
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011861/publications.pdf Version: 2024-02-01

PAOLA RIZZO

#	Article	IF	CITATIONS
1	Fast uptake of organic pollutants from dilute aqueous solutions by nanoporous-crystalline PPO films with c-perpendicular orientation. European Polymer Journal, 2022, 164, 110976.	5.4	3
2	High Surface Area Nanoporous-Crystalline Polymer Films. Macromolecules, 2022, 55, 2983-2990.	4.8	12
3	<i>c</i> â€perpendicular orientation in thin <scp>nanoporousâ€crystalline</scp> poly(2,6â€dimethylâ€1,4â€phenylene)oxide films. Polymers for Advanced Technologies, 2022, 33, 2344-2351.	3.2	3
4	Nanoporous-crystalline and amorphous films of PPO including off-on vapochromic fluorescent 7-hydroxy coumarin guests. Polymer, 2022, 249, 124833.	3.8	2
5	High surface area polymer films by co-crystallization with low-molecular-mass guest molecules. European Polymer Journal, 2022, , 111305.	5.4	1
6	Control of Guest Thermal Release by Crystalline Host Orientation. ACS Applied Polymer Materials, 2021, 3, 949-955.	4.4	8
7	c-Perpendicular Orientation of Poly(ÊŸ-lactide) Films. Polymers, 2021, 13, 1572.	4.5	5
8	Planar Orientation and Transparency of Nanoporous-Crystalline Polymer Films. Macromolecules, 2021, 54, 6605-6611.	4.8	13
9	Melting of nanoporous-crystalline and co-crystalline solution cast films of poly(2,6-dimethyl-1,4-phenylene) oxide. Polymer, 2021, 228, 123935.	3.8	9
10	Axially oriented guest induced crystallization in syndiotactic polystyrene unstretched fibers. Polymer, 2021, 228, 123908.	3.8	9
11	High diffusivity dense films of a nanoporous-crystalline polymer. Polymer, 2021, 229, 124005.	3.8	18
12	Monomeric and Dimeric Carboxylic Acid in Crystalline Cavities and Channels of Delta and Epsilon Forms of Syndiotactic Polystyrene. Polymers, 2021, 13, 3330.	4.5	10
13	Absorption and Isomerization of Azobenzene Guest Molecules in Polymeric Nanoporous Crystalline Phases. Chemistry, 2021, 3, 1074-1088.	2.2	3
14	Mechanisms determining different planar orientations in PPO films crystallized by guest sorption. Polymer, 2021, 235, 124242.	3.8	11
15	Fast uptake of organic pollutants from dilute aqueous solutions by nanoporous-crystalline PPO films with c-perpendicular orientation. European Polymer Journal, 2021, 161, 110864.	5.4	14
16	Molecular Features Behind Formation of $\hat{I}\pm$ or \hat{I}^2 Co-Crystalline and Nanoporous-Crystalline Phases of PPO. Frontiers in Chemistry, 2021, 9, 809850.	3.6	7
17	Dependence on Film Thickness of Guest-Induced c Perpendicular Orientation in PPO Films. Polymers, 2021, 13, 4384.	4.5	11
18	Guest induced transition from \hat{l}^2 to \hat{l}_{\pm} nanoporous crystalline forms of PPO. Polymer, 2020, 187, 122083.	3.8	10

#	Article	IF	CITATIONS
19	Thermal shrinkage and heat capacity of monolithic polymeric physical aerogels. Polymer, 2020, 210, 123073.	3.8	4
20	Axial Orientation of Co-Crystalline Phases of Poly(2,6-Dimethyl-1,4-Phenylene)Oxide Films. Polymers, 2020, 12, 2394.	4.5	9
21	Polymorphism of Poly(2,6-dimethyl-1,4-phenylene)oxide in Axially Stretched Films. Macromolecules, 2020, 53, 2287-2294.	4.8	17
22	Axially Oriented Nanoporous Crystalline Phases of Poly(2,6-dimethyl-1,4-phenylene)oxide. ACS Applied Polymer Materials, 2020, 2, 3518-3524.	4.4	16
23	Antimicrobial release from cleaning poultices for the conservation and disinfection of stone surfaces. Applied Clay Science, 2020, 193, 105667.	5.2	4
24	The Influence of Film and Storage on the Phenolic and Antioxidant Properties of Red Raspberries (Rubus idaeus L.) cv. Erika. Antioxidants, 2019, 8, 254.	5.1	18
25	Nanoporous-crystalline films of PPO with parallel and perpendicular polymer chain orientations. Polymer, 2019, 167, 193-201.	3.8	35
26	Chemical Stabilization of Hexanal Molecules by Inclusion as Guests of Nanoporous-Crystalline Syndiotactic Polystyrene Crystals. Macromolecules, 2019, 52, 2255-2264.	4.8	25
27	Intercalation compounds of a smectite clay with an ammonium salt biocide and their possible use for conservation of cultural heritage. Heliyon, 2019, 5, e02991.	3.2	6
28	Two Nanoporous Crystalline Forms of Poly(2,6-dimethyl-1,4-phenylene)oxide and Related Co-Crystalline Forms. Macromolecules, 2019, 52, 9646-9656.	4.8	50
29	Packaging and storage condition affect the physicochemical properties of red raspberries (Rubus) Tj ETQq1 1 0.7	84314 rgE	BT /Overlock
30	Packaging technology for improving shelfâ€life of fruits based on a nanoporous–crystalline polymer. Journal of Applied Polymer Science, 2018, 135, 46256.	2.6	12
31	Vibrational Spectra of Poly(ethylene terephthalate) Chains in the Mesomorphic Form. Macromolecular Chemistry and Physics, 2018, 219, 1700362.	2.2	2
32	The effect of different packaging on physical and chemical properties of oranges during storage. Journal of Food Processing and Preservation, 2017, 41, e13168.	2.0	23
33	Circularly polarized luminescence of syndiotactic polystyrene. Optical Materials, 2017, 73, 595-601.	3.6	23
34	Chiral Optical Response of Achiral and Enantiomeric Guests in Syndiotactic Polystyrene Films. Macromolecular Symposia, 2016, 359, 9-15.	0.7	1
35	Intense Chiral Optical Phenomena in Racemic Polymers by Cocrystallization With Chiral Guest Molecules: A Brief Overview. Chirality, 2016, 28, 29-38.	2.6	3
36	Label-Free Vapor Selectivity in Poly(<i>p</i> -Phenylene Oxide) Photonic Crystal Sensors. ACS Applied Materials & Interfaces, 2016, 8, 31941-31950.	8.0	93

