George C Schatz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/400799/publications.pdf

Version: 2024-02-01

653 papers 75,267 citations

119 h-index 259 g-index

664 all docs 664
does citations

times ranked

664

54051 citing authors

#	Article	IF	CITATIONS
1	Plasmonic Nanoparticle Lattice Devices for Whiteâ€Light Lasing. Advanced Materials, 2023, 35, e2103262.	11.1	23
2	Regiospecific $\langle i \rangle N \langle i \rangle$ -alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. Materials Horizons, 2022, 9, 403-410.	6.4	42
3	Programmable Selfâ€Regulation with Wrinkled Hydrogels and Plasmonic Nanoparticle Lattices. Small, 2022, 18, e2103865.	5.2	10
4	Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. Energy and Environmental Science, 2022, 15, 645-659.	15.6	65
5	Layered structures of assembled imine-linked macrocycles and two-dimensional covalent organic frameworks give rise to prolonged exciton lifetimes. Journal of Materials Chemistry C, 2022, 10, 3015-3026.	2.7	7
6	Extended kinetic lattice grand canonical Monte Carlo simulation method for transport of multicomponent ion mixtures through a model nanopore system. Bulletin of the Korean Chemical Society, 2022, 43, 343-354.	1.0	1
7	Multipurpose made colorimetric materials for amines, pH change and metal ion detection. RSC Advances, 2022, 12, 2684-2692.	1.7	4
8	Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. Journal of the American Chemical Society, 2022, 144, 2685-2693.	6.6	23
9	Polariton Dynamics in Two-Dimensional Ruddlesden–Popper Perovskites Strongly Coupled with Plasmonic Lattices. ACS Nano, 2022, 16, 3917-3925.	7.3	17
10	Controlled Hysteresis of Conductance in Molecular Tunneling Junctions. ACS Nano, 2022, 16, 4206-4216.	7.3	3
11	Generating Bright Emissive States by Modulating the Bandgap of Monolayer Tungsten Diselenide. Journal of Physical Chemistry C, 2022, 126, 5598-5606.	1.5	3
12	Selective Reduction of Niobium(V) Species to Promote Molecular Niobium/Tantalum Separation. Inorganic Chemistry, 2022, 61, 23-27.	1.9	8
13	Tantalum, easy as Pi: understanding differences in metal–imido bonding towards improving Ta/Nb separations. Chemical Science, 2022, 13, 6796-6805.	3.7	3
14	Interfacial engineering of plasmonic nanoparticle metasurfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
15	Atomic-Site-Specific Surface Valence-Band Structure from X-Ray Standing-Wave Excited Photoemission. Physical Review Letters, 2022, 128, .	2.9	O
16	Mechanically interlocked pyrene-based photocatalysts. Nature Catalysis, 2022, 5, 524-533.	16.1	18
17	Atomic-Scale View of Redox Induced Changes for Monolayer MoO $<$ sub $<$ i $><$ i $><$ i $<$ /sub $>$ on $\hat{1}\pm$ -TiO $<$ sub $>$ 2 $<$ /sub $>$ (110) with Chemical-State Sensitivity. Journal of Physical Chemistry Letters, 2022, 13, 5304-5309.	2.1	4
18	SERS and the scientific career of Richard P. Van Duyne (1945–2019). Journal of Raman Spectroscopy, 2021, 52, 268-278.	1.2	3

#	Article	IF	Citations
19	Discrete Open-Shell Tris(bipyridinium radical cationic) Inclusion Complexes in the Solid State. Journal of the American Chemical Society, 2021, 143, 163-175.	6.6	15
20	Nanopipetteâ€based electrochemical SERS platforms: Using electrodeposition to produce versatile and adaptable plasmonic substrates. Journal of Raman Spectroscopy, 2021, 52, 339-347.	1.2	9
21	Charge transport through extended molecular wires with strongly correlated electrons. Chemical Science, 2021, 12, 11121-11129.	3.7	8
22	Mechanistic understanding of entanglement and heralding in cascade emitters. Journal of Chemical Physics, 2021, 154, 024304.	1.2	5
23	Preface to the special issue dedicated to Professor Richard P. Van Duyne (1945–2019). Journal of Raman Spectroscopy, 2021, 52, 263-267.	1.2	2
24	Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. Journal of the American Chemical Society, 2021, 143, 2886-2895.	6.6	43
25	Synthesis and Characterization of Tellurium Catecholates and Their <i>N</i> Oxide Adducts. Inorganic Chemistry, 2021, 60, 3460-3470.	1.9	8
26	Bright NIRâ€II Photoluminescence in Rodâ€Shaped Icosahedral Gold Nanoclusters. Small, 2021, 17, e2007992.	5.2	49
27	Identification of Brillouin Zones by In-Plane Lasing from Light-Cone Surface Lattice Resonances. ACS Nano, 2021, 15, 5567-5573.	7.3	15
28	Investigating Single-Molecule Fluorescence Spectral Heterogeneity of Rhodamines Using High-Throughput Single-Molecule Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 3914-3921.	2.1	12
29	Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. Journal of the American Chemical Society, 2021, 143, 6123-6139.	6.6	125
30	Quantum electrodynamics description of localized surface plasmons at a metal nanosphere. Physical Review A, 2021, 103 , .	1.0	2
31	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, .	1.1	58
32	Multimetallic Nanoparticles on Mirrors for SERS Detection. Journal of Physical Chemistry C, 2021, 125, 12784-12791.	1.5	6
33	Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exoâ€Binding with Cucurbit[6]uril. Angewandte Chemie - International Edition, 2021, 60, 17587-17594.	7.2	30
34	Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exoâ€Binding with Cucurbit[6]uril. Angewandte Chemie, 2021, 133, 17728-17735.	1.6	5
35	Lowâ€Density 2D Superlattices Assembled via Directional DNA Bonding. Angewandte Chemie - International Edition, 2021, 60, 19035-19040.	7.2	4
36	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	23.0	43

3

#	Article	IF	CITATIONS
37	Lowâ€Density 2D Superlattices Assembled via Directional DNA Bonding. Angewandte Chemie, 2021, 133, 19183-19188.	1.6	0
38	Mechanism of Long-Range Energy Transfer from Quantum Dots to Black Phosphorus. Journal of Physical Chemistry C, 2021, 125, 15458-15464.	1.5	6
39	Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair?. Journal of Physical Chemistry C, 2021, 125, 18119-18128.	1.5	21
40	A contorted nanographene shelter. Nature Communications, 2021, 12, 5191.	5.8	12
41	Identification of the most stable silver cluster ions produced under plasma solution conditions. Molecular Physics, 2021, 119, .	0.8	3
42	Quasiclassical Trajectory Study of the O(3P) + CO2($1\hat{1}$ g+) Reaction at Hyperthermal Energies. Journal of Physical Chemistry A, 2021, 125, 8626-8634.	1.1	0
43	Strong Coupling Between Plasmons and Molecular Excitons in Metal–Organic Frameworks. Nano Letters, 2021, 21, 7775-7780.	4.5	21
44	PCage: Fluorescent Molecular Temples for Binding Sugars in Water. Journal of the American Chemical Society, 2021, 143, 15688-15700.	6.6	23
45	Modulating the Electron Affinity of Small Bipyridyl Molecules on Single Gold Nanoparticles for Plasmon-Driven Electron Transfer. Journal of Physical Chemistry C, 2021, 125, 22142-22153.	1.5	10
46	Second Linear Response Theory and the Analytic Calculation of Excited-State Properties. Journal of Physical Chemistry A, 2021, 125, 1093-1102.	1.1	4
47	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	1.3	44
48	Enhancing Entangled Two-Photon Absorption for Picosecond Quantum Spectroscopy. Journal of the American Chemical Society, 2021, 143, 16930-16934.	6.6	16
49	Source of Bright Near-Infrared Luminescence in Gold Nanoclusters. ACS Nano, 2021, 15, 16095-16105.	7.3	41
50	Large-Area, Highly Crystalline DNA-Assembled Metasurfaces Exhibiting Widely Tunable Epsilon-Near-Zero Behavior. ACS Nano, 2021, 15, 18289-18296.	7.3	5
51	Supramolecular Gold Stripping from Activated Carbon Using α-Cyclodextrin. Journal of the American Chemical Society, 2021, 143, 1984-1992.	6.6	22
52	Molecular Insight into the \hat{I}^2 -Sheet Twist and Related Morphology of Self-Assembled Peptide Amphiphile Ribbons. Journal of Physical Chemistry Letters, 2021, 12, 11238-11244.	2.1	5
53	Revealing the Three-Dimensional Orientation and Interplay between Plasmons and Interband Transitions for Single Gold Bipyramids by Photoluminescence Excitation Pattern Imaging. Journal of Physical Chemistry C, 2021, 125, 26978-26985.	1.5	3
54	Selective Separation of Lithium Chloride by Organogels Containing Strapped Calix[4]pyrroles. Journal of the American Chemical Society, 2021, 143, 20403-20410.	6.6	28

#	Article	IF	CITATIONS
55	125th Anniversary of <i>JPC</i> : A Historical Perspective. Journal of Physical Chemistry B, 2021, 125, 12909-12917.	1.2	O
56	Synthesis and Structure–Activity Characterization of a Single-Site MoO ₂ Catalytic Center Anchored on Reduced Graphene Oxide. Journal of the American Chemical Society, 2021, 143, 21532-21540.	6.6	13
57	Dynamic Control of Photocatalytic Proton Reduction through the Mechanical Actuation of a Hydrogel Host Matrix. Journal of Physical Chemistry Letters, 2021, 12, 12135-12141.	2.1	1
58	125th Anniversary of <i>JPC</i> : A Historical Perspective. Journal of Physical Chemistry C, 2021, 125, 25927-25935.	1.5	3
59	125th Anniversary of <i>JPC</i> : A Historical Perspective. Journal of Physical Chemistry A, 2021, 125, 10121-10129.	1.1	0
60	Late to the Party: Synthesis and Characterization of Tellurium and Selenium Half-Sandwich Complexes. Organometallics, 2021, 40, 4104-4109.	1.1	4
61	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
62	Soft Skin Layers Enable Area-Specific, Multiscale Graphene Wrinkles with Switchable Orientations. ACS Nano, 2020, 14, 166-174.	7.3	34
63	Control of Charge Carriers and Band Structure in 2D Monolayer Molybdenum Disulfide via Covalent Functionalization. ACS Applied Materials & Interfaces, 2020, 12, 4607-4615.	4.0	19
64	Wavelength and Polarization Dependence of Second-Harmonic Responses from Gold Nanocrescent Arrays. Journal of Physical Chemistry C, 2020, 124, 20424-20435.	1.5	12
65	Mie-Resonant Three-Dimensional Metacrystals. Nano Letters, 2020, 20, 8096-8101.	4.5	28
66	Balancing Charge Transfer and Frenkel Exciton Coupling Leads to Excimer Formation in Molecular Dimers: Implications for Singlet Fission. Journal of Physical Chemistry A, 2020, 124, 8478-8487.	1.1	31
67	Crystallography, Morphology, Electronic Structure, and Transport in Non-Fullerene/Non-Indacenodithienothiophene Polymer:Y6 Solar Cells. Journal of the American Chemical Society, 2020, 142, 14532-14547.	6.6	214
68	Atom vacancies and electronic transmission Stark effects in boron nanoflake junctions. Journal of Materials Chemistry C, 2020, 8, 15208-15218.	2.7	0
69	Pressure-Induced Optical Transitions in Metal Nanoclusters. ACS Nano, 2020, 14, 11888-11896.	7.3	22
70	Active Plasmonics and Active Chiral Plasmonics through Orientation-Dependent Multipolar Interactions. ACS Nano, 2020, 14, 11518-11532.	7.3	15
71	Ion Coordination and Chelation in a Glycolated Polymer Semiconductor: Molecular Dynamics and X-ray Fluorescence Study. Chemistry of Materials, 2020, 32, 7301-7308.	3.2	21
72	Vibrational Probe of Aqueous Electrolytes: The Field Is Not Enough. Journal of Physical Chemistry B, 2020, 124, 7013-7026.	1,2	13

