George C Schatz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/400799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. Journal of Physical Chemistry B, 2003, 107, 668-677.	2.6	9,036
2	Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science, 2001, 294, 1901-1903.	12.6	3,222
3	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	14.6	2,153
4	Correlating the Crystal Structure of A Thiol-Protected Au ₂₅ Cluster and Optical Properties. Journal of the American Chemical Society, 2008, 130, 5883-5885.	13.7	2,014
5	Electromagnetic fields around silver nanoparticles and dimers. Journal of Chemical Physics, 2004, 120, 357-366.	3.0	1,732
6	Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425, 487-490.	27.8	1,583
7	DNA-programmable nanoparticle crystallization. Nature, 2008, 451, 553-556.	27.8	1,431
8	Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Letters, 2005, 5, 2034-2038.	9.1	1,307
9	What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies?. Journal of the American Chemical Society, 2003, 125, 1643-1654.	13.7	1,054
10	Nanoparticle Superlattice Engineering with DNA. Science, 2011, 334, 204-208.	12.6	1,013
11	Structural Information from Ion Mobility Measurements:Â Effects of the Long-Range Potential. The Journal of Physical Chemistry, 1996, 100, 16082-16086.	2.9	982
12	Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. Journal of the American Chemical Society, 2008, 130, 12616-12617.	13.7	825
13	Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography. Nano Letters, 2007, 7, 1947-1952.	9.1	768
14	Structureâ^'Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2010, 132, 10903-10910.	13.7	723
15	A Nanoscale Optical Biosensor:Â The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 109-116.	2.6	708
16	Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. Journal of Chemical Physics, 2004, 120, 10871-10875.	3.0	700
17	Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nature Chemistry, 2016, 8, 597-602.	13.6	687
18	Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. Journal of Physical Chemistry A, 2008, 112, 12868-12886.	2.5	680

#	Article	IF	CITATIONS
19	Nanoparticle Optics:Â The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arraysâ€. Journal of Physical Chemistry B, 2003, 107, 7337-7342.	2.6	665
20	An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. The Journal of Physical Chemistry, 1987, 91, 634-643.	2.9	661
21	Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 2013, 8, 506-511.	31.5	657
22	Nanoscale Optical Biosensor:Â Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 6961-6968.	2.6	631
23	Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bulletin, 2005, 30, 368-375.	3.5	616
24	The Extinction Spectra of Silver Nanoparticle Arrays:Â Influence of Array Structure on Plasmon Resonance Wavelength and Widthâ€. Journal of Physical Chemistry B, 2003, 107, 7343-7350.	2.6	575
25	Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 2008, 37, 1061.	38.1	568
26	Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters. Journal of Cluster Science, 1999, 10, 295-317.	3.3	528
27	Synthesis and Optical Properties of "Branched―Gold Nanocrystals. Nano Letters, 2004, 4, 327-330.	9.1	524
28	Nanosphere Lithography:  Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 9846-9853.	2.6	520
29	Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 117, 7583-7613.	47.7	519
30	Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 862-869.	13.7	510
31	Confined Plasmons in Nanofabricated Single Silver Particle Pairs:Â Experimental Observations of Strong Interparticle Interactions. Journal of Physical Chemistry B, 2005, 109, 1079-1087.	2.6	488
32	Pyridineâ^'Ag20 Cluster:  A Model System for Studying Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2006, 128, 2911-2919.	13.7	478
33	Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. Journal of Chemical Physics, 1995, 103, 869-875.	3.0	465
34	Methods for Describing the Electromagnetic Properties of Silver and Gold Nanoparticles. Accounts of Chemical Research, 2008, 41, 1710-1720.	15.6	457
35	Theoretical studies of surface enhanced Raman scattering. Accounts of Chemical Research, 1984, 17, 370-376.	15.6	437
36	Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009, 131, 8407-8409.	13.7	434

#	Article	IF	CITATIONS
37	NWChem: Past, present, and future. Journal of Chemical Physics, 2020, 152, 184102.	3.0	425
38	Designing, fabricating, and imaging Raman hot spots. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13300-13303.	7.1	424
39	Nanosphere Lithography:Â Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles. Journal of Physical Chemistry B, 2001, 105, 2343-2350.	2.6	420
40	Reversing the size-dependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14530-14534.	7.1	408
41	Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach. Journal of Chemical Physics, 2003, 119, 3926-3934.	3.0	395
42	Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues: Theory and Experiment. Journal of the American Chemical Society, 2011, 133, 4115-4122.	13.7	390
43	Controlling Conformations of Conjugated Polymers and Small Molecules: The Role of Nonbonding Interactions. Journal of the American Chemical Society, 2013, 135, 10475-10483.	13.7	386
44	Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nature Chemistry, 2013, 5, 840-845.	13.6	372
45	Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 13958-13963.	3.1	360
46	Electromagnetic Mechanism of SERS. , 2006, , 19-45.		356
47	Real-time tunable lasing from plasmonic nanocavity arrays. Nature Communications, 2015, 6, 6939.	12.8	356
48	Energy landscapes and functions of supramolecular systems. Nature Materials, 2016, 15, 469-476.	27.5	348
49	Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory. Journal of Physical Chemistry A, 2006, 110, 5973-5977.	2.5	344
50	Fluorination Effects on Indacenodithienothiophene Acceptor Packing and Electronic Structure, End-Group Redistribution, and Solar Cell Photovoltaic Response. Journal of the American Chemical Society, 2019, 141, 3274-3287.	13.7	336
51	Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters, 2005, 403, 62-67.	2.6	326
52	Nanosphere Lithography:Â Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultravioletâ~`Visible Extinction Spectroscopy and Electrodynamic Modeling. Journal of Physical Chemistry B, 1999, 103, 2394-2401.	2.6	318
53	Expanding applications of SERS through versatile nanomaterials engineering. Chemical Society Reviews, 2017, 46, 3886-3903.	38.1	316
54	Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Cold and Silver Nanocubes: A Systematic Single-Particle Approach. Journal of Physical Chemistry C, 2010, 114, 12511-12516.	3.1	314

#	Article	IF	CITATIONS
55	Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. Journal of Chemical Physics, 2004, 121, 12606.	3.0	312
56	DNA-Linked Metal Nanosphere Materials:Â Structural Basis for the Optical Properties. Journal of Physical Chemistry B, 2000, 104, 460-467.	2.6	304
57	Computational Studies of the Structure, Behavior upon Heating, and Mechanical Properties of Graphite Oxide. Journal of Physical Chemistry C, 2007, 111, 18099-18111.	3.1	303
58	Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy. Journal of the American Chemical Society, 2013, 135, 301-308.	13.7	299
59	Theory of Raman scattering by molecules adsorbed on electrode surfaces. Journal of Chemical Physics, 1978, 69, 4472-4481.	3.0	296
60	Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule. Journal of the American Chemical Society, 2009, 131, 849-854.	13.7	294
61	Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Physical Review B, 2007, 75, .	3.2	293
62	Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles. Journal of the American Chemical Society, 2007, 129, 7647-7656.	13.7	282
63	Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers. Nature Chemistry, 2016, 8, 1120-1125.	13.6	273
64	High-performance SERS substrates: Advances and challenges. MRS Bulletin, 2013, 38, 615-624.	3.5	267
65	Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures. Journal of Physical Chemistry C, 2016, 120, 816-830.	3.1	257
66	Multipolar excitation in triangular nanoprisms. Journal of Chemical Physics, 2005, 123, 114713.	3.0	255
67	From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of Ag _{<i>n</i>} (<i>n</i> = 10, 20, 35, 56, 84, 120) Tetrahedral Clusters. Journal of Physical Chemistry C, 2008, 112, 11272-11279.	3.1	252
68	Localized Surface Plasmon Resonance Spectroscopy near Molecular Resonances. Journal of the American Chemical Society, 2006, 128, 10905-10914.	13.7	247
69	Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations. Physical Review B, 2005, 71, .	3.2	238
70	Silver Nanoparticles with Broad Multiband Linear Optical Absorption. Angewandte Chemie - International Edition, 2009, 48, 5921-5926.	13.8	235
71	Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles via Atomic Layer Deposition of TiO ₂ . Langmuir, 2009, 25, 2596-2600.	3.5	230
72	Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nature Materials, 2017, 16, 918-924.	27.5	229