#	Article	IF	CITATIONS
37	Nanoporous triclinic \hat{l} modification of syndiotactic polystyrene. Polymer, 2015, 63, 230-236.	3.8	39
38	Poly(<scp>l</scp> -lactic acid): Uniplanar Orientation in Cocrystalline Films and Structure of the Cocrystalline Form with Cyclopentanone. Macromolecules, 2015, 48, 7513-7520.	4.8	26
39	Syndiotactic polystyrene films with a cocrystalline phase including carvacrol guest molecules. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 657-665.	2.1	24
40	Melt-Extruded Films of a Commercial Polymer with Intense Chiral Optical Response of Achiral Guests. Macromolecules, 2014, 47, 2616-2624.	4.8	9
41	Disordered Nanoporous Crystalline Modifications of Syndiotactic Polystyrene. Journal of Solution Chemistry, 2014, 43, 158-171.	1.2	19
42	Enantiomeric guests with the same signs of chiral optical responses. Chemical Communications, 2014, 50, 8185-8188.	4.1	13
43	Racemic synthetic polymers and chirality. Rendiconti Lincei, 2013, 24, 217-226.	2.2	7
44	Syndiotactic Polystyrene Films with Different Uniplanar Orientations: Additional Information on Crystal Phase Transitions. Macromolecular Chemistry and Physics, 2013, 214, 41-45.	2.2	6
45	Control of guest transport in polymer films by structure and orientation of nanoporous-crystalline phases. Polymer, 2013, 54, 1671-1678.	3.8	23
46	On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS. Materials Chemistry and Physics, 2013, 141, 891-902.	4.0	8
47	Uniplanar Orientations and Guest Exchange in PPO Cocrystalline Films. Macromolecules, 2013, 46, 3995-4001.	4.8	23
48	A chiral co-crystalline form of poly(2,6-dimethyl-1,4-phenylene)oxide (PPO). Journal of Materials Chemistry, 2012, 22, 11672.	6.7	40
49	Azobenzene isomerization in polymer co-crystalline phases. Polymer, 2012, 53, 2727-2735.	3.8	33
50	Advanced materials based on polymer cocrystalline forms. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 305-322.	2.1	108
51	Chiral Optical Films Based on Achiral Chromophore Guests. Journal of the American Chemical Society, 2011, 133, 9872-9877.	13.7	34
52	Two Different Uniplanar–Axial Orientations of Syndiotactic Polystyrene Films. Macromolecules, 2011, 44, 5671-5681.	4.8	16
53	Syndiotactic Polystyrene Films: Orientation and Structural Changes Upon Biaxial Drawing. Macromolecular Chemistry and Physics, 2011, 212, 1419-1426.	2.2	11
54	Induced vibrational circular dichroism and polymorphism of syndiotactic polystyrene. Chirality, 2010, 22, E67-73.	2.6	26