#	Article	IF	Citations
73	Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. Journal of the American Chemical Society, 2020, 142, 16849-16860.	6.6	52
74	Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nature Communications, 2020, 11, 4633.	5.8	82
75	Thermodynamics and Mechanism of a Photocatalyzed Stereoselective [2 + 2] Cycloaddition on a CdSe Quantum Dot. Journal of the American Chemical Society, 2020, 142, 15488-15495.	6.6	13
76	Enhancement and Suppression of Resonance Energy Transfer Near Metal Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 20589-20597.	1.5	9
77	Fluorinating Ï€â€Extended Molecular Acceptors Yields Highly Connected Crystal Structures and Low Reorganization Energies for Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 2000635.	10.2	78
78	Efficient Modeling of Organic Chromophores for Entangled Two-Photon Absorption. Journal of the American Chemical Society, 2020, 142, 10446-10458.	6.6	32
79	NWChem: Past, present, and future. Journal of Chemical Physics, 2020, 152, 184102.	1.2	425
80	Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays. ACS Nano, 2020, 14, 7347-7357.	7.3	47
81	Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nature Materials, 2020, 19, 900-909.	13.3	186
82	Domain Separated Density Functional Theory for Reaction Energy Barriers and Optical Excitations. Journal of Physical Chemistry A, 2020, 124, 5954-5962.	1.1	0
83	Photophysical implications of ring fusion, linker length, and twisting angle in a series of perylenediimide–thienoacene dimers. Chemical Science, 2020, 11, 7133-7143.	3.7	6
84	Mechanistic Insights into Photocatalyzed H ₂ Dissociation on Au Clusters. Journal of the American Chemical Society, 2020, 142, 13090-13101.	6.6	48
85	Plasmon-Driven Chemistry in Ferri-/Ferrocyanide Gold Nanoparticle Oligomers: A SERS Study. Journal of the American Chemical Society, 2020, 142, 13120-13129.	6.6	20
86	High-Efficiency Gold Recovery Using Cucurbit[6]uril. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38768-38777.	4.0	41
87	Virtual Issue in Honor of Prof. Richard Van Duyne (1945–2019). Analytical Chemistry, 2020, 92, 4165-4166.	3.2	0
88	Quantum embedding for material chemistry based on domain separation and open subsystems. International Journal of Quantum Chemistry, 2020, 120, e26184.	1.0	4
89	Lasing from Finite Plasmonic Nanoparticle Lattices. ACS Photonics, 2020, 7, 630-636.	3.2	37
90	Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. ACS Nano, 2020, 14, 3426-3433.	7.3	66

#	Article	IF	CITATIONS
91	Thermodynamic Determination of Bimetallic Particle Geometry: Suitability of Poorly Miscible Alloys for Surface-Enhanced Raman. Journal of Physical Chemistry C, 2020, 124, 3287-3296.	1.5	10
92	Analytical Approaches To Identify Plasmon-like Excited States in Bare and Ligand-Protected Metal Nanoclusters. Journal of Physical Chemistry C, 2020, 124, 3260-3269.	1.5	19
93	Orbital Control and Coherent Charge Transport in Transition Metal Platinum(II)–Platinum(II) Lantern Complexes in Molecular Junctions. Journal of Physical Chemistry C, 2020, 124, 3233-3241.	1.5	4
94	Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences. Journal of the American Chemical Society, 2020, 142, 3281-3295.	6.6	81
95	Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. Nano Letters, 2020, 20, 1468-1474.	4.5	48
96	Lightâ€Responsive Colloidal Crystals Engineered with DNA. Advanced Materials, 2020, 32, e1906600.	11.1	40
97	Light-Driven Expansion of Spiropyran Hydrogels. Journal of the American Chemical Society, 2020, 142, 8447-8453.	6.6	190
98	Understanding the chemical contribution to the enhancement mechanism in SERS: Connection with Hammett parameters. Journal of Chemical Physics, 2020, 153, 124706.	1.2	27
99	Localized Surface Plasmons in Nanoparticles. , 2020, , 69-94.		0
100	Hierarchical Hybridization in Plasmonic Honeycomb Lattices. Nano Letters, 2019, 19, 6435-6441.	4.5	47
101	Photovoltaic Blend Microstructure for High Efficiency Post-Fullerene Solar Cells. To Tilt or Not To Tilt?. Journal of the American Chemical Society, 2019, 141, 13410-13420.	6.6	33
102	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	1.1	2
103	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	1.2	1
104	The effect of the magnitude and direction of the dipoles of organic cations on the electronic structure of hybrid halide perovskites. Physical Chemistry Chemical Physics, 2019, 21, 16564-16572.	1.3	22
105	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	1.5	1
106	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	2.1	2
107	Hofmeister Effects on Peptide Amphiphile Nanofiber Self-Assembly. Journal of Physical Chemistry B, 2019, 123, 7006-7013.	1,2	13
108	A Mutation in Histone H2B Represents a New Class of Oncogenic Driver. Cancer Discovery, 2019, 9, 1438-1451.	7.7	65

#	Article	lF	Citations
109	Substituent effects on energetics and crystal morphology modulate singlet fission in 9,10-bis(phenylethynyl)anthracenes. Journal of Chemical Physics, 2019, 151, 044501.	1.2	20
110	Molecular-Scale Mechanistic Investigation of Oxygen Dissociation and Adsorption on Metal Surface-Supported Cobalt Phthalocyanine. Journal of Physical Chemistry Letters, 2019, 10, 3966-3971.	2.1	7
111	Optimizing linear polymer affinity agent properties for surface-enhanced Raman scattering detection of aflatoxin B1. Molecular Systems Design and Engineering, 2019, 4, 1019-1031.	1.7	17
112	Are Transport Models Able To Predict Charge Carrier Mobilities in Organic Semiconductors?. Journal of Physical Chemistry C, 2019, 123, 29499-29512.	1.5	12
113	International Year of the Periodic Table from a Physical Chemistry Perspective. Journal of Physical Chemistry A, 2019, 123, 8335-8335.	1.1	0
114	International Year of the Periodic Table from a Physical Chemistry Perspective. Journal of Physical Chemistry B, 2019, 123, 8167-8167.	1.2	0
115	International Year of the Periodic Table from a Physical Chemistry Perspective. Journal of Physical Chemistry C, 2019, 123, 23759-23759.	1.5	0
116	International Year of the Periodic Table from a Physical Chemistry Perspective. Journal of Physical Chemistry Letters, 2019, 10, 5956-5956.	2.1	1
117	Molecular-Level Insight into the Hydroxylated Monomeric VO _{<i>x</i>xxx(sub>\hat{l}_3-Al₂O₃(010) and Its Adsorption of Methanol. Journal of Physical Chemistry C, 2019, 123, 27704-27711.}	1.5	6
118	Quantum Interference and Substantial Property Tuning in Conjugated <i>Z</i> - <i>ortho</i> -Regio-Resistive Organic (ZORRO) Junctions. Nano Letters, 2019, 19, 8956-8963.	4.5	10
119	SERS Study of the Mechanism of Plasmon-Driven Hot Electron Transfer between Gold Nanoparticles and PCBM. Journal of Physical Chemistry C, 2019, 123, 29908-29915.	1.5	32
120	Building Blocks for Highâ€Efficiency Organic Photovoltaics: Interplay of Molecular, Crystal, and Electronic Properties in Postâ€Fullerene ITIC Ensembles. ChemPhysChem, 2019, 20, 2608-2626.	1.0	42
121	Tunable Fluorescence from Dyeâ€Modified DNAâ€Assembled Plasmonic Nanocube Arrays. Advanced Materials, 2019, 31, e1904448.	11.1	24
122	Empirical Mappings of the Frequency Response of an Electron Ratchet to the Characteristics of the Polymer Transport Layer. Journal of Physical Chemistry C, 2019, 123, 22050-22057.	1.5	3
123	Plasmonic Surface Lattice Resonances: Theory and Computation. Accounts of Chemical Research, 2019, 52, 2548-2558.	7.6	119
124	Young Scientists Virtual Special Issue. Journal of Physical Chemistry C, 2019, 123, 20689-20690.	1.5	0
125	Young Scientists Virtual Special Issue. Journal of Physical Chemistry A, 2019, 123, 7335-7336.	1.1	1
126	Young Scientists Virtual Special Issue. Journal of Physical Chemistry B, 2019, 123, 7241-7242.	1,2	0

#	Article	IF	CITATIONS
127	Molecular Junctions Inspired by Nature: Electrical Conduction through Noncovalent Nanobelts. Journal of Physical Chemistry B, 2019, 123, 8096-8102.	1.2	9
128	Richard P. Van Duyne (1945–2019). Nature Nanotechnology, 2019, 14, 913-913.	15.6	2
129	Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 15684-15692.	6.6	102
130	Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon. Nano Letters, 2019, 19, 7309-7316.	4.5	31
131	Interrogating Intracellular Zinc Chemistry with a Long Stokes Shift Zinc Probe ZincBY-4. Journal of the American Chemical Society, 2019, 141, 16696-16705.	6.6	15
132	Inhibition of Amyloid- \hat{l}^2 Aggregation by Cobalt(III) Schiff Base Complexes: A Computational and Experimental Approach. Journal of the American Chemical Society, 2019, 141, 16685-16695.	6.6	50
133	Phonon-induced plasmon-exciton coupling changes probed via oscillation-associated spectra. Applied Physics Letters, 2019, 115, .	1.5	3
134	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry B, 2019, 123, 1-9.	1.2	2
135	Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response. Journal of the American Chemical Society, 2019, 141, 3274-3287.	6.6	336
136	Entangled Photon Resonance Energy Transfer in Arbitrary Media. Journal of Physical Chemistry Letters, 2019, 10, 3181-3188.	2.1	6
137	Atomic Layer Deposition Nucleation on Isolated Self-Assembled Monolayer Functional Groups: A Combined DFT and Experimental Study. ACS Applied Energy Materials, 2019, 2, 4618-4628.	2.5	20
138	Physicochemical Trapping of Neurotransmitters in Polymer-Mediated Gold Nanoparticle Aggregates for Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 9554-9562.	3.2	26
139	Ultrafast Dynamics of Lattice Plasmon Lasers. Journal of Physical Chemistry Letters, 2019, 10, 3301-3306.	2.1	22
140	Domain Separation in Density Functional Theory. Journal of Physical Chemistry A, 2019, 123, 4785-4795.	1.1	10
141	Broad-band high-gain room temperature photodetectors using semiconductor–metal nanofloret hybrids with wide plasmonic response. Nanoscale, 2019, 11, 6368-6376.	2.8	6
142	Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5925-5930.	3.3	24
143	Charge Transport and Thermoelectric Properties of Carbon Sulfide Nanobelts in Single-Molecule Sensors. Chemistry of Materials, 2019, 31, 6506-6518.	3.2	14
144	<i>In Situ</i> Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy. Nano Letters, 2019, 19, 2106-2113.	4.5	56

#	Article	IF	CITATIONS
145	Retirement as Editor-in-Chief. Journal of Physical Chemistry C, 2019, 123, 30767-30767.	1.5	O
146	Retirement as Editor-in-Chief. Journal of Physical Chemistry B, 2019, 123, 10903-10903.	1.2	0
147	Retirement as Editor-in-Chief. Journal of Physical Chemistry Letters, 2019, 10, 7870-7871.	2.1	0
148	Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nature Communications, 2019, 10, 5502.	5.8	84
149	Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices. Journal of the American Chemical Society, 2019, 141, 19973-19977.	6.6	23
150	Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nature Materials, 2019, 18, 1172-1176.	13.3	160
151	Germanium Fluoride Nanocages as Optically Transparent n-Type Materials and Their Endohedral Metallofullerene Derivatives. Journal of the American Chemical Society, 2019, 141, 1672-1684.	6.6	10
152	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry C, 2019, 123, 1-9.	1.5	3
153	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry A, 2019, 123, 1-9.	1.1	2
154	Analysis of TiO ₂ Atomic Layer Deposition Surface Chemistry and Evidence of Propene Oligomerization Using Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 414-422.	6.6	31
155	Plasmon nanolasing with aluminum nanoparticle arrays [Invited]. Journal of the Optical Society of America B: Optical Physics, 2019, 36, E104.	0.9	28
156	Retirement as Editor-in-Chief. Journal of Physical Chemistry A, 2019, 123, 10845-10845.	1.1	0
157	Mechanisms of Formaldehyde and C ₂ Formation from Methylene Reacting with CO ₂ Adsorbed on Ni(110). Journal of Physical Chemistry C, 2018, 122, 13827-13833.	1.5	6
158	Probing Molecular-Scale Catalytic Interactions between Oxygen and Cobalt Phthalocyanine Using Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2018, 140, 5948-5954.	6.6	71
159	Virtual Issue on New Physical Insights. Journal of Physical Chemistry A, 2018, 122, 3959-3961.	1.1	0
160	Virtual Issue on New Physical Insights. Journal of Physical Chemistry B, 2018, 122, 4385-4387.	1.2	0
161	Highly Stable, Ultrasmall Polymer-Grafted Nanobins (usPGNs) with Stimuli-Responsive Capability. Journal of Physical Chemistry Letters, 2018, 9, 1133-1139.	2.1	3
162	Ultra-High Vacuum Tip-Enhanced Raman Spectroscopy. , 2018, , 231-253.		1