#	Article	IF	CITATIONS
73	Single-Molecule Tip-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 478-483.	3.1	226
74	Tailorable Plasmonic Circular Dichroism Properties of Helical Nanoparticle Superstructures. Nano Letters, 2013, 13, 3256-3261.	9.1	221
75	Correlated Structure and Optical Property Studies of Plasmonic Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 9291-9305.	3.1	217
76	A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment. Journal of Physical Chemistry Letters, 2013, 4, 2599-2604.	4.6	216
77	Crystallography, Morphology, Electronic Structure, and Transport in Non-Fullerene/Non-Indacenodithienothiophene Polymer:Y6 Solar Cells. Journal of the American Chemical Society, 2020, 142, 14532-14547.	13.7	214
78	Surface-Enhanced Raman Scattering of Pyrazine at the Junction between Two Ag20Nanoclusters. Nano Letters, 2006, 6, 1229-1234.	9.1	212
79	Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5530-5535.	7.1	211
80	Near-Field Photochemical Imaging of Noble Metal Nanostructures. Nano Letters, 2005, 5, 615-619.	9.1	210
81	A surfaceâ€enhanced hyperâ€Raman and surfaceâ€enhanced Raman scattering study of transâ€1,2â€bis(4â€pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory. Journal of Chemical Physics, 1996, 104, 4313-4323.	3.0	203
82	Atomistic Molecular Dynamics Simulations of Peptide Amphiphile Self-Assembly into Cylindrical Nanofibers. Journal of the American Chemical Society, 2011, 133, 3677-3683.	13.7	195
83	Light-Driven Expansion of Spiropyran Hydrogels. Journal of the American Chemical Society, 2020, 142, 8447-8453.	13.7	190
84	Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nature Materials, 2020, 19, 900-909.	27.5	186
85	Observation of Multiple Vibrational Modes in Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy Combined with Molecular-Resolution Scanning Tunneling Microscopy. Nano Letters, 2012, 12, 5061-5067.	9.1	182
86	Size-Dependence of the Enhanced Raman Scattering of Pyridine Adsorbed on Agn(n= 2â^'8, 20) Clusters. Journal of Physical Chemistry C, 2007, 111, 4756-4764.	3.1	180
87	Modeling the Effect of Small Gaps in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 1627-1637.	3.1	179
88	Conformational Order in Aggregates of Conjugated Polymers. Journal of the American Chemical Society, 2015, 137, 6254-6262.	13.7	177
89	A surface enhanced hyperâ€Raman scattering study of pyridine adsorbed onto silver: Experiment and theory. Journal of Chemical Physics, 1988, 88, 7942-7951.	3.0	172
90	Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes. Journal of Physical Chemistry C, 2009, 113, 2731-2735.	3.1	171

#	Article	IF	CITATIONS
91	Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives. Journal of Chemical Physics, 2005, 123, 174110.	3.0	169
92	Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nature Nanotechnology, 2015, 10, 453-458.	31.5	169
93	Singlet Fission via an Excimer-Like Intermediate in 3,6-Bis(thiophen-2-yl)diketopyrrolopyrrole Derivatives. Journal of the American Chemical Society, 2016, 138, 11749-11761.	13.7	167
94	Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nature Nanotechnology, 2017, 12, 889-894.	31.5	167
95	Simultaneous covalent and noncovalent hybrid polymerizations. Science, 2016, 351, 497-502.	12.6	164
96	Finite lifetime effects on the polarizability within time-dependent density-functional theory. Journal of Chemical Physics, 2005, 122, 224115.	3.0	161
97	Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nature Materials, 2019, 18, 1172-1176.	27.5	160
98	Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Advanced Materials, 2014, 26, 653-659.	21.0	157
99	Plasmon resonance broadening in small metal particles. Journal of Chemical Physics, 1983, 79, 6130-6139.	3.0	153
100	Self-assembly of ink molecules in dip-pen nanolithography: A diffusion model. Journal of Chemical Physics, 2001, 115, 2721-2729.	3.0	153
101	Direct Observation of a Charge-Transfer State Preceding High-Yield Singlet Fission in Terrylenediimide Thin Films. Journal of the American Chemical Society, 2017, 139, 663-671.	13.7	149
102	Effect of Structural Dynamics on Charge Transfer in DNA Hairpins. Journal of the American Chemical Society, 2008, 130, 5157-5166.	13.7	148
103	Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2016, 45, 2263-2290.	38.1	143
104	CO ₂ Hydrogenation to Formic Acid on Ni(111). Journal of Physical Chemistry C, 2012, 116, 3001-3006.	3.1	141
105	Modeling the Self-Assembly of Peptide Amphiphiles into Fibers Using Coarse-Grained Molecular Dynamics. Nano Letters, 2012, 12, 4907-4913.	9.1	140
106	Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates. Analytical Chemistry, 2013, 85, 2297-2303.	6.5	138
107	High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition. Nano Letters, 2016, 16, 4251-4259.	9.1	136
108	Plasmon-Coupled Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2017, 8, 2357-2367.	4.6	136

#	Article	IF	CITATIONS
109	Mobilities of carbon cluster ions: Critical importance of the molecular attractive potential. Journal of Chemical Physics, 1998, 108, 2416-2423.	3.0	135
110	Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nature Communications, 2014, 5, 3321.	12.8	135
111	On the Origin of Photoluminescence in Silicon Nanocrystals: Pressure-Dependent Structural and Optical Studies. Nano Letters, 2012, 12, 4200-4205.	9.1	133
112	Introduction to Plasmonics. Chemical Reviews, 2011, 111, 3667-3668.	47.7	130
113	Structural Engineering in Plasmon Nanolasers. Chemical Reviews, 2018, 118, 2865-2881.	47.7	130
114	Programmable and reversible plasmon mode engineering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14201-14206.	7.1	129
115	Hyper-Rayleigh scattering from silver nanoparticles. Journal of Chemical Physics, 2002, 117, 5963-5966.	3.0	128
116	Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays. Nano Letters, 2015, 15, 4699-4703.	9.1	128
117	Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 117, 4961-4982.	47.7	128
118	Timeâ€dependent dynamics of methyl iodide photodissociation in the first continuum. Journal of Chemical Physics, 1990, 93, 393-402.	3.0	127
119	A Quantum State-Resolved Insertion Reaction: O(1D) + H2(J = 0) rightarrow OH(2∏, v, N) + H(2S). Science, 2000, 289, 1536-1538.	12.6	127
120	Molecularly Tunable Fluorescent Quantum Defects. Journal of the American Chemical Society, 2016, 138, 6878-6885.	13.7	126
121	Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8341-E8348.	7.1	126
122	Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency. Journal of the American Chemical Society, 2021, 143, 6123-6139.	13.7	125
123	Plasmonic Surface Lattice Resonances: Theory and Computation. Accounts of Chemical Research, 2019, 52, 2548-2558.	15.6	119
124	Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science, 2015, 349, 877-881.	12.6	118
125	Screening of Type I and II Drug Binding to Human Cytochrome P450-3A4 in Nanodiscs by Localized Surface Plasmon Resonance Spectroscopy. Analytical Chemistry, 2009, 81, 3754-3759.	6.5	116
126	Theoretical studies of the reactions hydrogen atom + methylidyne .fwdarw. carbon + hydrogen and carbon + hydrogen .fwdarw. methylene using an ab initio global ground-state potential surface for methylene. The Journal of Physical Chemistry, 1993, 97, 5472-5481.	2.9	112