#	Article	IF	CITATIONS
55	Crystallization from the amorphous form of the nanoporous É> form of syndiotactic polystyrene. Polymer, 2010, 51, 4599-4605.	3.8	10
56	Channel Clathrate of Syndiotactic Polystyrene with <i>p</i> -nitroaniline. Macromolecules, 2010, 43, 1455-1466.	4.8	80
57	Chiro-optical Materials Based on a Racemic Polymer. Macromolecules, 2010, 43, 1882-1887.	4.8	23
58	Molecular Sensing by Nanoporous Crystalline Polymers. Sensors, 2009, 9, 9816-9857.	3.8	75
59	Negatively Birefringent Polymer Films. Macromolecular Chemistry and Physics, 2009, 210, 2148-2152.	2.2	11
60	Polymeric Films with Three Different Orientations of Crystalline-Phase Empty Channels. Chemistry of Materials, 2009, 21, 3370-3375.	6.7	57
61	Normal Vibrational Analysis of the Syndiotactic Polystyrene s(2/1)2 Helix. Journal of Physical Chemistry B, 2009, 113, 5059-5071.	2.6	78
62	Processing, thermal stability and morphology of chiral sensing syndiotactic polystyrene films. Journal of Materials Chemistry, 2008, 18, 567-572.	6.7	41
63	Layers of Close-Packed Alternated Enantiomorphous Helices and the Three Different Uniplanar Orientations of Syndiotactic Polystyrene. Macromolecules, 2008, 41, 8632-8642.	4.8	47
64	Nanoporous Polymer Crystals with Cavities and Channels. Chemistry of Materials, 2008, 20, 3663-3668.	6.7	153
65	New Host Polymeric Framework and Related Polar Guest Cocrystals. Chemistry of Materials, 2007, 19, 3864-3866.	6.7	102
66	Uniplanar Orientations as a Tool To Assign Vibrational Modes of Polymer Chain. Macromolecules, 2007, 40, 3895-3897.	4.8	33
67	Detection and Memory of Nonracemic Molecules by a Racemic Host Polymer Film. Journal of the American Chemical Society, 2007, 129, 10992-10993.	13.7	101
68	Thermal Transitions of Îμ Crystalline Phases of Syndiotactic Polystyrene. Macromolecules, 2007, 40, 9470-9474.	4.8	76
69	Anisotropic Guest Diffusion in the l̃´Crystalline Host Phase of Syndiotactic Polystyrene:Â Transport Kinetics in Films with Three Different Uniplanar Orientations of the Host Phase. Chemistry of Materials, 2006, 18, 2205-2210.	6.7	66
70	Control of Crystal Size and Orientation in Polymer Films by Hostâ^'Guest Interactions. Macromolecules, 2006, 39, 4820-4823.	4.8	32
71	Oriented Nanoporous Hostl̃´Phases of Syndiotactic Polystyrene as a Tool for Spectroscopic Investigation of Guest Molecules. Macromolecular Symposia, 2006, 234, 102-110.	0.7	5
72	Polymorphism and mechanical properties of syndiotactic polystyrene films. Polymer, 2005, 46, 11435-11441.	3.8	33

#	Article	IF	CITATIONS
73	Polymorphism of syndiotactic polystyrene: γ phase crystallization induced by bulky non-guest solvents. Polymer, 2005, 46, 9549-9554.	3.8	65
74	Polymeric Films with Three Different Uniplanar Crystalline Phase Orientations. Macromolecules, 2005, 38, 10089-10094.	4.8	73
75	Hostâ^'Guest Interactions and Crystalline Structure Evolution in Clathrate Phases Formed by Syndiotactic Polystyrene and 1,2-Dichloroethane:Â A Two-Dimensional FTIR Spectroscopy Investigation. Macromolecules, 2005, 38, 6079-6089.	4.8	35
76	Thermoplastic Molecular Sieves: New Polymeric Materials for Molecular Packaging. ACS Symposium Series, 2005, , 171-186.	0.5	0
77	Perpendicular Chain Axis Orientation in s-PS Films:Â Achievement by Guest-Induced Clathrate Formation and Maintenance after Transitions toward Helical and Trans-Planar Polymorphic Forms. Macromolecules, 2004, 37, 8043-8049.	4.8	53
78	Perpendicular Orientation of Host Polymer Chains in Clathrate Thick Films. Macromolecules, 2004, 37, 3071-3076.	4.8	58
79	Chlorinated Guest Orientation and Mobility in Clathrate Structures Formed with Syndiotactic Polystyrene. Macromolecules, 2003, 36, 8695-8703.	4.8	67
80	Crystalline orientation and molecular transport properties in nanoporous syndiotactic polystyrene films. Macromolecular Symposia, 2002, 185, 65-75.	0.7	29
81	Crystalline Orientation in Syndiotactic Polystyrene Cast Films. Macromolecules, 2002, 35, 5854-5860.	4.8	122
82	Crystalline phase orientation in biaxially stretched isotactic polypropylene films. Macromolecular Symposia, 2002, 185, 53-63.	0.7	17
83	Crystal structure of the clathrate δ form of syndiotactic polystyrene containing 1,2-dichloroethane. Polymer, 1999, 40, 2103-2110.	3.8	192
84	Isolated and aggregated carvacrol guest molecules in cocrystalline poly(2,6-dimethyl-1,4-phenylene)oxide films. Polymer Journal, 0, , .	2.7	8
85	Polymer co-crystalline films for photonics. Journal of the European Optical Society-Rapid Publications, 0, 4, .	1.9	8