#	Article	IF	CITATIONS
163	SERS Theory: The Chemical Effect of Rhodamine 6G Adsorption on Silver Surfaces on Its Raman Spectrum. , 2018, , 401-414.		1
164	Shape and Size Control of Substrate-Grown Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy Detection of Chemical Analytes. Journal of Physical Chemistry C, 2018, 122, 2307-2314.	1.5	49
165	Deducing the Adsorption Geometry of Rhodamine 6G from the Surface-Induced Mode Renormalization in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 465-473.	1.5	19
166	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry A, 2018, 122, 1-7.	1.1	1
167	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry C, 2018, 122, 1-7.	1.5	2
168	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry B, 2018, 122, 1-7.	1.2	2
169	Virtual Issue on New Physical Insights. Journal of Physical Chemistry C, 2018, 122, 8701-8703.	1.5	0
170	Coherent Vibrational Wavepacket Dynamics in Platinum(II) Dimers and Their Implications. Journal of Physical Chemistry C, 2018, 122, 14195-14204.	1.5	35
171	New Sections for <i>JPC A</i> / <i>B</i> / <i>C</i> . Journal of Physical Chemistry A, 2018, 122, 2611-2611.	1.1	0
172	New Sections for JPC A/B/C. Journal of Physical Chemistry C, 2018, 122, 5215-5215.	1.5	0
173	New Sections for JPC A/B/C. Journal of Physical Chemistry B, 2018, 122, 2703-2703.	1.2	0
174	Structural Engineering in Plasmon Nanolasers. Chemical Reviews, 2018, 118, 2865-2881.	23.0	130
175	Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials. Nano Letters, 2018, 18, 442-448.	4.5	14
176	Wave Functions, Density Functionals, and Artificial Intelligence for Materials and Energy Research: Future Prospects and Challenges. ACS Energy Letters, 2018, 3, 155-162.	8.8	16
177	Resonance Energy Transfer in Arbitrary Media: Beyond the Point Dipole Approximation. Journal of Physical Chemistry C, 2018, 122, 29445-29456.	1.5	21
178	Development of formalisms based on locally coupled open subsystems for calculations in molecular electronic structure and dynamics. Physical Review A, 2018, 98, .	1.0	3
179	ACS Virtual Issue on Multicomponent Systems: Absorption, Adsorption, and Diffusion. Journal of Chemical & Chem	1.0	9
180	Singlet Fission in 9,10-Bis(phenylethynyl)anthracene Thin Films. Journal of the American Chemical Society, 2018, 140, 15140-15144.	6.6	84

#	Article	IF	CITATIONS
181	Long-Range Energy Transfer in Protein Megamolecules. Journal of the American Chemical Society, 2018, 140, 15731-15743.	6.6	13
182	Isothermal Titration Calorimetry for the Screening of Aflatoxin B1 Surface-Enhanced Raman Scattering Sensor Affinity Agents. Analytical Chemistry, 2018, 90, 13409-13418.	3.2	18
183	Plasmon-Coupled Resonance Energy Transfer II: Exploring the Peaks and Dips in the Electromagnetic Coupling Factor. Journal of Physical Chemistry C, 2018, 122, 22650-22659.	1.5	33
184	Virtual Issue on Physical Chemistry in South Korea. Journal of Physical Chemistry C, 2018, 122, 20055-20056.	1.5	0
185	Virtual Issue on Physical Chemistry in South Korea. Journal of Physical Chemistry Letters, 2018, 9, 4893-4894.	2.1	0
186	Virtual Issue on Physical Chemistry in South Korea. Journal of Physical Chemistry B, 2018, 122, 8315-8316.	1.2	0
187	Virtual Issue on Physical Chemistry in South Korea. Journal of Physical Chemistry A, 2018, 122, 6961-6962.	1.1	1
188	Bias-Dependent Chemical Enhancement and Nonclassical Stark Effect in Tip-Enhanced Raman Spectromicroscopy of CO-Terminated Ag Tips. Journal of Physical Chemistry Letters, 2018, 9, 3074-3080.	2.1	32
189	The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. Journal of the American Chemical Society, 2018, 140, 6226-6230.	6.6	36
190	Design principles for photonic crystals based on plasmonic nanoparticle superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7242-7247.	3.3	57
191	Energy transfer-enhanced photocatalytic reduction of protons within quantum dot light-harvesting–catalyst assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8290-8295.	3.3	60
192	Free-Energy Profiles for A-/B-DNA Conformational Transitions in Isolated and Aggregated States from All-Atom Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2018, 122, 7990-7996.	1.2	6
193	Photoinduced Plasmon-Driven Chemistry in <i>trans</i> -1,2-Bis(4-pyridyl)ethylene Gold Nanosphere Oligomers. Journal of the American Chemical Society, 2018, 140, 10583-10592.	6.6	42
194	Photoinduced Anomalous Coulomb Blockade and the Role of Triplet States in Electron Transport through an Irradiated Molecular Transistor. Nano Letters, 2018, 18, 5015-5023.	4.5	21
195	Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions. ACS Nano, 2018, 12, 8415-8422.	7.3	7 5
196	Benchmarking Semiempirical Methods To Compute Electrochemical Formal Potentials. Journal of Physical Chemistry A, 2018, 122, 6809-6818.	1.1	15
197	Locally coupled open subsystems: A formalism for affordable electronic structure calculations featuring fractional charges and size consistency. Journal of Chemical Physics, 2018, 149, 034105.	1.2	6
198	Conformational Effects in the Transport of Glucose through a Cyclic Peptide Nanotube: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2018, 122, 8174-8184.	1,2	6

#	Article	IF	CITATIONS
199	Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8341-E8348.	3.3	126
200	Hydrogenation of CO on Ni(110) by Energetic Deuterium. Journal of Physical Chemistry C, 2018, 122, 14671-14677.	1.5	2
201	Stretchable Nanolasing from Hybrid Quadrupole Plasmons. Nano Letters, 2018, 18, 4549-4555.	4.5	102
202	Editorial for January 2017 for JPC A/B/C. Journal of Physical Chemistry A, 2017, 121, 1-3.	1.1	2
203	Identification of Dimeric Methylalumina Surface Species during Atomic Layer Deposition Using <i>Operando</i> Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 2456-2463.	6.6	34
204	The photoluminescence spectral profiles of water-soluble aggregates of PbS quantum dots assembled through reversible metal coordination. Chemical Communications, 2017, 53, 1981-1984.	2.2	13
205	Exciton Absorption Spectra by Linear Response Methods: Application to Conjugated Polymers. Journal of the American Chemical Society, 2017, 139, 3728-3735.	6.6	17
206	Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach. Journal of Chemical Physics, 2017, 146, 064109.	1.2	50
207	Wrinkles in Polytetrafluoroethylene on Polystyrene: Persistence Lengths and the Effect of Nanoinclusions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9079-9088.	4.0	14
208	Distance-Dependence of Interparticle Energy Transfer in the Near-Infrared within Electrostatic Assemblies of PbS Quantum Dots. ACS Nano, 2017, 11, 5041-5050.	7.3	38
209	Editorial for January 2017 for JPC A/B/C. Journal of Physical Chemistry B, 2017, 121, 1-3.	1.2	0
210	All-Atom Molecular Dynamics Simulations of Peptide Amphiphile Assemblies That Spontaneously Form Twisted and Helical Ribbon Structures. Journal of Physical Chemistry Letters, 2017, 8, 2170-2174.	2.1	18
211	Plasmon-Coupled Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2017, 8, 2357-2367.	2.1	136
212	Modeling Singlet Fission in Rylene and Diketopyrrolopyrrole Derivatives: The Role of the Charge Transfer State in Superexchange and Excimer Formation. Journal of Physical Chemistry C, 2017, 121, 10345-10350.	1.5	73
213	Theoretical modeling of voltage effects and the chemical mechanism in surface-enhanced Raman scattering. Faraday Discussions, 2017, 205, 149-171.	1.6	40
214	What Does "Important New Physical Insights―Mean? Tips for Writing Better Papers. Journal of Physical Chemistry A, 2017, 121, 3627-3628.	1.1	0
215	What Does "Important New Physical Insights―Mean? Tips for Writing Better Papers. Journal of Physical Chemistry B, 2017, 121, 4947-4948.	1.2	0
216	What Does "Important New Physical Insights―Mean? Tips for Writing Better Papers. Journal of Physical Chemistry C, 2017, 121, 10265-10266.	1.5	0

#	Article	IF	Citations
217	Expanding applications of SERS through versatile nanomaterials engineering. Chemical Society Reviews, 2017, 46, 3886-3903.	18.7	316
218	Unraveling the Near- and Far-Field Relationship of 2D Surface-Enhanced Raman Spectroscopy Substrates Using Wavelength-Scan Surface-Enhanced Raman Excitation Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 14737-14744.	1.5	21
219	Quantitative Determination of the Differential Raman Scattering Cross Sections of Glucose by Femtosecond Stimulated Raman Scattering. Analytical Chemistry, 2017, 89, 6931-6935.	3.2	16
220	Conical Nanopores for Efficient Ion Pumping and Desalination. Journal of Physical Chemistry Letters, 2017, 8, 2842-2848.	2.1	39
221	Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors. Journal of Chemical Physics, 2017, 146, 224201.	1.2	20
222	Energetic and Frictional Effects in the Transport of lons in a Cyclic Peptide Nanotube. Bulletin of the Korean Chemical Society, 2017, 38, 19-26.	1.0	2
223	Mechanisms of Hydrogen-Assisted CO ₂ Reduction on Nickel. Journal of the American Chemical Society, 2017, 139, 4663-4666.	6.6	63
224	Editorial for January 2017 for JPC A/B/C. Journal of Physical Chemistry C, 2017, 121, 1-3.	1.5	6
225	Polarization-Dependent Optical Response in Anisotropic Nanoparticle–DNA Superlattices. Nano Letters, 2017, 17, 2313-2318.	4.5	34
226	Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 117, 4961-4982.	23.0	128
227	Molecular Dynamics Simulation and Experimental Studies of Gold Nanoparticle Templated HDL-like Nanoparticles for Cholesterol Metabolism Therapeutics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1247-1254.	4.0	14
228	Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 117, 7583-7613.	23.0	519
229	Directional emission from dye-functionalized plasmonic DNA superlattice microcavities. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 457-461.	3.3	30
230	Improved Scaling of Molecular Network Calculations: The Emergence of Molecular Domains. Journal of Physical Chemistry Letters, 2017, 8, 415-421.	2.1	14
231	Advantages of Conical Pores for Ion Pumps. Journal of Physical Chemistry C, 2017, 121, 161-168.	1.5	23
232	Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling. Nano Letters, 2017, 17, 590-596.	4.5	74
233	Semiempirical modeling of electrochemical charge transfer. Faraday Discussions, 2017, 199, 547-563.	1.6	17
234	Optical Properties and Structural Relationships of the Silver Nanoclusters Ag32(SG)19 and Ag15(SG)11. Journal of Physical Chemistry C, 2017, 121, 1349-1361.	1.5	33

#	Article	IF	CITATIONS
235	Direct Observation of a Charge-Transfer State Preceding High-Yield Singlet Fission in Terrylenediimide Thin Films. Journal of the American Chemical Society, 2017, 139, 663-671.	6.6	149
236	Virtual Issue on Metal-Halide Perovskite Nanocrystalsâ€"A Bright Future for Optoelectronics. Chemistry of Materials, 2017, 29, 8915-8917.	3.2	16
237	Observation of Single Molecule Plasmon-Driven Electron Transfer in Isotopically Edited 4,4′-Bipyridine Gold Nanosphere Oligomers. Journal of the American Chemical Society, 2017, 139, 15212-15221.	6.6	61
238	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry C, 2017, 121, 23849-23851.	1.5	0
239	Peptide amphiphile self-assembly. Europhysics Letters, 2017, 119, 38002.	0.7	16
240	Deterministic Symmetry Breaking of Plasmonic Nanostructures Enabled by DNA-Programmable Assembly. Nano Letters, 2017, 17, 5830-5835.	4. 5	19
241	Native Electron Capture Dissociation Maps to Iron-Binding Channels in Horse Spleen Ferritin. Analytical Chemistry, 2017, 89, 10711-10716.	3.2	14
242	Self-Assembled Plasmonic Metamolecules Exhibiting Tunable Magnetic Response at Optical Frequencies. Journal of Physical Chemistry C, 2017, 121, 15915-15921.	1.5	20
243	Structure and Dynamics of Electron Injection and Charge Recombination in i-Motif DNA Conjugates. Journal of Physical Chemistry B, 2017, 121, 8058-8068.	1.2	4
244	ACS Virtual Issue on Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2017, 62, 1927-1928.	1.0	6
245	Physical Chemistry in India. Journal of Physical Chemistry Letters, 2017, 8, 3122-3128.	2.1	0
246	Transient Melting and Recrystallization of Semiconductor Nanocrystals Under Multiple Electron–Hole Pair Excitation. Nano Letters, 2017, 17, 5314-5320.	4.5	23
247	Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nature Materials, 2017, 16, 918-924.	13.3	229
248	Probing Intermolecular Vibrational Symmetry Breaking in Self-Assembled Monolayers with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 18664-18669.	6.6	30
249	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry A, 2017, 121, 8185-8187.	1.1	0
250	Fabrication of Gold Nanosphere Oligomers for Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 27004-27008.	1.5	19
251	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry Letters, 2017, 8, 5306-5308.	2.1	0
252	Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations. Physical Review A, 2017, 96, .	1.0	13