#	Article	IF	CITATIONS
127	Calculating nonlocal optical properties of structures with arbitrary shape. Physical Review B, 2010, 82, .	3.2	112
128	A crossed molecular beams study of the O(3P)+H2 reaction: Comparison of excitation function with accurate quantum reactive scattering calculations. Journal of Chemical Physics, 2003, 118, 1585-1588.	3.0	111
129	The origin of cross section thresholds in H+H2: Why quantum dynamics appears to be more vibrationally adiabatic than classical dynamics. Journal of Chemical Physics, 1983, 79, 5386-5391.	3.0	110
130	Quantum and quasiclassical calculations on the OH+CO→CO2+H reaction. Journal of Chemical Physics, 1993, 99, 4578-4589.	3.0	108
131	Plasmonic photonic crystals realized through DNA-programmable assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 977-981.	7.1	107
132	Using theory and computation to model nanoscale properties. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6885-6892.	7.1	106
133	Dissociation dynamics of vibrationally excited van der Waals clusters: I2XY → I2+X+Y (X, Y=He of Chemical Physics, 1983, 79, 1808-1822.	, Ne). 3.0	Journal
134	Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods. Nano Letters, 2010, 10, 1722-1727.	9.1	103
135	Bisboronic Acids for Selective, Physiologically Relevant Direct Glucose Sensing with Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2016, 138, 13952-13959.	13.7	103
136	Stretchable Nanolasing from Hybrid Quadrupole Plasmons. Nano Letters, 2018, 18, 4549-4555.	9.1	102
137	Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 15684-15692.	13.7	102
138	A quasiclassical trajectory study of H+CO2: Angular and translational distributions, and OH angular momentum alignment. Journal of Chemical Physics, 1997, 106, 8464-8472.	3.0	98
139	A quasiclassical trajectory study of reagent vibrational excitation effects in the OH+H2→H2O+H reaction. Journal of Chemical Physics, 1981, 74, 1133-1139.	3.0	96
140	Quantum dynamics of a planar model for the complex forming OH+CO→H+CO2 reaction. Journal of Chemical Physics, 1995, 102, 8807-8817.	3.0	96
141	Importance of Intersystem Crossing in the S(3P,1D) + H2→ SH + H Reactionâ€. Journal of Physical Chemistry A, 2004, 108, 8772-8781.	2.5	96
142	Liquid meniscus condensation in dip-pen nanolithography. Journal of Chemical Physics, 2002, 116, 3875-3886.	3.0	94
143	Scattering Theory and Dynamics:Â Time-Dependent and Time-Independent Methods. The Journal of Physical Chemistry, 1996, 100, 12839-12847.	2.9	92
144	Surprisingly Longâ€Range Surfaceâ€Enhanced Raman Scattering (SERS) on Au–Ni Multisegmented Nanowires. Angewandte Chemie - International Edition, 2009, 48, 4210-4212.	13.8	90

#	Article	IF	CITATIONS
145	Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nature Communications, 2014, 5, 4090.	12.8	90
146	Uniform Circular Disks With Synthetically Tailorable Diameters: Two-Dimensional Nanoparticles for Plasmonics. Nano Letters, 2015, 15, 1012-1017.	9.1	90
147	Molecular Dynamics Simulation of DNA-Functionalized Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 2316-2321.	3.1	89
148	Theoretical studies of intersystem crossing effects in the O+H2 reaction. Journal of Chemical Physics, 2000, 113, 9456-9465.	3.0	88
149	Quantum scattering study of electronic Coriolis and nonadiabatic coupling effects in O(1D)+H2→OH+H. Journal of Chemical Physics, 1999, 111, 2451-2463.	3.0	87
150	Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Nano Letters, 2016, 16, 3898-3904.	9.1	87
151	Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. Nano Letters, 2016, 16, 7968-7973.	9.1	86
152	Singlet Fission in 9,10-Bis(phenylethynyl)anthracene Thin Films. Journal of the American Chemical Society, 2018, 140, 15140-15144.	13.7	84
153	Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nature Communications, 2019, 10, 5502.	12.8	84
154	Theoretical studies of intersystem crossing effects in the O(3P, 1D)+H2 reaction. Journal of Chemical Physics, 2003, 119, 12360-12371.	3.0	82
155	Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons. Journal of Chemical Physics, 2008, 129, 054704.	3.0	82
156	Two-photon excited deep-red and near-infrared emissive organic co-crystals. Nature Communications, 2020, 11, 4633.	12.8	82
157	REACTION DYNAMICS:Detecting Resonances. Science, 2000, 288, 1599-1600.	12.6	81
158	Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences. Journal of the American Chemical Society, 2020, 142, 3281-3295.	13.7	81
159	Near-Infrared Surface-Enhanced Raman Spectroscopy (NIR-SERS) for the Identification of Eosin Y: Theoretical Calculations and Evaluation of Two Different Nanoplasmonic Substrates. Journal of Physical Chemistry A, 2012, 116, 11863-11869.	2.5	80
160	Superlattice Plasmons in Hierarchical Au Nanoparticle Arrays. ACS Photonics, 2015, 2, 1789-1794.	6.6	80
161	Mesoscale molecular network formation in amorphous organic materials. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10055-10060.	7.1	79
162	What Controls the Hybridization Thermodynamics of Spherical Nucleic Acids?. Journal of the American Chemical Society, 2015, 137, 3486-3489.	13.7	79

#	Article	IF	CITATIONS
163	Evaluating Single-Molecule Stokes and Anti-Stokes SERS for Nanoscale Thermometry. Journal of Physical Chemistry C, 2015, 119, 21116-21124.	3.1	78
164	Fluorinating Ï€â€Extended Molecular Acceptors Yields Highly Connected Crystal Structures and Low Reorganization Energies for Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 2000635.	19.5	78
165	CO2 hydrogenation to formic acid on Ni(110). Surface Science, 2012, 606, 1050-1055.	1.9	76
166	Steered Molecular Dynamics Studies of the Potential of Mean Force of a Na+or K+Ion in a Cyclic Peptide Nanotube. Journal of Physical Chemistry B, 2006, 110, 26448-26460.	2.6	75
167	Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions. ACS Nano, 2018, 12, 8415-8422.	14.6	75
168	Ab initio and semiempirical molecular orbital studies of surface enhanced and bulk hyperâ€Raman scattering from pyridine. Journal of Chemical Physics, 1992, 97, 3831-3845.	3.0	74
169	Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling. Nano Letters, 2017, 17, 590-596.	9.1	74
170	Image field theory of enhanced Raman scattering by molecules adsorbed on metal surfaces: Detailed comparison with experimental results. Surface Science, 1980, 101, 425-438.	1.9	73
171	Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 19302-19310.	3.1	73
172	Modeling Singlet Fission in Rylene and Diketopyrrolopyrrole Derivatives: The Role of the Charge Transfer State in Superexchange and Excimer Formation. Journal of Physical Chemistry C, 2017, 121, 10345-10350.	3.1	73
173	Quantum Wave Packet Study of Nonadiabatic Effects in O(1D) + H2→ OH + H. Journal of Physical Chemistry A, 1999, 103, 9448-9459.	2.5	72
174	Surface Plasmon Coupling of Compositionally Heterogeneous Core–Satellite Nanoassemblies. Journal of Physical Chemistry Letters, 2013, 4, 1371-1378.	4.6	71
175	Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared (λ _{ex} = 1064 nm) Studies. Journal of Physical Chemistry C, 2013, 117, 2554-2558.	3.1	71
176	Probing Molecular-Scale Catalytic Interactions between Oxygen and Cobalt Phthalocyanine Using Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2018, 140, 5948-5954.	13.7	71
177	On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres. Journal of Chemical Physics, 2009, 131, 084708.	3.0	70
178	Influence of Surfactant Bilayers on the Refractive Index Sensitivity and Catalytic Properties of Anisotropic Gold Nanoparticles. Small, 2016, 12, 330-342.	10.0	70
179	The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances. Chemical Physics Letters, 1981, 82, 566-570.	2.6	69
180	A surface enhanced resonance Raman study of cobalt phthalocyanine on rough Ag films: Theory and experiment. Journal of Chemical Physics, 1987, 87, 4189-4200.	3.0	69

