	3
106	The authors reply. Critical Care Medicine, 2017, 45, e328-e329.	0.9	3
107	Supplemental oxygen or something else?. Journal of Thoracic Disease, 2018, 10, S3211-S3214.	1.4	3
108	In situ evidence of collagen V and signaling pathway of found inflammatory zone 1 (FIZZ1) is associated with silicotic granuloma in lung mice. Pathology Research and Practice, 2020, 216, 153094.	2.3	2

#	Article	IF	CITATIONS
109	Impact of different frequencies of controlled breath and pressure-support levels during biphasic positive airway pressure ventilation on the lung and diaphragm in experimental mild acute respiratory distress syndrome. PLoS ONE, 2021, 16, e0256021.	2.5	2
110	Effects of propofol and its formulation components on macrophages and neutrophils in obese and lean animals. Pharmacology Research and Perspectives, 2021, 9, e00873.	2.4	2
111	Sepsis Disrupts Mitochondrial Function and Diaphragm Morphology. Frontiers in Physiology, 2021, 12, 704044.	2.8	2
112	Effects of time-controlled adaptive ventilation on cardiorespiratory parameters and inflammatory response in experimental emphysema. Journal of Applied Physiology, 2022, 132, 564-574.	2.5	2
113	A more gradual positive end-expiratory pressure increase reduces lung damage and improves cardiac function in experimental acute respiratory distress syndrome. Journal of Applied Physiology, 2022, 132, 375-387.	2.5	2
114	Effects Of Different Recruitment Maneuvers On Lung Morpho-function And Alveolar Stress. , 2010, , .		1
115	In Response. Anesthesia and Analgesia, 2016, 123, 790-791.	2.2	1
116	A critical approach to personalised medicine in ARDS. Lancet Respiratory Medicine, the, 2020, 8, 218-219.	10.7	1
117	Outcomes of patients with confirmed SARS-CoV-2 infection undergoing anesthesia: A pilot study. Journal of Clinical Anesthesia, 2020, 67, 110041.	1.6	1
118	Sterilized human skin graft with a dose of 25 kGy provides a privileged immune and collagen microenvironment in the adhesion of Nude mice wounds. PLoS ONE, 2022, 17, e0262532.	2.5	1
119	Testosterone Therapy and Diaphragm Performance in a Male Patient with COVID-19: A Case Report. Diagnostics, 2022, 12, 535.	2.6	1
120	Airway And Lung Parenchyma Remodeling In An Experimental Model Of Chronic Allergic Asthma In Newly Weaned Mice. , 2010, , .		0
121	The Role Of BCG Vaccine On Airway And Lung Parenchyma Remodeling In A Murine Model Of Chronic Allergic Inflammation. , 2010, , .		0
122	Impact of intravascular volume replacement and transfusion on outcome: Where are we now?. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2012, 26, 485-497.	4.0	0
123	Reply to. European Journal of Anaesthesiology, 2016, 33, 300-301.	1.7	0
124	Extracellular matrix components remodeling and lung function parameters in experimental emphysema and allergic asthma: Differences among the mouse strains. Drug Discovery Today: Disease Models, 2019, 29-30, 27-34.	1.2	0