#	Article	IF	CITATIONS
253	Hydrogenation of CO to Methanol on Ni(110) through Subsurface Hydrogen. Journal of the American Chemical Society, 2017, 139, 17582-17589.	6.6	35
254	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry B, 2017, 121, 9983-9985.	1.2	0
255	Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nature Nanotechnology, 2017, 12, 889-894.	15.6	167
256	Studying Stimulated Raman Activity in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy by Varying the Excitation Wavelength. Journal of Physical Chemistry Letters, 2017, 8, 3328-3333.	2.1	10
257	Physical Chemistry in India. Journal of Physical Chemistry A, 2017, 121, 4843-4849.	1.1	0
258	Physical Chemistry in India. Journal of Physical Chemistry B, 2017, 121, 6287-6293.	1.2	0
259	Physical Chemistry in India. Journal of Physical Chemistry C, 2017, 121, 13977-13983.	1.5	0
260	The competing effects of core rigidity and linker flexibility in the nanoassembly of trivalent small molecule-DNA hybrids (SMDH ₃ s)–a synergistic experimental-modeling study. Nanoscale, 2017, 9, 12652-12663.	2.8	3
261	Virtual Issue Celebrating the Life and Career of Millie Dresselhaus. Chemistry of Materials, 2017, 29, 5017-5018.	3.2	1
262	Ultrafast dynamics of two copper bis-phenanthroline complexes measured by x-ray transient absorption spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 154006.	0.6	12
263	In solution SERS sensing using mesoporous silica-coated gold nanorods. Analyst, The, 2016, 141, 5088-5095.	1.7	49
264	Influence of Surfactant Bilayers on the Refractive Index Sensitivity and Catalytic Properties of Anisotropic Gold Nanoparticles. Small, 2016, 12, 330-342.	5.2	70
265	Quantum Mechanical Identification of Quadrupolar Plasmonic Excited States in Silver Nanorods. Journal of Physical Chemistry A, 2016, 120, 9324-9329.	1.1	17
266	Programmable and reversible plasmon mode engineering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14201-14206.	3.3	129
267	Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering. Journal of Chemical Physics, 2016, 145, 094106.	1.2	19
268	Implementation of INDO/SCI with COSMO Implicit Solvation and Benchmarking for Solvatochromic Shifts. Journal of Physical Chemistry A, 2016, 120, 9878-9885.	1,1	6
269	Review of Plasmon-Induced Hot-Electron Dynamics and Related SERS Chemical Effects. ACS Symposium Series, 2016, , 1-22.	0.5	19
270	Sequential double excitations from linear-response time-dependent density functional theory. Journal of Chemical Physics, 2016, 144, 204105.	1,2	21

#	Article	IF	CITATIONS
271	Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 29449-29454.	1.5	10
272	SERS Detection of Ricin B-Chain via <i>N</i> -Acetyl-Galactosamine Glycopolymers. ACS Sensors, 2016, 1, 842-846.	4.0	32
273	Molecularly Tunable Fluorescent Quantum Defects. Journal of the American Chemical Society, 2016, 138, 6878-6885.	6.6	126
274	Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Nano Letters, 2016, 16, 3898-3904.	4.5	87
275	Size-Dependent Coherent-Phonon Plasmon Modulation and Deformation Characterization in Gold Bipyramids and Nanojavelins. ACS Photonics, 2016, 3, 758-763.	3.2	24
276	Structure–Function Relationships for Surface-Enhanced Raman Spectroscopy-Active Plasmonic Paper. Journal of Physical Chemistry C, 2016, 120, 20789-20797.	1.5	27
277	Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nature Chemistry, 2016, 8, 597-602.	6.6	687
278	Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 1852-1858.	2.1	64
279	Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5530-5535.	3.3	211
280	Ag–Ag ₂ S Hybrid Nanoprisms: Structural <i>versus</i> Plasmonic Evolution. ACS Nano, 2016, 10, 5362-5373.	7.3	64
281	Bisboronic Acids for Selective, Physiologically Relevant Direct Glucose Sensing with Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2016, 138, 13952-13959.	6.6	103
282	Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods. Nano Letters, 2016, 16, 6939-6945.	4.5	20
283	Supramolecular Double-Helix Formation by Diastereoisomeric Conformations of Configurationally Enantiomeric Macrocycles. Journal of the American Chemical Society, 2016, 138, 14469-14480.	6.6	42
284	Near-Quantitative Yield for Transfer of Near-Infrared Excitons within Solution-Phase Assemblies of PbS Quantum Dots. Journal of Physical Chemistry C, 2016, 120, 22186-22194.	1.5	14
285	Kinetic Master Equation Modeling of an Artificial Protein Pump. Journal of Physical Chemistry C, 2016, 120, 14495-14501.	1.5	6
286	Molecular Transport Junctions Created By Selfâ€Contacting Gapped Nanowires. Small, 2016, 12, 4349-4356.	5.2	4
287	Singlet Fission via an Excimer-Like Intermediate in 3,6-Bis(thiophen-2-yl)diketopyrrolopyrrole Derivatives. Journal of the American Chemical Society, 2016, 138, 11749-11761.	6.6	167
288	Design Considerations for RNA Spherical Nucleic Acids (SNAs). Bioconjugate Chemistry, 2016, 27, 2124-2131.	1.8	39

#	Article	IF	Citations
289	Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers. Nature Chemistry, 2016, 8, 1120-1125.	6.6	273
290	Reducing CO ₂ to CO and H ₂ O on Ni(110): The Influence of Subsurface Hydrogen. Journal of Physical Chemistry C, 2016, 120, 23061-23068.	1.5	26
291	Interfacial Effects on Nanoscale Wrinkling in Gold-Covered Polystyrene. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24339-24344.	4.0	17
292	Operational Regimes in Picosecond and Femtosecond Pulse-Excited Ultrahigh Vacuum SERS. Journal of Physical Chemistry Letters, 2016, 7, 2971-2976.	2.1	8
293	Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites. Journal of Physical Chemistry C, 2016, 120, 16577-16585.	1.5	54
294	Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals. Journal of the American Chemical Society, 2016, 138, 8722-8725.	6.6	55
295	Enzymatically Controlled Vacancies in Nanoparticle Crystals. Nano Letters, 2016, 16, 5114-5119.	4.5	3
296	Magneto-Optical Response of Cobalt Interacting with Plasmonic Nanoparticle Superlattices. Journal of Physical Chemistry Letters, 2016, 7, 4732-4738.	2.1	13
297	Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. Nano Letters, 2016, 16, 7968-7973.	4.5	86
298	Electronic Structure and Potential Reactivity of Silaaromatic Molecules. Journal of Physical Chemistry A, 2016, 120, 9476-9488.	1.1	13
299	Energetic and Dynamic Analysis of Transport of Na+ and K+ through a Cyclic Peptide Nanotube in Water and in Lipid Bilayers. Journal of Physical Chemistry B, 2016, 120, 11912-11922.	1.2	12
300	Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy at 1 MHz Repetition Rates. Journal of Physical Chemistry Letters, 2016, 7, 4629-4634.	2.1	19
301	Plasmonic Metallurgy Enabled by DNA. Advanced Materials, 2016, 28, 2790-2794.	11.1	30
302	Semiempirical Modeling of Ag Nanoclusters: New Parameters for Optical Property Studies Enable Determination of Double Excitation Contributions to Plasmonic Excitation. Journal of Physical Chemistry A, 2016, 120, 4542-4549.	1.1	45
303	High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition. Nano Letters, 2016, 16, 4251-4259.	4.5	136
304	Surface-Enhanced Raman Spectroscopy Detection of Ricin B Chain in Human Blood. Journal of Physical Chemistry C, 2016, 120, 20961-20969.	1.5	47
305	Liquid-Phase Beam Pen Lithography. Small, 2016, 12, 988-993.	5.2	15
306	Simultaneous covalent and noncovalent hybrid polymerizations. Science, 2016, 351, 497-502.	6.0	164

#	Article	IF	Citations
307	Tunable Excited-State Properties and Dynamics as a Function of Pt–Pt Distance in Pyrazolate-Bridged Pt(II) Dimers. Journal of Physical Chemistry A, 2016, 120, 543-550.	1.1	52
308	Energy landscapes and functions of supramolecular systems. Nature Materials, 2016, 15, 469-476.	13.3	348
309	Dependence of Plasmon Energies on the Acoustic Normal Modes of Ag $<$ sub $><$ i $>ni></sub>(<i>ni>=) Tj ETQq1$	1 0.7843 1.5	14 rgBT /
310	Probing the Chemistry of Alumina Atomic Layer Deposition Using <i>Operando</i> Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 3822-3833.	1.5	28
311	Unraveling near-field and far-field relationships for 3D SERS substrates – a combined experimental and theoretical analysis. Analyst, The, 2016, 141, 1779-1788.	1.7	41
312	Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2016, 45, 2263-2290.	18.7	143
313	Reactive Force Field Modeling of Zinc Oxide Nanoparticle Formation. Journal of Physical Chemistry C, 2016, 120, 2950-2961.	1.5	14
314	Supramolecular Gelation of Rigid Triangular Macrocycles through Rings of Multiple C–H···O Interactions Acting Cooperatively. Journal of Organic Chemistry, 2016, 81, 2581-2588.	1.7	27
315	Connection between Hybrid Functionals and Importance of the Local Density Approximation. Journal of Physical Chemistry A, 2016, 120, 1605-1612.	1.1	13
316	Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures. Journal of Physical Chemistry C, 2016, 120, 816-830.	1.5	257
317	Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays. Nano Letters, 2015, 15, 4699-4703.	4.5	128
318	What Controls the Hybridization Thermodynamics of Spherical Nucleic Acids?. Journal of the American Chemical Society, 2015, 137, 3486-3489.	6.6	79
319	Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor–Solvent Interfaces. ACS Nano, 2015, 9, 6278-6287.	7.3	21
320	Plasmonic photonic crystals realized through DNA-programmable assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 977-981.	3.3	107
321	Reply to "Comment on â€~Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer'― ACS Photonics, 2015, 2, 456-458.	3.2	6
322	Introducing Perovskite Solar Cells to Undergraduates. Journal of Physical Chemistry Letters, 2015, 6, 251-255.	2.1	33
323	Uniform Circular Disks With Synthetically Tailorable Diameters: Two-Dimensional Nanoparticles for Plasmonics. Nano Letters, 2015, 15, 1012-1017.	4.5	90
324	Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10292-10297.	3.3	35

#	Article	IF	CITATIONS
325	Solution-Dispersible Metal Nanorings with Deliberately Controllable Compositions and Architectural Parameters for Tunable Plasmonic Response. Nano Letters, 2015, 15, 5273-5278.	4.5	28
326	Conformational Order in Aggregates of Conjugated Polymers. Journal of the American Chemical Society, 2015, 137, 6254-6262.	6.6	177
327	Real-time tunable lasing from plasmonic nanocavity arrays. Nature Communications, 2015, 6, 6939.	5.8	356
328	Conformal, Macroscopic Crystalline Nanoparticle Sheets Assembled with DNA. Advanced Materials, 2015, 27, 3159-3163.	11.1	15
329	Charge Transport across DNA-Based Three-Way Junctions. Journal of the American Chemical Society, 2015, 137, 5113-5122.	6.6	39
330	Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nature Nanotechnology, 2015, 10, 453-458.	15.6	169
331	Enhancing DNA-Mediated Assemblies of Supramolecular Cage Dimers through Tuning Core Flexibility and DNA Length—A Combined Experimental–Modeling Study. Journal of the American Chemical Society, 2015, 137, 13381-13388.	6.6	16
332	Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications. Journal of Physical Chemistry C, 2015, 119, 24238-24247.	1.5	64
333	Modular and Chemically Responsive Oligonucleotide "Bonds―in Nanoparticle Superlattices. Journal of the American Chemical Society, 2015, 137, 13566-13571.	6.6	23
334	Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science, 2015, 349, 877-881.	6.0	118
335	Local electric field factors by a combined charge-transfer and point–dipole interaction model. RSC Advances, 2015, 5, 31594-31605.	1.7	13
336	Lasing action in periodic arrays of nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 818.	0.9	29
337	Evaluating Single-Molecule Stokes and Anti-Stokes SERS for Nanoscale Thermometry. Journal of Physical Chemistry C, 2015, 119, 21116-21124.	1.5	78
338	Adjusting the Metrics of 1-D Helical Gold Nanoparticle Superstructures Using Multivalent Peptide Conjugates. Langmuir, 2015, 31, 9492-9501.	1.6	34
339	Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays. ACS Photonics, 2015, 2, 1789-1794.	3.2	80
340	Light-Driven Ca ²⁺ Ion Pump: How Does It Work?. Journal of Physical Chemistry B, 2015, 119, 15110-15117.	1.2	4
341	Radiative effects in plasmonic aluminum and silver nanospheres and nanorods. Journal Physics D: Applied Physics, 2015, 48, 184004.	1.3	49
342	O2(X3Σgâ^') and O2(a1Î''g) charge exchange with simple ions. Journal of Chemical Physics, 2014, 140, 214307.	1.2	5