#	Article	IF	CITATIONS
181	Ab Initio and RRKM Studies of the Reactions of C, CH, and1CH2with Acetylene. Journal of Physical Chemistry A, 1998, 102, 5857-5866.	2.5	69
182	Franck–Condon factors in studies of dynamics of chemical reactions. II. Vibration–rotation distributions in atom–diatom reactions. Journal of Chemical Physics, 1977, 66, 1037-1053.	3.0	68
183	Semiclassical vibrational eigenvalues of triatomic molecules: Application of the FFT method to SO2, H2O, H+3, and CO2. Journal of Chemical Physics, 1984, 81, 2394-2399.	3.0	68
184	Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nature Communications, 2011, 2, 382.	12.8	67
185	The rate constants for the H+H2reaction and its isotopic analogs at low temperatures: Wigner threshold law behavior. Journal of Chemical Physics, 1987, 86, 6133-6139.	3.0	66
186	A Model for Simulating Dynamics of DNA Denaturation. Journal of Physical Chemistry B, 2000, 104, 6108-6111.	2.6	66
187	Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4212-4217.	7.1	66
188	Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. ACS Nano, 2020, 14, 3426-3433.	14.6	66
189	Hydrophobically-Driven Self-Assembly:  A Geometric Packing Analysis. Nano Letters, 2003, 3, 623-626.	9.1	65
190	A Mutation in Histone H2B Represents a New Class of Oncogenic Driver. Cancer Discovery, 2019, 9, 1438-1451.	9.4	65
191	Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. Energy and Environmental Science, 2022, 15, 645-659.	30.8	65
192	Reaction dynamics of O(1D)+HD. I. The insertion pathway. Journal of Chemical Physics, 1999, 111, 7921-7930.	3.0	64
193	Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications. Journal of Physical Chemistry C, 2015, 119, 24238-24247.	3.1	64
194	Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 1852-1858.	4.6	64
195	Ag–Ag ₂ S Hybrid Nanoprisms: Structural <i>versus</i> Plasmonic Evolution. ACS Nano, 2016, 10, 5362-5373.	14.6	64
196	Tunable laser excitation profile of surface enhanced raman scattering from pyridine adsorbed on a copper electrode surface. Chemical Physics Letters, 1980, 75, 201-205.	2.6	63
197	Abnormally Large Plasmonic Shifts in Silica-Protected Gold Triangular Nanoprisms. Journal of Physical Chemistry C, 2010, 114, 7521-7526.	3.1	63
198	Steered Molecular Dynamics Studies of the Potential of Mean Force for Peptide Amphiphile Self-Assembly into Cylindrical Nanofibers. Journal of Physical Chemistry A, 2013, 117, 7453-7460.	2.5	63

#	Article	IF	CITATIONS
199	Mechanisms of Hydrogen-Assisted CO ₂ Reduction on Nickel. Journal of the American Chemical Society, 2017, 139, 4663-4666.	13.7	63
200	Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity. ACS Chemical Biology, 2014, 9, 538-550.	3.4	61
201	Observation of Single Molecule Plasmon-Driven Electron Transfer in Isotopically Edited 4,4′-Bipyridine Gold Nanosphere Oligomers. Journal of the American Chemical Society, 2017, 139, 15212-15221.	13.7	61
202	DNA-linked metal nanosphere materials: Fourier-transform solutions for the optical response. Journal of Chemical Physics, 2000, 112, 2987-2993.	3.0	60
203	Energy transfer-enhanced photocatalytic reduction of protons within quantum dot light-harvesting–catalyst assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8290-8295.	7.1	60
204	Reaction dynamics of O(1D)+HD. II. Effects of excited surfaces. Journal of Chemical Physics, 1999, 111, 7931-7944.	3.0	59
205	Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2012, 116, 10215-10221.	3.1	59
206	The effect of field gradient on SERS. Nature Photonics, 2013, 7, 508-510.	31.4	59
207	Complex angular momentum analysis of resonance scattering in the Cl+HCl→ClH+Cl reaction. Journal of Chemical Physics, 1995, 103, 5979-5998.	3.0	58
208	Automatic potential energy surface generation directly fromab initiocalculations using Shepard interpolation: A test calculation for the H2+H system. Journal of Chemical Physics, 1997, 107, 3558-3568.	3.0	58
209	Interaction between DNAs on a Gold Surface. Journal of Physical Chemistry C, 2009, 113, 15941-15947.	3.1	58
210	Plasma-driven solution electrolysis. Journal of Applied Physics, 2021, 129, .	2.5	58
211	Theoretical studies of collisional energy transfer in highly excited molecules: The importance of intramolecular vibrational redistribution in successive collision modeling of He+CS2. Journal of Chemical Physics, 1988, 89, 770-779.	3.0	57
212	Electrostatically-Directed Self-Assembly of Cylindrical Peptide Amphiphile Nanostructures. Journal of Physical Chemistry B, 2004, 108, 8817-8822.	2.6	57
213	Resonance Localized Surface Plasmon Spectroscopy: Sensing Substrate and Inhibitor Binding to Cytochrome P450. Journal of Physical Chemistry C, 2008, 112, 13084-13088.	3.1	57
214	Design principles for photonic crystals based on plasmonic nanoparticle superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7242-7247.	7.1	57
215	<i>In Situ</i> Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy. Nano Letters, 2019, 19, 2106-2113.	9.1	56
216	Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals. Journal of the American Chemical Society, 2016, 138, 8722-8725.	13.7	55