#	Article	IF	Citations
343	Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nature Communications, 2014, 5, 3321.	5.8	135
344	Ground and excited state electronic spectra of perylenediimide dimers with flexible and rigid geometries in DNA conjugates. Chemical Science, 2014, 5, 973-981.	3.7	19
345	Time-Dependent Density Functional Methods for Raman Spectra in Open-Shell Systems. Journal of Physical Chemistry A, 2014, 118, 517-525.	1.1	27
346	Two-Photon and Time-Resolved Fluorescence Spectroscopy as Probes for Structural Determination in Amyloid- \hat{l}^2 Peptides and Aggregates. Journal of Physical Chemistry B, 2014, 118, 2351-2359.	1.2	22
347	Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Advanced Materials, 2014, 26, 653-659.	11.1	157
348	Hydrophobic Organic Linkers in the Self-Assembly of Small Molecule-DNA Hybrid Dimers: A Computational–Experimental Study of the Role of Linkage Direction in Product Distributions and Stabilities. Journal of Physical Chemistry B, 2014, 118, 2366-2376.	1.2	10
349	Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity. ACS Chemical Biology, 2014, 9, 538-550.	1.6	61
350	Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer. ACS Photonics, 2014, 1, 960-967.	3.2	31
351	Mesoscale molecular network formation in amorphous organic materials. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10055-10060.	3.3	79
352	Inhomogeneous Surface Plasmon Polaritons. ACS Photonics, 2014, 1, 739-745.	3.2	19
353	Structure and Electronic Spectra of Purine–Methyl Viologen Charge Transfer Complexes. Journal of Physical Chemistry B, 2014, 118, 125-133.	1.2	18
354	Synthesis and Characterization of a Plasmonic–Semiconductor Composite Containing Rationally Designed, Optically Tunable Gold Nanorod Dimers and Anatase TiO ₂ . Chemistry of Materials, 2014, 26, 3818-3824.	3.2	12
355	Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nature Communications, 2014, 5, 4090.	5.8	90
356	QM/MM Study of Photoinduced Reduction of a Tetrahedral Ag ₂₀ ⁺ Cluster by a Ag Atom. Journal of Physical Chemistry C, 2014, 118, 1755-1762.	1.5	12
357	High-performance SERS substrates: Advances and challenges. MRS Bulletin, 2013, 38, 615-624.	1.7	267
358	Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nature Chemistry, 2013, 5, 840-845.	6.6	372
359	A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment. Journal of Physical Chemistry Letters, 2013, 4, 2599-2604.	2.1	216
360	Tailorable Plasmonic Circular Dichroism Properties of Helical Nanoparticle Superstructures. Nano Letters, 2013, 13, 3256-3261.	4.5	221

#	Article	IF	Citations
361	Controlling Orientational Order in 1-D Assemblies of Multivalent Triangular Prisms. Journal of Physical Chemistry Letters, 2013, 4, 203-208.	2.1	11
362	Surface Plasmon Coupling of Compositionally Heterogeneous Core–Satellite Nanoassemblies. Journal of Physical Chemistry Letters, 2013, 4, 1371-1378.	2.1	71
363	Direct Measurement of Lattice Dynamics and Optical Phonon Excitation in Semiconductor Nanocrystals Using Femtosecond Stimulated Raman Spectroscopy. Physical Review Letters, 2013, 111, 107401.	2.9	26
364	Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 862-869.	6.6	510
365	Free Energy Profile and Mechanism of Self-Assembly of Peptide Amphiphiles Based on a Collective Assembly Coordinate. Journal of Physical Chemistry B, 2013, 117, 9004-9013.	1.2	26
366	Steered Molecular Dynamics Studies of the Potential of Mean Force for Peptide Amphiphile Self-Assembly into Cylindrical Nanofibers. Journal of Physical Chemistry A, 2013, 117, 7453-7460.	1.1	63
367	Free-Energy Landscape for Peptide Amphiphile Self-Assembly: Stepwise versus Continuous Assembly Mechanisms. Journal of Physical Chemistry B, 2013, 117, 14059-14064.	1.2	26
368	Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates. Analytical Chemistry, 2013, 85, 2297-2303.	3.2	138
369	Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared (λ _{ex} = 1064 nm) Studies. Journal of Physical Chemistry C, 2013, 117, 2554-2558.	1.5	71
370	Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 2013, 8, 506-511.	15.6	657
371	Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy. Journal of the American Chemical Society, 2013, 135, 301-308.	6.6	299
372	The effect of field gradient on SERS. Nature Photonics, 2013, 7, 508-510.	15.6	59
373	Controlling Conformations of Conjugated Polymers and Small Molecules: The Role of Nonbonding Interactions. Journal of the American Chemical Society, 2013, 135, 10475-10483.	6.6	386
374	Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2013, 4, 826-830.	2.1	46
375	Van der Waals Torque Coupling between Slabs Composed of Planar Arrays of Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 5492-5496.	1.5	15
376	Electronic Population Inversion in HCCO/DCCO Products from Hyperthermal Collisions of O(³ P) with HCCH/DCCD. Journal of Physical Chemistry Letters, 2013, 4, 1315-1321.	2.1	4
377	Metal Oxide Nanoparticle Growth on Graphene via Chemical Activation with Atomic Oxygen. Journal of the American Chemical Society, 2013, 135, 18121-18125.	6.6	33
378	Tensile Mechanics of α-Helical Polypeptides. Macromolecules, 2013, 46, 7947-7956.	2.2	7

#	Article	IF	CITATIONS
379	Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2791.	0.9	41
380	Ultrafast Energy Migration in Porphyrin-based Metal Organic Frameworks (MOFs). Materials Research Society Symposia Proceedings, 2013, 1539, 8701.	0.1	8
381	Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4212-4217.	3.3	66
382	O(³ <i>P</i>) + CO ₂ Collisions at Hyperthermal Energies: Dynamics of Nonreactive Scattering, Oxygen Isotope Exchange, and Oxygen-Atom Abstraction. Journal of Physical Chemistry A, 2012, 116, 64-84.	1.1	19
383	Molecular dynamics simulation of \hat{l}^2 -sheet formation in self-assembled peptide amphiphile fibers. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	21
384	CO ₂ Hydrogenation to Formic Acid on Ni(111). Journal of Physical Chemistry C, 2012, 116, 3001-3006.	1.5	141
385	Combined Linear Response Quantum Mechanics and Classical Electrodynamics (QM/ED) Method for the Calculation of Surface-Enhanced Raman Spectra. Journal of Physical Chemistry A, 2012, 116, 1931-1938.	1.1	30
386	Theoretical Studies of the $O(\langle \sup 3 \langle \sup P) + C \langle \sup 2 \langle \sup P \rangle$ Reaction at Hyperthermal Energies. Journal of Physical Chemistry C, 2012, 116, 26577-26585.	1.5	5
387	Spatial Nonlocality in the Calculation of Hamaker Coefficients. Journal of Physical Chemistry C, 2012, 116, 420-424.	1.5	16
388	State-Selected Reaction of Muonium with Vibrationally Excited H ₂ . Journal of Physical Chemistry Letters, 2012, 3, 2755-2760.	2.1	24
389	Modeling the Effect of Small Gaps in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 1627-1637.	1.5	179
390	Combined Quantum Mechanics (TDDFT) and Classical Electrodynamics (Mie Theory) Methods for Calculating Surface Enhanced Raman and Hyper-Raman Spectra. Journal of Physical Chemistry A, 2012, 116, 9574-9581.	1.1	39
391	Structural Effects in the Electromagnetic Enhancement Mechanism of Surface-Enhanced Raman Scattering: Dipole Reradiation and Rectangular Symmetry Effects for Nanoparticle Arrays. Journal of Physical Chemistry C, 2012, 116, 17318-17327.	1.5	26
392	Advancing the Frontiers of Physical Chemistry. Journal of Physical Chemistry Letters, 2012, 3, 38-39.	2.1	0
393	CO2 hydrogenation to formic acid on Ni(110). Surface Science, 2012, 606, 1050-1055.	0.8	76
394	Modeling the Self-Assembly of Peptide Amphiphiles into Fibers Using Coarse-Grained Molecular Dynamics. Nano Letters, 2012, 12, 4907-4913.	4.5	140
395	Observation of Multiple Vibrational Modes in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy Combined with Molecular-Resolution Scanning Tunneling Microscopy. Nano Letters, 2012, 12, 5061-5067.	4.5	182
396	Time-dependent density functional methods for surface enhanced Raman scattering (SERS) studies. Computational and Theoretical Chemistry, 2012, 987, 32-41.	1.1	22

#	Article	IF	CITATIONS
397	Particle-Level Engineering of Thermal Conductivity in Matrix-Embedded Semiconductor Nanocrystals. Nano Letters, 2012, 12, 5797-5801.	4.5	6
398	Experimental and theoretical studies of plasmon–molecule interactions. Reports on Progress in Physics, 2012, 75, 096402.	8.1	39
399	Near-Infrared Surface-Enhanced Raman Spectroscopy (NIR-SERS) for the Identification of Eosin Y: Theoretical Calculations and Evaluation of Two Different Nanoplasmonic Substrates. Journal of Physical Chemistry A, 2012, 116, 11863-11869.	1.1	80
400	Single-Molecule Tip-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 478-483.	1.5	226
401	Defects in DNA: Lessons from Molecular Motor Design. Journal of Physical Chemistry Letters, 2012, 3, 689-693.	2.1	11
402	Enhancing the Melting Properties of Small Molecule-DNA Hybrids through Designed Hydrophobic Interactions: An Experimental-Computational Study. Journal of the American Chemical Society, 2012, 134, 7450-7458.	6.6	33
403	Nanoparticles and theory. , 2012, , .		1
404	A Semiconducting Organic Radical Cationic Host–Guest Complex. ACS Nano, 2012, 6, 9964-9971.	7.3	47
405	Anion Effects in the Scattering of CO ₂ from the Room-Temperature Ionic Liquids [bmim][BF4] and [bmim][Tf2N]: Insights from Quantum Mechanics/Molecular Mechanics Trajectories. Journal of Physical Chemistry B, 2012, 116, 3587-3602.	1.2	26
406	On the Origin of Photoluminescence in Silicon Nanocrystals: Pressure-Dependent Structural and Optical Studies. Nano Letters, 2012, 12, 4200-4205.	4.5	133
407	Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2012, 116, 10215-10221.	1.5	59
408	Conformational Control of Thymine Photodimerization in Purine-Containing Trinucleotides. Journal of Physical Chemistry Letters, 2011, 2, 1432-1438.	2.1	26
409	Electromagnetic Field Enhancement for Wedge-Shaped Metal Nanostructures. Journal of Physical Chemistry Letters, 2011, 2, 1978-1983.	2.1	26
410	Correlated Structure and Optical Property Studies of Plasmonic Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 9291-9305.	1.5	217
411	Northwestern University Initiative for Teaching NanoSciences (NUITNS): An Approach for Teaching Computational Chemistry to Engineering Undergraduate Students. Journal of Chemical Education, 2011, 88, 1079-1084.	1.1	8
412	Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues: Theory and Experiment. Journal of the American Chemical Society, 2011, 133, 4115-4122.	6.6	390
413	Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nature Communications, 2011, 2, 382.	5.8	67
414	Time-Dependent Theory of the Rate of Photo-induced Electron Transfer. Journal of Physical Chemistry C, 2011, 115, 18810-18821.	1.5	48

#	Article	IF	Citations
415	Tunneling Currents That Increase with Molecular Elongation. Journal of the American Chemical Society, 2011, 133, 15714-15720.	6.6	34
416	Observation of Size-Dependent Thermalization in CdSe Nanocrystals Using Time-Resolved Photoluminescence Spectroscopy. Physical Review Letters, 2011, 107, 177403.	2.9	39
417	Atomistic Molecular Dynamics Simulations of Peptide Amphiphile Self-Assembly into Cylindrical Nanofibers. Journal of the American Chemical Society, 2011, 133, 3677-3683.	6.6	195
418	Molecular Dynamics Study of the Formation of a Self-Assembled Monolayer on Gold. Journal of Physical Chemistry C, 2011, 115, 10668-10674.	1.5	45
419	Small Size Limit to Self-Assembled Monolayer Formation on Gold(111). Journal of Physical Chemistry C, 2011, 115, 13193-13199.	1.5	14
420	Nanoparticle Superlattice Engineering with DNA. Science, 2011, 334, 204-208.	6.0	1,013
421	Introduction to Plasmonics. Chemical Reviews, 2011, 111, 3667-3668.	23.0	130
422	Theoretical calculation of the photo-induced electron transfer rate between a gold atom and a gold cation solvated in CCl4. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 143-147.	2.0	9
423	Mixing rules and the Casimir force between composite systems. Physical Review A, 2011, 83, .	1.0	20
424	Triggered Release of Pharmacophores from [Ni(HAsO ₃)]-Loaded Polymer-Caged Nanobin Enhances Pro-apoptotic Activity: A Combined Experimental and Theoretical Study. ACS Nano, 2011, 5, 3961-3969.	7.3	48
425	Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. Physical Review B, $2011,83,\ldots$	1.1	51
426	Inelastic and Reactive Scattering Dynamics of Hyperthermal Oxygen Atoms on Ionic Liquid Surfaces: [emim][NTf[sub 2]] and [C[sub 12]mim][NTf[sub 2]]., 2011,,.		0
427	Crossed-Beams and Theoretical Studies of Hyperthermal Reactions of O([sup 3]P) with HCl and H[sub 2]O. , 2011, , .		0
428	Chapter 6. Computational Electrodynamics Methods. RSC Theoretical and Computational Chemistry Series, 2011, , 147-178.	0.7	4
429	Abnormally Large Plasmonic Shifts in Silica-Protected Gold Triangular Nanoprisms. Journal of Physical Chemistry C, 2010, 114, 7521-7526.	1.5	63
430	Periodic Electric Field Enhancement Along Gold Rods with Nanogaps. Angewandte Chemie - International Edition, 2010, 49, 78-82.	7.2	41
431	Reversing the size-dependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14530-14534.	3.3	408
432	Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism. Journal of Chemical Physics, 2010, 133, 054103.	1.2	45

#	Article	IF	Citations
433	Perylenediimide-Linked DNA Dumbbells: Long-Distance Electronic Interactions and Hydrophobic Assistance of Base-Pair Melting. Journal of Physical Chemistry C, 2010, 114, 20466-20471.	1.5	20
434	Structureâ^'Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2010, 132, 10903-10910.	6.6	723
435	Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. Journal of Physical Chemistry C, 2010, 114, 12511-12516.	1.5	314
436	Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods. Nano Letters, 2010, 10, 1722-1727.	4.5	103
437	Nonlocal Dielectric Effects in Coreâ^'Shell Nanowires. Journal of Physical Chemistry C, 2010, 114, 15903-15908.	1.5	33
438	Cooperative Melting in Caged Dimers with Only Two DNA Duplexes. Journal of the American Chemical Society, 2010, 132, 17068-17070.	6.6	42
439	Direct Dynamics Simulations of the Reaction O ⁺ (⁴ S) + HCN at Hyperthermal Collision Energies. Journal of Physical Chemistry C, 2010, 114, 5263-5275.	1.5	1
440	Oxidation and Etching of CVD Diamond by Thermal and Hyperthermal Atomic Oxygen. Journal of Physical Chemistry C, 2010, 114, 18996-19003.	1.5	43
441	Calculating nonlocal optical properties of structures with arbitrary shape. Physical Review B, 2010, 82, .	1.1	112
442	Lattice Gas Monte Carlo Simulation of Capillary Forces in Atomic Force Microscopy. Journal of Adhesion Science and Technology, 2010, 24, 2429-2451.	1.4	8
443	Molecular dynamics simulation of ds-DNA on a gold surface at low surface coverage. Materials Research Society Symposia Proceedings, 2009, 1177, 68.	0.1	0
444	Surprisingly Longâ€Range Surfaceâ€Enhanced Raman Scattering (SERS) on Au–Ni Multisegmented Nanowires. Angewandte Chemie - International Edition, 2009, 48, 4210-4212.	7.2	90
445	Silver Nanoparticles with Broad Multiband Linear Optical Absorption. Angewandte Chemie - International Edition, 2009, 48, 5921-5926.	7.2	235
446	Plasmonic superlattices: Hierarchical subwavelength hole arrays. Chemical Physics Letters, 2009, 483, 187-192.	1.2	30
447	Screening of Type I and II Drug Binding to Human Cytochrome P450-3A4 in Nanodiscs by Localized Surface Plasmon Resonance Spectroscopy. Analytical Chemistry, 2009, 81, 3754-3759.	3.2	116
448	Plasmonic Focusing in Rodâ^'Sheath Heteronanostructures. ACS Nano, 2009, 3, 87-92.	7.3	51
449	Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles via Atomic Layer Deposition of TiO ₂ . Langmuir, 2009, 25, 2596-2600.	1.6	230
450	Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes. Journal of Physical Chemistry C, 2009, 113, 2731-2735.	1.5	171

#	Article	IF	CITATIONS
451	Coarse-Grained Molecular Dynamics Study of Cyclic Peptide Nanotube Insertion into a Lipid Bilayer. Journal of Physical Chemistry A, 2009, 113, 4780-4787.	1.1	35
452	Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009, 131, 8407-8409.	6.6	434
453	Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule. Journal of the American Chemical Society, 2009, 131, 849-854.	6.6	294
454	Molecular Dynamics Simulation of DNA-Functionalized Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 2316-2321.	1.5	89
455	Interaction between DNAs on a Gold Surface. Journal of Physical Chemistry C, 2009, 113, 15941-15947.	1.5	58
456	On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres. Journal of Chemical Physics, 2009, 131, 084708.	1.2	70
457	Collective surface plasmon resonance coupling in silver nanoshell arrays. Applied Physics B: Lasers and Optics, 2008, 93, 31-38.	1.1	34
458	DNA-programmable nanoparticle crystallization. Nature, 2008, 451, 553-556.	13.7	1,431
459	Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. Journal of Physical Chemistry A. 2008. 112. 12868-12886.	1.1	680
460	Correlating the Crystal Structure of A Thiol-Protected Au ₂₅ Cluster and Optical Properties. Journal of the American Chemical Society, 2008, 130, 5883-5885.	6.6	2,014
461	Nanoscale fracture of tetrahedral amorphous carbon by molecular dynamics: Flaw size insensitivity. Physical Review B, 2008, 77, .	1.1	15
462	Methods for Describing the Electromagnetic Properties of Silver and Gold Nanoparticles. Accounts of Chemical Research, 2008, 41, 1710-1720.	7.6	457
463	Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 2008, 37, 1061.	18.7	568
464	Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons. Journal of Chemical Physics, 2008, 129, 054704.	1.2	82
465	Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. Journal of the American Chemical Society, 2008, 130, 12616-12617.	6.6	825
466	Electrochemical Approach to and the Physical Consequences of Preparing Nanostructures from Gold Nanorods with Smooth Ends. Journal of Physical Chemistry C, 2008, 112, 15729-15734.	1.5	28
467	From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of $Ag < sub < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < i > n < n < i > n < n < i > n < n < i > n < n < i > n < n < i > n < n < i > n < n < n < n < n < n < n < n < n < n$	1.5	252
468	Resonance Localized Surface Plasmon Spectroscopy: Sensing Substrate and Inhibitor Binding to Cytochrome P450. Journal of Physical Chemistry C, 2008, 112, 13084-13088.	1.5	57

#	Article	IF	CITATIONS
469	Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 19302-19310.	1.5	73
470	Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 13958-13963.	1.5	360
471	Modeling Ion Channels Using Poisson–Nernst–Planck Theory as an Integrated Approach To Introducing Nanotechnology Concepts: The PNP Cyclic Peptide Ion Channel Model. Journal of Chemical Education, 2008, 85, 744.	1.1	2
472	Effect of Structural Dynamics on Charge Transfer in DNA Hairpins. Journal of the American Chemical Society, 2008, 130, 5157-5166.	6.6	148
473	Time-Dependent Density Functional Theory Examination of the Effects of Ligand Adsorption on Metal Nanoparticles. ACS Symposium Series, 2008, , 108-121.	0.5	1
474	Using theory and computation to model nanoscale properties. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6885-6892.	3.3	106
475	Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Physical Review B, 2007, 75, .	1.1	293
476	Size-Dependence of the Enhanced Raman Scattering of Pyridine Adsorbed on Agn(n= 2â^8, 20) Clusters. Journal of Physical Chemistry C, 2007, 111, 4756-4764.	1.5	180
477	Modeling of Electrodynamic Interactions between Metal Nanoparticles Aggregated by Electrostatic Interactions into Closely-Packed Clusters. Journal of Physical Chemistry C, 2007, 111, 11816-11822.	1.5	35
478	Computational Studies of the Structure, Behavior upon Heating, and Mechanical Properties of Graphite Oxide. Journal of Physical Chemistry C, 2007, 111, 18099-18111.	1.5	303
479	Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles. Journal of the American Chemical Society, 2007, 129, 7647-7656.	6.6	282
480	Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography. Nano Letters, 2007, 7, 1947-1952.	4.5	768
481	Surface-Enhanced Raman Scattering of Pyrazine at the Junction between Two Ag20Nanoclusters. Nano Letters, 2006, 6, 1229-1234.	4.5	212
482	Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory. Journal of Physical Chemistry A, 2006, 110, 5973-5977.	1.1	344
483	PyridineⰒAg20 Cluster:  A Model System for Studying Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2006, 128, 2911-2919.	6.6	478
484	Localized Surface Plasmon Resonance Spectroscopy near Molecular Resonances. Journal of the American Chemical Society, 2006, 128, 10905-10914.	6.6	247
485	Ion Current Calculations Based on Three Dimensional Poissonâ^'Nernstâ^'Planck Theory for a Cyclic Peptide Nanotube. Journal of Physical Chemistry B, 2006, 110, 6999-7008.	1.2	44
486	Steered Molecular Dynamics Studies of the Potential of Mean Force of a Na+or K+lon in a Cyclic Peptide Nanotube. Journal of Physical Chemistry B, 2006, 110, 26448-26460.	1,2	75

#	Article	IF	Citations
487	Electromagnetic Mechanism of SERS. , 2006, , 19-45.		356
488	Mechanical properties of ultrananocrystalline diamond prepared in a nitrogen-rich plasma: A theoretical study. Physical Review B, 2006, 74, .	1,1	15
489	Designing, fabricating, and imaging Raman hot spots. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13300-13303.	3.3	424
490	Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters, 2005, 403, 62-67.	1.2	326
491	Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bulletin, 2005, 30, 368-375.	1.7	616
492	Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Letters, 2005, 5, 2034-2038.	4.5	1,307
493	Response to "Comment on â€~Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes' ―[J. Chem. Phys. 120, 10871 (2004)]. Journal of Chemical Physics, 2005, 122, 097	1 62 .	22
494	Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives. Journal of Chemical Physics, 2005, 123, 174110.	1.2	169
495	Alkanethiol Mediated Release of Surface Bound Nanoparticles Fabricated by Nanosphere Lithography. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	3
496	Near-Field Photochemical Imaging of Noble Metal Nanostructures. Nano Letters, 2005, 5, 615-619.	4.5	210
497	Confined Plasmons in Nanofabricated Single Silver Particle Pairs:Â Experimental Observations of Strong Interparticle Interactions. Journal of Physical Chemistry B, 2005, 109, 1079-1087.	1.2	488
498	Finite lifetime effects on the polarizability within time-dependent density-functional theory. Journal of Chemical Physics, 2005, 122, 224115.	1.2	161
499	Multipolar excitation in triangular nanoprisms. Journal of Chemical Physics, 2005, 123, 114713.	1.2	255
500	Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations. Physical Review B, 2005, 71, .	1.1	238
501	Optical near-field enhancement around lithographic metallic nanostructures using an azo-dye polymer: direct observation and realization of sub-wavelength complex structures. Materials Research Society Symposia Proceedings, 2004, 838, 187.	0.1	O
502	Optical Properties of One-Dimensional Metal Nanostructures. Materials Research Society Symposia Proceedings, 2004, 818, 233.	0.1	2
503	Properties and Improved Space Survivability of POSS (Polyhedral Oligomeric Silsesquioxane) Polyimides. Materials Research Society Symposia Proceedings, 2004, 851, 487.	0.1	10
504	A Nanoscale Optical Biosensor:Â The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 109-116.	1.2	708