#	Article	IF	CITATIONS
217	Nonadiabatic effects in photodissociation dynamics: A quantum mechanical study of ICN photodissociation in the A continuum. Journal of Chemical Physics, 1990, 92, 1634-1642.	3.0	54
218	Theoretical studies of energy transfer and reaction in H+H2O and H+D2O collisions. Journal of Chemical Physics, 1993, 98, 4644-4651.	3.0	54
219	Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites. Journal of Physical Chemistry C, 2016, 120, 16577-16585.	3.1	54
220	Reaction dynamics calculations for the CN+H2→HCN+H reaction: Applications of the rotating-bond approximation. Journal of Chemical Physics, 1997, 106, 3227-3236.	3.0	53
221	Tunable Excited-State Properties and Dynamics as a Function of Pt–Pt Distance in Pyrazolate-Bridged Pt(II) Dimers. Journal of Physical Chemistry A, 2016, 120, 543-550.	2.5	52
222	Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. Journal of the American Chemical Society, 2020, 142, 16849-16860.	13.7	52
223	Plasmonic Focusing in Rodâ^'Sheath Heteronanostructures. ACS Nano, 2009, 3, 87-92.	14.6	51
224	Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. Physical Review B, 2011, 83, .	3.2	51
225	Plasmon-coupled resonance energy transfer: A real-time electrodynamics approach. Journal of Chemical Physics, 2017, 146, 064109.	3.0	50
226	Inhibition of Amyloid-β Aggregation by Cobalt(III) Schiff Base Complexes: A Computational and Experimental Approach. Journal of the American Chemical Society, 2019, 141, 16685-16695.	13.7	50
227	Quantum nonadiabatic effects in the photodissociation of vibrationally excited CH3I. Journal of Chemical Physics, 1991, 94, 6562-6568.	3.0	49
228	Radiative effects in plasmonic aluminum and silver nanospheres and nanorods. Journal Physics D: Applied Physics, 2015, 48, 184004.	2.8	49
229	In solution SERS sensing using mesoporous silica-coated gold nanorods. Analyst, The, 2016, 141, 5088-5095.	3.5	49
230	Shape and Size Control of Substrate-Grown Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy Detection of Chemical Analytes. Journal of Physical Chemistry C, 2018, 122, 2307-2314.	3.1	49
231	Bright NIRâ€II Photoluminescence in Rodâ€5haped Icosahedral Gold Nanoclusters. Small, 2021, 17, e2007992.	10.0	49
232	The effect of randomly distributed surface bumps on local field enhancements in surface enhanced Raman spectroscopy. Journal of Chemical Physics, 1982, 76, 2888-2899.	3.0	48
233	Time-Dependent Theory of the Rate of Photo-induced Electron Transfer. Journal of Physical Chemistry C, 2011, 115, 18810-18821.	3.1	48
234	Triggered Release of Pharmacophores from [Ni(HAsO ₃)]-Loaded Polymer-Caged Nanobin Enhances Pro-apoptotic Activity: A Combined Experimental and Theoretical Study. ACS Nano, 2011, 5, 3961-3969.	14.6	48

#	Article	IF	CITATIONS
235	Mechanistic Insights into Photocatalyzed H ₂ Dissociation on Au Clusters. Journal of the American Chemical Society, 2020, 142, 13090-13101.	13.7	48
236	Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. Nano Letters, 2020, 20, 1468-1474.	9.1	48
237	Critical comparison of approximate and accurate quantumâ€mechanical calculations of rate constants for a model activated reaction in solution. Journal of Chemical Physics, 1992, 97, 7392-7404.	3.0	47
238	A Semiconducting Organic Radical Cationic Host–Guest Complex. ACS Nano, 2012, 6, 9964-9971.	14.6	47
239	Surface-Enhanced Raman Spectroscopy Detection of Ricin B Chain in Human Blood. Journal of Physical Chemistry C, 2016, 120, 20961-20969.	3.1	47
240	Hierarchical Hybridization in Plasmonic Honeycomb Lattices. Nano Letters, 2019, 19, 6435-6441.	9.1	47
241	Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays. ACS Nano, 2020, 14, 7347-7357.	14.6	47
242	Trajectory studies of collisional relaxation of highly excited CS2 by H2, CO, HCl, CS2, and CH4. Journal of Chemical Physics, 1992, 96, 4356-4365.	3.0	46
243	Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2013, 4, 826-830.	4.6	46
244	Collisional energy transfer from highly vibrationally excited SF6. Journal of Chemical Physics, 1993, 98, 1034-1041.	3.0	45
245	A quasiclassical trajectory study of product state distributions from the CN+H2→HCN+H reaction. Journal of Chemical Physics, 1997, 106, 6001-6015.	3.0	45
246	Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism. Journal of Chemical Physics, 2010, 133, 054103.	3.0	45
247	Molecular Dynamics Study of the Formation of a Self-Assembled Monolayer on Gold. Journal of Physical Chemistry C, 2011, 115, 10668-10674.	3.1	45
248	Semiempirical Modeling of Ag Nanoclusters: New Parameters for Optical Property Studies Enable Determination of Double Excitation Contributions to Plasmonic Excitation. Journal of Physical Chemistry A, 2016, 120, 4542-4549.	2.5	45
249	Ion Current Calculations Based on Three Dimensional Poissonâ^ Nernstâ^ Planck Theory for a Cyclic Peptide Nanotube. Journal of Physical Chemistry B, 2006, 110, 6999-7008.	2.6	44
250	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	2.6	44
251	Quasiclassical Trajectory and Transition State Theory Studies of the N(4S) + H2↔ NH(X3Σ-) + H Reaction. Journal of Physical Chemistry A, 2002, 106, 4125-4136.	2.5	43
252	Oxidation and Etching of CVD Diamond by Thermal and Hyperthermal Atomic Oxygen. Journal of Physical Chemistry C, 2010, 114, 18996-19003.	3.1	43

#	Article	IF	CITATIONS
253	Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. Journal of the American Chemical Society, 2021, 143, 2886-2895.	13.7	43
254	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	47.7	43
255	A Comparative Classical-Quantum Study of the Photodissociation of Water in the Bl f Band. Journal of Physical Chemistry A, 2001, 105, 11480-11487.	2.5	42
256	Trajectory-Surface-Hopping Study of the Rennerâ^'Teller Effect in the N(2D) + H2 Reaction. Journal of Physical Chemistry A, 2002, 106, 8276-8284.	2.5	42
257	Cooperative Melting in Caged Dimers with Only Two DNA Duplexes. Journal of the American Chemical Society, 2010, 132, 17068-17070.	13.7	42
258	Supramolecular Double-Helix Formation by Diastereoisomeric Conformations of Configurationally Enantiomeric Macrocycles. Journal of the American Chemical Society, 2016, 138, 14469-14480.	13.7	42
259	Photoinduced Plasmon-Driven Chemistry in <i>trans</i> -1,2-Bis(4-pyridyl)ethylene Gold Nanosphere Oligomers. Journal of the American Chemical Society, 2018, 140, 10583-10592.	13.7	42
260	Building Blocks for Highâ€Efficiency Organic Photovoltaics: Interplay of Molecular, Crystal, and Electronic Properties in Postâ€Fullerene ITIC Ensembles. ChemPhysChem, 2019, 20, 2608-2626.	2.1	42
261	Regiospecific <i>N</i> -alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. Materials Horizons, 2022, 9, 403-410.	12.2	42
262	Periodic Electric Field Enhancement Along Gold Rods with Nanogaps. Angewandte Chemie - International Edition, 2010, 49, 78-82.	13.8	41
263	Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2791.	2.1	41
264	Unraveling near-field and far-field relationships for 3D SERS substrates – a combined experimental and theoretical analysis. Analyst, The, 2016, 141, 1779-1788.	3.5	41
265	High-Efficiency Gold Recovery Using Cucurbit[6]uril. ACS Applied Materials & Interfaces, 2020, 12, 38768-38777.	8.0	41
266	Source of Bright Near-Infrared Luminescence in Gold Nanoclusters. ACS Nano, 2021, 15, 16095-16105.	14.6	41
267	Theoretical modeling of voltage effects and the chemical mechanism in surface-enhanced Raman scattering. Faraday Discussions, 2017, 205, 149-171.	3.2	40
268	Lightâ€Responsive Colloidal Crystals Engineered with DNA. Advanced Materials, 2020, 32, e1906600.	21.0	40
269	A quantum reactive scattering study of Mu+H2→MuH+H. Journal of Chemical Physics, 1985, 83, 3441-3447.	3.0	39
270	A quasiclassical trajectory study of H+H2O→OH+H2: Angular distributions and OH angular momentum alignment. Journal of Chemical Physics, 1998, 108, 7994-8003.	3.0	39