#	Article	IF	Citations
505	QUASICLASSICAL TRAJECTORY STUDIES OF FOUR-ATOM REACTIONS. Advanced Series in Physical Chemistry, 2004, , 249-290.	1.5	3
506	Electrostatically-Directed Self-Assembly of Cylindrical Peptide Amphiphile Nanostructures. Journal of Physical Chemistry B, 2004, 108, 8817-8822.	1.2	57
507	Hyperthermal Reactions of O+(4S3/2) with CD4and CH4: Theory and Experimentâ€. Journal of Physical Chemistry A, 2004, 108, 9794-9804.	1.1	19
508	Nanoscale Optical Biosensor:Â Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 6961-6968.	1.2	631
509	Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. Journal of Chemical Physics, 2004, 121, 12606.	1.2	312
510	Importance of Intersystem Crossing in the S(3P,1D) + H2→ SH + H Reactionâ€. Journal of Physical Chemistry A, 2004, 108, 8772-8781.	1.1	96
511	Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. Journal of Chemical Physics, 2004, 120, 10871-10875.	1.2	700
512	Synthesis and Optical Properties of "Branched―Gold Nanocrystals. Nano Letters, 2004, 4, 327-330.	4.5	524
513	Electromagnetic fields around silver nanoparticles and dimers. Journal of Chemical Physics, 2004, 120, 357-366.	1.2	1,732
514	The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. Journal of Physical Chemistry B, 2003, 107, 668-677.	1.2	9,036
515	Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arraysâ€. Journal of Physical Chemistry B, 2003, 107, 7337-7342.	1.2	665
516	The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Widthâ€. Journal of Physical Chemistry B, 2003, 107, 7343-7350.	1.2	575
517	Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425, 487-490.	13.7	1,583
518	What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies?. Journal of the American Chemical Society, 2003, 125, 1643-1654.	6.6	1,054
519	Hydrophobically-Driven Self-Assembly:  A Geometric Packing Analysis. Nano Letters, 2003, 3, 623-626.	4.5	65
520	Influence of Spinâ^'Orbit Effects on Chemical Reactions:  Quantum Scattering Studies for the Cl(2P) + HCl â†' ClH + Cl(2P) Reaction Using Coupled ab Initio Potential Energy Surfaces. Journal of Physical Chemistry A, 2003, 107, 7278-7289.	1.1	21
521	Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach. Journal of Chemical Physics, 2003, 119, 3926-3934.	1.2	395
522	Theoretical studies of intersystem crossing effects in the O(3P, 1D)+H2 reaction. Journal of Chemical Physics, 2003, 119, 12360-12371.	1.2	82

#	Article	IF	Citations
523	A crossed molecular beams study of the O(3P)+H2 reaction: Comparison of excitation function with accurate quantum reactive scattering calculations. Journal of Chemical Physics, 2003, 118, 1585-1588.	1.2	111
524	The CH+H reaction studied with quantum-mechanical and classical trajectory calculations. Journal of Chemical Physics, 2002, 116, 6002-6011.	1.2	33
525	Molecular Dynamics Studies of Ion Distributions around DNA Duplexes and Duplex Dimers: Salt Effects and the Connection to Cooperative DNA Melting. Materials Research Society Symposia Proceedings, 2002, 735, 1011.	0.1	1
526	Quasiclassical Trajectory Study of Energy and Angular Distributions for the H + CO2→ OH + CO Reactionâ€. Journal of Physical Chemistry B, 2002, 106, 8148-8160.	1,2	28
527	Liquid meniscus condensation in dip-pen nanolithography. Journal of Chemical Physics, 2002, 116, 3875-3886.	1.2	94
528	Quasiclassical Trajectory and Transition State Theory Studies of the N(4S) + H2â†" NH(X3Σ-) + H Reaction. Journal of Physical Chemistry A, 2002, 106, 4125-4136.	1.1	43
529	Hyper-Rayleigh scattering from silver nanoparticles. Journal of Chemical Physics, 2002, 117, 5963-5966.	1.2	128
530	Trajectory-Surface-Hopping Study of the Rennerâ^'Teller Effect in the N(2D) + H2 Reaction. Journal of Physical Chemistry A, 2002, 106, 8276-8284.	1.1	42
531	A Quasiclassical Trajectory Study of the Cl + HCN → HCl + CN Reaction Dynamics. Microscopic Reaction Mechanism of the H(Cl) + HCN → H2(HCl) + CN Reactionsâ€. Journal of Physical Chemistry A, 2001, 105, 2285-2297.	1.1	14
532	A Comparative Classical-Quantum Study of the Photodissociation of Water in the Bl f Band. Journal of Physical Chemistry A, 2001, 105, 11480-11487.	1.1	42
533	Reactive and Nonreactive Quenching of OH(A2Σ+) in Collisions with H Atomsâ€. Journal of Physical Chemistry A, 2001, 105, 2515-2521.	1.1	11
534	Effective Medium Theory of DNA-linked Gold Nanoparticle Aggregates:Effect of Aggregate Shape. Materials Research Society Symposia Proceedings, 2001, 635, C6.5.1.	0.1	6
535	Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science, 2001, 294, 1901-1903.	6.0	3,222
536	Nanosphere Lithography:Â Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles. Journal of Physical Chemistry B, 2001, 105, 2343-2350.	1.2	420
537	A quasiclassical trajectory study of reactivity and product energy disposal in H+H2O, H+D2O, and H+HOD. Journal of Chemical Physics, 2001, 114, 8397-8413.	1.2	38
538	Self-assembly of ink molecules in dip-pen nanolithography: A diffusion model. Journal of Chemical Physics, 2001, 115, 2721-2729.	1.2	153
539	A quasiclassical trajectory study of product energy and angular distributions for the OH+D2 reaction. Journal of Chemical Physics, 2001, 115, 5160-5169.	1.2	23
540	Finite element method for two-dimensional vibrational wave functions: Theory and application to van der Waals molecules. Journal of Chemical Physics, 2001, 114, 6166-6179.	1,2	7

#	Article	IF	CITATIONS
541	The branching ratio between reaction and relaxation in the removal of H2O from its 04〉â⁻² vibrational state in collisions with H atoms. Journal of Chemical Physics, 2001, 115, 4586-4592.	1.2	25
542	Perspective on "Exchange reactions with activation energy. I. Simple barrier potential for (H, H 2)". Theoretical Chemistry Accounts, 2000, 103, 270-272.	0.5	10
543	DNA-linked metal nanosphere materials: Fourier-transform solutions for the optical response. Journal of Chemical Physics, 2000, 112, 2987-2993.	1.2	60
544	REACTION DYNAMICS:Detecting Resonances. Science, 2000, 288, 1599-1600.	6.0	81
545	CHEMISTRY: Stretched Water Is More Reactive. Science, 2000, 290, 950-951.	6.0	26
546	A Quantum State-Resolved Insertion Reaction: $O(1D) + H2(J = 0)$ rightarrow $OH(2\∏, v, N) + H(2S)$. Science, 2000, 289, 1536-1538.	6.0	127
547	A quasiclassical trajectory study of the H+HCNâ†'H2+CN reaction dynamics. Journal of Chemical Physics, 2000, 113, 6253-6263.	1.2	18
548	Quantum scattering study of collisional energy transfer in He+NO2: The importance of the vibronic mixing. Journal of Chemical Physics, 2000, 112, 5672-5678.	1.2	9
549	A Model for Simulating Dynamics of DNA Denaturation. Journal of Physical Chemistry B, 2000, 104, 6108-6111.	1.2	66
550	Theoretical studies of intersystem crossing effects in the O+H2 reaction. Journal of Chemical Physics, 2000, 113, 9456-9465.	1.2	88
551	DNA-Linked Metal Nanosphere Materials:Â Structural Basis for the Optical Properties. Journal of Physical Chemistry B, 2000, 104, 460-467.	1.2	304
552	Reaction dynamics of O(1D)+HD. I. The insertion pathway. Journal of Chemical Physics, 1999, 111, 7921-7930.	1.2	64
553	Reaction dynamics of $O(1D)+HD$. II. Effects of excited surfaces. Journal of Chemical Physics, 1999, 111, 7931-7944.	1.2	59
554	Quantum scattering study of electronic Coriolis and nonadiabatic coupling effects in O(1D)+H2â†'OH+H. Journal of Chemical Physics, 1999, 111, 2451-2463.	1.2	87
555	Reactive and inelastic collisions of H atoms with vibrationally excited water molecules. Journal of Chemical Physics, 1999, 110, 2963-2970.	1.2	23
556	Calculating dipole and quadrupole polarizabilities relevant to surface enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 625-638.	2.0	24
557	Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters. Journal of Cluster Science, 1999, 10, 295-317.	1.7	528
558	Nanosphere Lithography:  Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 9846-9853.	1.2	520

#	Article	IF	CITATIONS
559	Nanosphere Lithography:Â Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultravioletâ^'Visible Extinction Spectroscopy and Electrodynamic Modeling. Journal of Physical Chemistry B, 1999, 103, 2394-2401.	1.2	318
560	Quantum Wave Packet Study of Nonadiabatic Effects in $O(1D)$ + $H2\hat{a}^{\dagger}$ OH + H . Journal of Physical Chemistry A, 1999, 103, 9448-9459.	1.1	72
561	Wave Packet Methods for the Direct Calculation of Energy-Transfer Moments in Molecular Collisions. Journal of Physical Chemistry A, 1999, 103, 947-952.	1.1	8
562	Structures of the Clusters Produced by Laser Desorption of Fullerenes:  [2+2] Cycloadducts of Preshrunk Cages. Journal of Physical Chemistry A, 1998, 102, 7919-7923.	1.1	27
563	Ab Initio and RRKM Studies of the Reactions of C, CH, and 1CH2 with Acetylene. Journal of Physical Chemistry A, 1998, 102, 5857-5866.	1.1	69
564	Mobilities of carbon cluster ions: Critical importance of the molecular attractive potential. Journal of Chemical Physics, 1998, 108, 2416-2423.	1.2	135
565	A quasiclassical trajectory study of H+H2O→OH+H2: Angular distributions and OH angular momentum alignment. Journal of Chemical Physics, 1998, 108, 7994-8003.	1.2	39
566	COMPUTATIONAL METHODS FOR POLYATOMIC BIMOLECULAR REACTIONS., 1998,, 1-33.		11
567	Experimental and theoretical angular and translational energy distributions for the reaction CN+D2â†'DCN+D. Journal of Chemical Physics, 1997, 107, 7869-7875.	1.2	33
568	Reaction dynamics calculations for the CN+H2â†'HCN+H reaction: Applications of the rotating-bond approximation. Journal of Chemical Physics, 1997, 106, 3227-3236.	1.2	53
569	Quasiclassical trajectory studies of H(D)+HF(DF) collisions at 2 eV. Journal of Chemical Physics, 1997, 106, 2277-2285.	1.2	6
570	A quasiclassical trajectory study of product state distributions from the CN+H2â†'HCN+H reaction. Journal of Chemical Physics, 1997, 106, 6001-6015.	1.2	45
571	A quasiclassical trajectory study of H+CO2: Angular and translational distributions, and OH angular momentum alignment. Journal of Chemical Physics, 1997, 106, 8464-8472.	1.2	98
572	A further theoretical exploration of the surface-aligned photo-initiated H+CO2 reaction: Surface motion and temperature dependence. Journal of Chemical Physics, 1997, 107, 9176-9184.	1.2	6
573	Photoinitiated Reaction Dynamics between Aligned Adsorbates on Solid Surfaces:Â A Theoretical Exploration of the H + CO2System on LiF(001). Journal of Physical Chemistry B, 1997, 101, 5352-5361.	1.2	11
574	Automatic potential energy surface generation directly fromab initiocalculations using Shepard interpolation: A test calculation for the H2+H system. Journal of Chemical Physics, 1997, 107, 3558-3568.	1,2	58
575	Dynamics of Highly Excited States in Chemistry: An Overview. ACS Symposium Series, 1997, , 2-24.	0.5	6
576	Quantum Scattering Studies of Collisional Energy Transfer from Highly Excited Polyatomic Molecules: Collinear He + CS2 at Energies up to 92 kcal/mol. ACS Symposium Series, 1997, , 202-219.	0.5	3