#	Article	IF	CITATIONS
271	Observation of Size-Dependent Thermalization in CdSe Nanocrystals Using Time-Resolved Photoluminescence Spectroscopy. Physical Review Letters, 2011, 107, 177403.	7.8	39
272	Combined Quantum Mechanics (TDDFT) and Classical Electrodynamics (Mie Theory) Methods for Calculating Surface Enhanced Raman and Hyper-Raman Spectra. Journal of Physical Chemistry A, 2012, 116, 9574-9581.	2.5	39
273	Experimental and theoretical studies of plasmon–molecule interactions. Reports on Progress in Physics, 2012, 75, 096402.	20.1	39
274	Charge Transport across DNA-Based Three-Way Junctions. Journal of the American Chemical Society, 2015, 137, 5113-5122.	13.7	39
275	Design Considerations for RNA Spherical Nucleic Acids (SNAs). Bioconjugate Chemistry, 2016, 27, 2124-2131.	3.6	39
276	Conical Nanopores for Efficient Ion Pumping and Desalination. Journal of Physical Chemistry Letters, 2017, 8, 2842-2848.	4.6	39
277	A quasiclassical trajectory study of reactivity and product energy disposal in H+H2O, H+D2O, and H+HOD. Journal of Chemical Physics, 2001, 114, 8397-8413.	3.0	38
278	Distance-Dependence of Interparticle Energy Transfer in the Near-Infrared within Electrostatic Assemblies of PbS Quantum Dots. ACS Nano, 2017, 11, 5041-5050.	14.6	38
279	On stochastic reductions in molecular collision theory: Projection operator formalism; application to classical and quantum forced oscillator model. Journal of Chemical Physics, 1977, 66, 3609-3623.	3.0	37
280	Stateâ€selective studies of T→R, V energy transfer: The H+CO system. Journal of Chemical Physics, 1988, 88, 5481-5488.	3.0	37
281	Lasing from Finite Plasmonic Nanoparticle Lattices. ACS Photonics, 2020, 7, 630-636.	6.6	37
282	A study of the dynamics of UV laser photolysis of NOCl and NOBr. Journal of Chemical Physics, 1983, 78, 757-766.	3.0	36
283	The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. Journal of the American Chemical Society, 2018, 140, 6226-6230.	13.7	36
284	A coupled states calculation of accurate quantum rate constants for H + H2. International Journal of Chemical Kinetics, 1986, 18, 961-975.	1.6	35
285	Spatially resolved surface enhanced second harmonic generation: Theoretical and experimental evidence for electromagnetic enhancement in the near infrared on a laser microfabricated Pt surface. Journal of Chemical Physics, 1989, 90, 1237-1252.	3.0	35
286	Modeling of Electrodynamic Interactions between Metal Nanoparticles Aggregated by Electrostatic Interactions into Closely-Packed Clusters. Journal of Physical Chemistry C, 2007, 111, 11816-11822.	3.1	35
287	Coarse-Grained Molecular Dynamics Study of Cyclic Peptide Nanotube Insertion into a Lipid Bilayer. Journal of Physical Chemistry A, 2009, 113, 4780-4787.	2.5	35
288	Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10292-10297.	7.1	35

#	Article	IF	CITATIONS
289	Hydrogenation of CO to Methanol on Ni(110) through Subsurface Hydrogen. Journal of the American Chemical Society, 2017, 139, 17582-17589.	13.7	35
290	Coherent Vibrational Wavepacket Dynamics in Platinum(II) Dimers and Their Implications. Journal of Physical Chemistry C, 2018, 122, 14195-14204.	3.1	35
291	Franck–Condon factors in studies of the dynamics of chemical reactions. III. Analysis of information theory for vibration–rotation distributions and isotopic branching ratios. Journal of Chemical Physics, 1977, 66, 2943-2958.	3.0	34
292	Theoretical studies of fast H atom collisions with NO. Journal of Chemical Physics, 1985, 83, 3413-3425.	3.0	34
293	The FFT method for determining semiclassical eigenvalues: Application to asymmetric top rigid rotors. Journal of Chemical Physics, 1986, 84, 2239-2246.	3.0	34
294	Differential cross sections for fine structure transitions in O(3P2)+Ar collisions. Journal of Chemical Physics, 1994, 100, 8026-8039.	3.0	34
295	Collective surface plasmon resonance coupling in silver nanoshell arrays. Applied Physics B: Lasers and Optics, 2008, 93, 31-38.	2.2	34
296	Tunneling Currents That Increase with Molecular Elongation. Journal of the American Chemical Society, 2011, 133, 15714-15720.	13.7	34
297	Adjusting the Metrics of 1-D Helical Gold Nanoparticle Superstructures Using Multivalent Peptide Conjugates. Langmuir, 2015, 31, 9492-9501.	3.5	34
298	Identification of Dimeric Methylalumina Surface Species during Atomic Layer Deposition Using <i>Operando</i> Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 2456-2463.	13.7	34
299	Polarization-Dependent Optical Response in Anisotropic Nanoparticle–DNA Superlattices. Nano Letters, 2017, 17, 2313-2318.	9.1	34
300	Soft Skin Layers Enable Area-Specific, Multiscale Graphene Wrinkles with Switchable Orientations. ACS Nano, 2020, 14, 166-174.	14.6	34
301	Experimental and theoretical angular and translational energy distributions for the reaction CN+D2→DCN+D. Journal of Chemical Physics, 1997, 107, 7869-7875.	3.0	33
302	The CH+H reaction studied with quantum-mechanical and classical trajectory calculations. Journal of Chemical Physics, 2002, 116, 6002-6011.	3.0	33
303	Nonlocal Dielectric Effects in Coreâ^'Shell Nanowires. Journal of Physical Chemistry C, 2010, 114, 15903-15908.	3.1	33
304	Enhancing the Melting Properties of Small Molecule-DNA Hybrids through Designed Hydrophobic Interactions: An Experimental-Computational Study. Journal of the American Chemical Society, 2012, 134, 7450-7458.	13.7	33
305	Metal Oxide Nanoparticle Growth on Graphene via Chemical Activation with Atomic Oxygen. Journal of the American Chemical Society, 2013, 135, 18121-18125.	13.7	33
306	Introducing Perovskite Solar Cells to Undergraduates. Journal of Physical Chemistry Letters, 2015, 6, 251-255.	4.6	33

#	Article	IF	CITATIONS
307	Optical Properties and Structural Relationships of the Silver Nanoclusters Ag32(SG)19 and Ag15(SG)11. Journal of Physical Chemistry C, 2017, 121, 1349-1361.	3.1	33
308	Plasmon-Coupled Resonance Energy Transfer II: Exploring the Peaks and Dips in the Electromagnetic Coupling Factor. Journal of Physical Chemistry C, 2018, 122, 22650-22659.	3.1	33
309	Photovoltaic Blend Microstructure for High Efficiency Post-Fullerene Solar Cells. To Tilt or Not To Tilt?. Journal of the American Chemical Society, 2019, 141, 13410-13420.	13.7	33
310	A quasiclassical trajectory study of collisional excitation in Li++CO2. Journal of Chemical Physics, 1980, 72, 3929-3938.	3.0	32
311	SERS Detection of Ricin B-Chain via <i>N</i> -Acetyl-Galactosamine Glycopolymers. ACS Sensors, 2016, 1, 842-846.	7.8	32
312	Bias-Dependent Chemical Enhancement and Nonclassical Stark Effect in Tip-Enhanced Raman Spectromicroscopy of CO-Terminated Ag Tips. Journal of Physical Chemistry Letters, 2018, 9, 3074-3080.	4.6	32
313	SERS Study of the Mechanism of Plasmon-Driven Hot Electron Transfer between Gold Nanoparticles and PCBM. Journal of Physical Chemistry C, 2019, 123, 29908-29915.	3.1	32
314	Efficient Modeling of Organic Chromophores for Entangled Two-Photon Absorption. Journal of the American Chemical Society, 2020, 142, 10446-10458.	13.7	32
315	Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer. ACS Photonics, 2014, 1, 960-967.	6.6	31
316	Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon. Nano Letters, 2019, 19, 7309-7316.	9.1	31
317	Analysis of TiO ₂ Atomic Layer Deposition Surface Chemistry and Evidence of Propene Oligomerization Using Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 414-422.	13.7	31
318	Balancing Charge Transfer and Frenkel Exciton Coupling Leads to Excimer Formation in Molecular Dimers: Implications for Singlet Fission. Journal of Physical Chemistry A, 2020, 124, 8478-8487.	2.5	31
319	How symmetric stretch excitation in a triatomic molecule can be more efficient than asymmetric stretch excitation in enhancing reaction rates in atomic plus triatom reactions. Journal of Chemical Physics, 1979, 71, 542-543.	3.0	30
320	A reduced dimension quantum wave packet study of photodissociation dynamics of diatomic molecules on surfaces. Journal of Chemical Physics, 1991, 94, 379-387.	3.0	30
321	Plasmonic superlattices: Hierarchical subwavelength hole arrays. Chemical Physics Letters, 2009, 483, 187-192.	2.6	30
322	Combined Linear Response Quantum Mechanics and Classical Electrodynamics (QM/ED) Method for the Calculation of Surface-Enhanced Raman Spectra. Journal of Physical Chemistry A, 2012, 116, 1931-1938.	2.5	30
323	Plasmonic Metallurgy Enabled by DNA. Advanced Materials, 2016, 28, 2790-2794.	21.0	30
324	Directional emission from dye-functionalized plasmonic DNA superlattice microcavities. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 457-461.	7.1	30

#	Article	IF	CITATIONS
325	Probing Intermolecular Vibrational Symmetry Breaking in Self-Assembled Monolayers with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2017, 139, 18664-18669.	13.7	30
326	Selective Separation of Hexachloroplatinate(Ⅳ) Dianions Based on Exoâ€Binding with Cucurbit[6]uril. Angewandte Chemie - International Edition, 2021, 60, 17587-17594.	13.8	30
327	Approximate quantum scattering studies of the CN+H2 reaction. Journal of Chemical Physics, 1996, 105, 2309-2316.	3.0	29
328	Lasing action in periodic arrays of nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 818.	2.1	29
329	The importance of anharmonicity on the rates of energy transfer in rare gas/CO2 systems. Journal of Chemical Physics, 1978, 68, 1992-1994.	3.0	28
330	Quasiclassical Trajectory Study of Energy and Angular Distributions for the H + CO2→ OH + CO Reactionâ€. Journal of Physical Chemistry B, 2002, 106, 8148-8160.	2.6	28
331	Electrochemical Approach to and the Physical Consequences of Preparing Nanostructures from Gold Nanorods with Smooth Ends. Journal of Physical Chemistry C, 2008, 112, 15729-15734.	3.1	28
332	Solution-Dispersible Metal Nanorings with Deliberately Controllable Compositions and Architectural Parameters for Tunable Plasmonic Response. Nano Letters, 2015, 15, 5273-5278.	9.1	28
333	Probing the Chemistry of Alumina Atomic Layer Deposition Using <i>Operando</i> Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 3822-3833.	3.1	28
334	Mie-Resonant Three-Dimensional Metacrystals. Nano Letters, 2020, 20, 8096-8101.	9.1	28
335	Plasmon nanolasing with aluminum nanoparticle arrays [Invited]. Journal of the Optical Society of America B: Optical Physics, 2019, 36, E104.	2.1	28
336	Selective Separation of Lithium Chloride by Organogels Containing Strapped Calix[4]pyrroles. Journal of the American Chemical Society, 2021, 143, 20403-20410.	13.7	28
337	Structures of the Clusters Produced by Laser Desorption of Fullerenes:  [2+2] Cycloadducts of Preshrunk Cages. Journal of Physical Chemistry A, 1998, 102, 7919-7923.	2.5	27
338	Time-Dependent Density Functional Methods for Raman Spectra in Open-Shell Systems. Journal of Physical Chemistry A, 2014, 118, 517-525.	2.5	27
339	Structure–Function Relationships for Surface-Enhanced Raman Spectroscopy-Active Plasmonic Paper. Journal of Physical Chemistry C, 2016, 120, 20789-20797.	3.1	27
340	Supramolecular Gelation of Rigid Triangular Macrocycles through Rings of Multiple C–H···O Interactions Acting Cooperatively. Journal of Organic Chemistry, 2016, 81, 2581-2588.	3.2	27
341	Understanding the chemical contribution to the enhancement mechanism in SERS: Connection with Hammett parameters. Journal of Chemical Physics, 2020, 153, 124706.	3.0	27
342	A detailed analysis of the Raman enhancement mechanisms associated with the interaction of a Raman scatterer with a resonant metal cluster: Results for Lin–H2. Journal of Chemical Physics, 1984, 80, 2959-2972.	3.0	26

#	Article	IF	CITATIONS
343	CHEMISTRY: Stretched Water Is More Reactive. Science, 2000, 290, 950-951.	12.6	26
344	Conformational Control of Thymine Photodimerization in Purine-Containing Trinucleotides. Journal of Physical Chemistry Letters, 2011, 2, 1432-1438.	4.6	26
345	Electromagnetic Field Enhancement for Wedge-Shaped Metal Nanostructures. Journal of Physical Chemistry Letters, 2011, 2, 1978-1983.	4.6	26
346	Structural Effects in the Electromagnetic Enhancement Mechanism of Surface-Enhanced Raman Scattering: Dipole Reradiation and Rectangular Symmetry Effects for Nanoparticle Arrays. Journal of Physical Chemistry C, 2012, 116, 17318-17327.	3.1	26
347	Anion Effects in the Scattering of CO ₂ from the Room-Temperature Ionic Liquids [bmim][BF4] and [bmim][Tf2N]: Insights from Quantum Mechanics/Molecular Mechanics Trajectories. Journal of Physical Chemistry B, 2012, 116, 3587-3602.	2.6	26
348	Direct Measurement of Lattice Dynamics and Optical Phonon Excitation in Semiconductor Nanocrystals Using Femtosecond Stimulated Raman Spectroscopy. Physical Review Letters, 2013, 111, 107401.	7.8	26
349	Free Energy Profile and Mechanism of Self-Assembly of Peptide Amphiphiles Based on a Collective Assembly Coordinate. Journal of Physical Chemistry B, 2013, 117, 9004-9013.	2.6	26
350	Free-Energy Landscape for Peptide Amphiphile Self-Assembly: Stepwise versus Continuous Assembly Mechanisms. Journal of Physical Chemistry B, 2013, 117, 14059-14064.	2.6	26
351	Reducing CO ₂ to CO and H ₂ O on Ni(110): The Influence of Subsurface Hydrogen. Journal of Physical Chemistry C, 2016, 120, 23061-23068.	3.1	26
352	Physicochemical Trapping of Neurotransmitters in Polymer-Mediated Gold Nanoparticle Aggregates for Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 9554-9562.	6.5	26
353	The generalized cumulant expansion approach to stochastic reductions in molecular collision dynamics: Applications to collisional energy transfer. Journal of Chemical Physics, 1977, 66, 5220-5225.	3.0	25
354	The branching ratio between reaction and relaxation in the removal of H2O from its 04〉â^' vibrational state in collisions with H atoms. Journal of Chemical Physics, 2001, 115, 4586-4592.	3.0	25
355	Collisional excitation of CO by 2.3 eV H atoms. Journal of Chemical Physics, 1991, 94, 1141-1149.	3.0	24
356	The product vibrational, rotational, and translational energy distribution for the reaction O(3PJ)+O3→2O2: Breakdown of the spectator bond mechanism. Journal of Chemical Physics, 1996, 105, 7495-7503.	3.0	24
357	Calculating dipole and quadrupole polarizabilities relevant to surface enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 625-638.	3.9	24
358	State-Selected Reaction of Muonium with Vibrationally Excited H ₂ . Journal of Physical Chemistry Letters, 2012, 3, 2755-2760.	4.6	24
359	Size-Dependent Coherent-Phonon Plasmon Modulation and Deformation Characterization in Gold Bipyramids and Nanojavelins. ACS Photonics, 2016, 3, 758-763.	6.6	24
360	Tunable Fluorescence from Dyeâ€Modified DNAâ€Assembled Plasmonic Nanocube Arrays. Advanced Materials, 2019, 31, e1904448.	21.0	24