#	Article	IF	CITATIONS
577	Quantum scattering studies of collisional energy transfer from highly excited polyatomic molecules: A bendâ€stretch model of He + CS ₂ . Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 587-594.	0.9	8
578	The product vibrational, rotational, and translational energy distribution for the reaction O(3PJ)+O3â†'2O2: Breakdown of the spectator bond mechanism. Journal of Chemical Physics, 1996, 105, 7495-7503.	1,2	24
579	Scattering Theory and Dynamics:Â Time-Dependent and Time-Independent Methods. The Journal of Physical Chemistry, 1996, 100, 12839-12847.	2.9	92
580	Unusual Insertion Mechanism in the Reaction C(3P) + H2 \hat{a} † CH + H. The Journal of Physical Chemistry, 1996, 100, 18944-18949.	2.9	21
581	A surfaceâ€enhanced hyperâ€Raman and surfaceâ€enhanced Raman scattering study of transâ€1,2â€bis(4â€pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory. Journal of Chemical Physics, 1996, 104, 4313-4323.	1.2	203
582	Structural Information from Ion Mobility Measurements:Â Effects of the Long-Range Potential. The Journal of Physical Chemistry, 1996, 100, 16082-16086.	2.9	982
583	A Quasiclassical Trajectory Study of H + N2O (ν1, ν2, ν2). The Journal of Physical Chemistry, 1996, 100, 12154-12161.	2.9	21
584	Approximate quantum scattering studies of the CN+H2 reaction. Journal of Chemical Physics, 1996, 105, 2309-2316.	1.2	29
585	PRODUCT STATE DISTRIBUTIONS IN CHEMICAL REACTIONS: THE REACTION OH + CO ât' H + CO ₂ . Advanced Series in Physical Chemistry, 1996, , 438-465.	1.5	10
586	Complex angular momentum analysis of resonance scattering in the Cl+HClâ†'ClH+Cl reaction. Journal of Chemical Physics, 1995, 103, 5979-5998.	1.2	58
587	Quantum dynamics of a planar model for the complex forming OH+COâ†'H+CO2 reaction. Journal of Chemical Physics, 1995, 102, 8807-8817.	1.2	96
588	Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. Journal of Chemical Physics, 1995, 103, 869-875.	1.2	465
589	Differential cross sections for fine structure transitions in O(3P2)+Ar collisions. Journal of Chemical Physics, 1994, 100, 8026-8039.	1.2	34
590	Evaluation of resonance contributions to thermal reaction rates using quantum flux correlation functions. Journal of Chemical Physics, 1994, 101, 6577-6585.	1,2	6
591	Theoretical studies of the reactions hydrogen atom + methylidyne .fwdarw. carbon + hydrogen and carbon + hydrogen .fwdarw. methylene using an ab initio global ground-state potential surface for methylene. The Journal of Physical Chemistry, 1993, 97, 5472-5481.	2.9	112
592	Theoretical studies of energy transfer and reaction in H+H2O and H+D2O collisions. Journal of Chemical Physics, 1993, 98, 4644-4651.	1.2	54
593	Evaluation of thermal rates for reactions with intermediate wells: Removal of bound state contributions to quantum flux correlation functions. Journal of Chemical Physics, 1993, 99, 3516-3525.	1.2	8
594	Quantum and quasiclassical calculations on the OH+COâ†'CO2+H reaction. Journal of Chemical Physics, 1993, 99, 4578-4589.	1.2	108

#	Article	IF	Citations
595	Collisional energy transfer from highly vibrationally excited SF6. Journal of Chemical Physics, 1993, 98, 1034-1041.	1.2	45
596	Critical comparison of approximate and accurate quantumâ€mechanical calculations of rate constants for a model activated reaction in solution. Journal of Chemical Physics, 1992, 97, 7392-7404.	1.2	47
597	Timeâ€dependent methods for calculating thermal rate coefficients using flux correlation functions. Journal of Chemical Physics, 1992, 97, 7297-7313.	1.2	20
598	Trajectory studies of collisional relaxation of highly excited CS2 by H2, CO, HCl, CS2, and CH4. Journal of Chemical Physics, 1992, 96, 4356-4365.	1.2	46
599	Comment on: Timeâ€dependent Hartree approximation applied to the photodissociation of ICN. Journal of Chemical Physics, 1992, 97, 7853-7854.	1.2	6
600	Ab initio and semiempirical molecular orbital studies of surface enhanced and bulk hyperâ€Raman scattering from pyridine. Journal of Chemical Physics, 1992, 97, 3831-3845.	1.2	74
601	HN2 and DN2 Resonance Spectra. ACS Symposium Series, 1992, , 37-47.	0.5	0
602	Collisional excitation of CO by 2.3 eV H atoms. Journal of Chemical Physics, 1991, 94, 1141-1149.	1.2	24
603	A reduced dimension quantum wave packet study of photodissociation dynamics of diatomic molecules on surfaces. Journal of Chemical Physics, 1991, 94, 379-387.	1.2	30
604	Quantum nonadiabatic effects in the photodissociation of vibrationally excited CH3I. Journal of Chemical Physics, 1991, 94, 6562-6568.	1.2	49
605	Nonadiabatic effects in photodissociation dynamics: A quantum mechanical study of ICN photodissociation in the A continuum. Journal of Chemical Physics, 1990, 92, 1634-1642.	1.2	54
606	Timeâ€dependent dynamics of methyl iodide photodissociation in the first continuum. Journal of Chemical Physics, 1990, 93, 393-402.	1.2	127
607	The evolution of vibrational phase space during the collisional relaxation of highly excited collinear CS2. Journal of Chemical Physics, 1990, 92, 6561-6573.	1.2	14
608	Spatially resolved surface enhanced second harmonic generation: Theoretical and experimental evidence for electromagnetic enhancement in the near infrared on a laser microfabricated Pt surface. Journal of Chemical Physics, 1989, 90, 1237-1252.	1.2	35
609	Theoretical studies of collisional energy transfer in highly excited molecules: The importance of intramolecular vibrational redistribution in successive collision modeling of He+CS2. Journal of Chemical Physics, 1988, 89, 770-779.	1.2	57
610	A surface enhanced hyperâ€Raman scattering study of pyridine adsorbed onto silver: Experiment and theory. Journal of Chemical Physics, 1988, 88, 7942-7951.	1.2	172
611	Energies and lifetimes of predissociative states of van der Waals molecules: Selfâ€consistent field calculations for I2(v)He, I2(v)Ne. Journal of Chemical Physics, 1988, 88, 3709-3714.	1.2	23
612	Stateâ€selective studies of Tâ†'R, V energy transfer: The H+CO system. Journal of Chemical Physics, 1988, 88, 5481-5488.	1.2	37

#	Article	IF	Citations
613	Collision induced dissociation of H+2 and D+2 with H2 using a surface hopping trajectory method. Journal of Chemical Physics, 1988, 89, 6713-6718.	1.2	14
614	A quasiclassical trajectory study of final state distributions in collisions of fast H(D) atoms with HF(DF). Journal of Chemical Physics, 1987, 86, 6738-6744.	1.2	7
615	A surface enhanced resonance Raman study of cobalt phthalocyanine on rough Ag films: Theory and experiment. Journal of Chemical Physics, 1987, 87, 4189-4200.	1.2	69
616	An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. The Journal of Physical Chemistry, 1987, 91, 634-643.	2.9	661
617	The rate constants for the H+H2reaction and its isotopic analogs at low temperatures: Wigner threshold law behavior. Journal of Chemical Physics, 1987, 86, 6133-6139.	1.2	66
618	The formation of highly excited H3+ in the reaction H2+(ν) + H2 ? H3+ + H. International Journal of Quantum Chemistry, 1987, 31, 57-63.	1.0	9
619	A coupled states calculation of accurate quantum rate constants for H \pm H2. International Journal of Chemical Kinetics, 1986, 18, 961-975.	1.0	35
620	Quantum reactive scattering for A+BCDâ†'AB+CD reactions: Coupled channel distorted wave theory. Journal of Chemical Physics, 1986, 85, 2038-2053.	1.2	15
621	The FFT method for determining semiclassical eigenvalues: Application to asymmetric top rigid rotors. Journal of Chemical Physics, 1986, 84, 2239-2246.	1.2	34
622	A quasiclassical trajectory study of vibrational predissociation and collisional relaxation in Ar–OCS. Journal of Chemical Physics, 1985, 83, 3433-3440.	1.2	14
623	Theoretical studies of fast H atom collisions with NO. Journal of Chemical Physics, 1985, 83, 3413-3425.	1.2	34
624	A quantum reactive scattering study of Mu+H2â†'MuH+H. Journal of Chemical Physics, 1985, 83, 3441-3447.	1.2	39
625	A detailed analysis of the Raman enhancement mechanisms associated with the interaction of a Raman scatterer with a resonant metal cluster: Results for Lin–H2. Journal of Chemical Physics, 1984, 80, 2959-2972.	1.2	26
626	Semiclassical vibrational eigenvalues of triatomic molecules: Application of the FFT method to SO2, H2O, H+3, and CO2. Journal of Chemical Physics, 1984, 81, 2394-2399.	1.2	68
627	Theoretical studies of surface enhanced Raman scattering. Accounts of Chemical Research, 1984, 17, 370-376.	7.6	437
628	Plasmon resonance broadening in small metal particles. Journal of Chemical Physics, 1983, 79, 6130-6139.	1.2	153
629	The origin of cross section thresholds in H+H2: Why quantum dynamics appears to be more vibrationally adiabatic than classical dynamics. Journal of Chemical Physics, 1983, 79, 5386-5391.	1.2	110
		0.604 N. 3	, ,

Dissociation dynamics of vibrationally excited van der Waals clusters: $12XY\hat{a} \in \&\hat{a}^{\dagger}\hat{a} \in \&12+X+Y\hat{a} \in \&4X+Y\hat{a} \in$

36

630

#	Article	IF	CITATIONS
631	A study of the dynamics of UV laser photolysis of NOCl and NOBr. Journal of Chemical Physics, 1983, 78, 757-766.	1.2	36
632	The effect of randomly distributed surface bumps on local field enhancements in surface enhanced Raman spectroscopy. Journal of Chemical Physics, 1982, 76, 2888-2899.	1.2	48
633	The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances. Chemical Physics Letters, 1981, 82, 566-570.	1.2	69
634	A quasiclassical trajectory study of reagent vibrational excitation effects in the OH+H2â†'H2O+H reaction. Journal of Chemical Physics, 1981, 74, 1133-1139.	1,2	96
635	A quasiclassical trajectory study of mode specific reaction rate enhancements in H + H2O (v1v2v3) → OH + H2. International Journal of Quantum Chemistry, 1981, 20, 611-619.	1.0	1
636	Tunable laser excitation profile of surface enhanced raman scattering from pyridine adsorbed on a copper electrode surface. Chemical Physics Letters, 1980, 75, 201-205.	1.2	63
637	A quasiclassical trajectory study of collisional excitation in Li++CO2. Journal of Chemical Physics, 1980, 72, 3929-3938.	1.2	32
638	A new method for determining semiclassical tunneling probabilities in atom–diatom reactions. Journal of Chemical Physics, 1980, 72, 3337-3347.	1.2	20
639	A reference trajectory approach to Langevin equations in gas phase collision dynamics. Journal of Chemical Physics, 1980, 73, 2792-2801.	1.2	3
640	Image field theory of enhanced Raman scattering by molecules adsorbed on metal surfaces: Detailed comparison with experimental results. Surface Science, 1980, 101, 425-438.	0.8	73
641	Stochastic theory of vibrational energy transfer in collinear atom-diatom collisions: the role of non-markovian effects. Molecular Physics, 1979, 38, 257-272.	0.8	6
642	Franck–Condon factors in studies of dynamics of chemical reactions. V. Simple construction of quasiadiabatic potential energy surfaces and numerical evaluation of Franck–Condon integrals. Journal of Chemical Physics, 1979, 70, 2414-2424.	1.2	20
643	How symmetric stretch excitation in a triatomic molecule can be more efficient than asymmetric stretch excitation in enhancing reaction rates in atomic plus triatom reactions. Journal of Chemical Physics, 1979, 71, 542-543.	1.2	30
644	The importance of anharmonicity on the rates of energy transfer in rare gas/CO2 systems. Journal of Chemical Physics, 1978, 68, 1992-1994.	1.2	28
645	Theory of Raman scattering by molecules adsorbed on electrode surfaces. Journal of Chemical Physics, 1978, 69, 4472-4481.	1.2	296
646	A direct method for determining moments of final state distributions in molecular collisions. Molecular Physics, 1978, 35, 477-500.	0.8	8
647	The generalized cumulant expansion approach to stochastic reductions in molecular collision dynamics: Applications to collisional energy transfer. Journal of Chemical Physics, 1977, 66, 5220-5225.	1.2	25
648	Franck–Condon factors in studies of the dynamics of chemical reactions. III. Analysis of information theory for vibration–rotation distributions and isotopic branching ratios. Journal of Chemical Physics, 1977, 66, 2943-2958.	1.2	34

#	Article	IF	CITATIONS
649	Franck–Condon factors in studies of dynamics of chemical reactions. II. Vibration–rotation distributions in atom–diatom reactions. Journal of Chemical Physics, 1977, 66, 1037-1053.	1.2	68
650	On stochastic reductions in molecular collision theory: Projection operator formalism; application to classical and quantum forced oscillator model. Journal of Chemical Physics, 1977, 66, 3609-3623.	1.2	37
651	Fluorine Tuning of Morphology, Energy Loss, and Carrier Dynamics in Perylenediimide Polymer Solar Cells. ACS Energy Letters, 0, , .	8.8	11
652	Electromagnetic fields around silver nanoparticles and dimers. , 0, .		1
653	Localized π Surface States on 2D Molybdenum Disulfide from Carbene-Functionalization as a Qubit Design Strategy. ACS Physical Chemistry Au, 0, , .	1.9	1