#	Article	IF	CITATIONS
361	Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5925-5930.	7.1	24
362	Energies and lifetimes of predissociative states of van der Waals molecules: Selfâ€consistent field calculations for I2(v)He, I2(v)Ne. Journal of Chemical Physics, 1988, 88, 3709-3714.	3.0	23
363	Reactive and inelastic collisions of H atoms with vibrationally excited water molecules. Journal of Chemical Physics, 1999, 110, 2963-2970.	3.0	23
364	A quasiclassical trajectory study of product energy and angular distributions for the OH+D2 reaction. Journal of Chemical Physics, 2001, 115, 5160-5169.	3.0	23
365	Modular and Chemically Responsive Oligonucleotide "Bonds―in Nanoparticle Superlattices. Journal of the American Chemical Society, 2015, 137, 13566-13571.	13.7	23
366	Advantages of Conical Pores for Ion Pumps. Journal of Physical Chemistry C, 2017, 121, 161-168.	3.1	23
367	Transient Melting and Recrystallization of Semiconductor Nanocrystals Under Multiple Electron–Hole Pair Excitation. Nano Letters, 2017, 17, 5314-5320.	9.1	23
368	Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices. Journal of the American Chemical Society, 2019, 141, 19973-19977.	13.7	23
369	PCage: Fluorescent Molecular Temples for Binding Sugars in Water. Journal of the American Chemical Society, 2021, 143, 15688-15700.	13.7	23
370	Plasmonic Nanoparticle Lattice Devices for White‣ight Lasing. Advanced Materials, 2023, 35, e2103262.	21.0	23
371	Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. Journal of the American Chemical Society, 2022, 144, 2685-2693.	13.7	23
372	Response to "Comment on â€~Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes' ―[J. Chem. Phys. 120, 10871 (2004)]. Journal of Chemical Physics, 2005, 122, 097	7182.	22
373	Time-dependent density functional methods for surface enhanced Raman scattering (SERS) studies. Computational and Theoretical Chemistry, 2012, 987, 32-41.	2.5	22
374	Two-Photon and Time-Resolved Fluorescence Spectroscopy as Probes for Structural Determination in Amyloid-β Peptides and Aggregates. Journal of Physical Chemistry B, 2014, 118, 2351-2359.	2.6	22
375	The effect of the magnitude and direction of the dipoles of organic cations on the electronic structure of hybrid halide perovskites. Physical Chemistry Chemical Physics, 2019, 21, 16564-16572.	2.8	22
376	Ultrafast Dynamics of Lattice Plasmon Lasers. Journal of Physical Chemistry Letters, 2019, 10, 3301-3306.	4.6	22
377	Pressure-Induced Optical Transitions in Metal Nanoclusters. ACS Nano, 2020, 14, 11888-11896.	14.6	22
378	Supramolecular Gold Stripping from Activated Carbon Using α-Cyclodextrin. Journal of the American Chemical Society, 2021, 143, 1984-1992.	13.7	22

#	Article	IF	CITATIONS
379	Unusual Insertion Mechanism in the Reaction C(3P) + H2 → CH + H. The Journal of Physical Chemistry, 1996, 100, 18944-18949.	2.9	21
380	A Quasiclassical Trajectory Study of H + N2O (ν1, ν2, ν3). The Journal of Physical Chemistry, 1996, 100, 12154-12161.	2.9	21
381	Influence of Spinâ^'Orbit Effects on Chemical Reactions:  Quantum Scattering Studies for the Cl(2P) + HCl → ClH + Cl(2P) Reaction Using Coupled ab Initio Potential Energy Surfaces. Journal of Physical Chemistry A, 2003, 107, 7278-7289.	2.5	21
382	Molecular dynamics simulation of \hat{l}^2 -sheet formation in self-assembled peptide amphiphile fibers. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	21
383	Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor–Solvent Interfaces. ACS Nano, 2015, 9, 6278-6287.	14.6	21
384	Sequential double excitations from linear-response time-dependent density functional theory. Journal of Chemical Physics, 2016, 144, 204105.	3.0	21
385	Unraveling the Near- and Far-Field Relationship of 2D Surface-Enhanced Raman Spectroscopy Substrates Using Wavelength-Scan Surface-Enhanced Raman Excitation Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 14737-14744.	3.1	21
386	Resonance Energy Transfer in Arbitrary Media: Beyond the Point Dipole Approximation. Journal of Physical Chemistry C, 2018, 122, 29445-29456.	3.1	21
387	Photoinduced Anomalous Coulomb Blockade and the Role of Triplet States in Electron Transport through an Irradiated Molecular Transistor. Nano Letters, 2018, 18, 5015-5023.	9.1	21
388	Ion Coordination and Chelation in a Glycolated Polymer Semiconductor: Molecular Dynamics and X-ray Fluorescence Study. Chemistry of Materials, 2020, 32, 7301-7308.	6.7	21
389	Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair?. Journal of Physical Chemistry C, 2021, 125, 18119-18128.	3.1	21
390	Strong Coupling Between Plasmons and Molecular Excitons in Metal–Organic Frameworks. Nano Letters, 2021, 21, 7775-7780.	9.1	21
391	Franck–Condon factors in studies of dynamics of chemical reactions. V. Simple construction of quasiadiabatic potential energy surfaces and numerical evaluation of Franck–Condon integrals. Journal of Chemical Physics, 1979, 70, 2414-2424.	3.0	20
392	A new method for determining semiclassical tunneling probabilities in atom–diatom reactions. Journal of Chemical Physics, 1980, 72, 3337-3347.	3.0	20
393	Timeâ€dependent methods for calculating thermal rate coefficients using flux correlation functions. Journal of Chemical Physics, 1992, 97, 7297-7313.	3.0	20
394	Perylenediimide-Linked DNA Dumbbells: Long-Distance Electronic Interactions and Hydrophobic Assistance of Base-Pair Melting. Journal of Physical Chemistry C, 2010, 114, 20466-20471.	3.1	20
395	Mixing rules and the Casimir force between composite systems. Physical Review A, 2011, 83, .	2.5	20
396	Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods. Nano Letters, 2016, 16, 6939-6945.	9.1	20

23

#	Article	IF	CITATIONS
397	Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors. Journal of Chemical Physics, 2017, 146, 224201.	3.0	20
398	Self-Assembled Plasmonic Metamolecules Exhibiting Tunable Magnetic Response at Optical Frequencies. Journal of Physical Chemistry C, 2017, 121, 15915-15921.	3.1	20
399	Substituent effects on energetics and crystal morphology modulate singlet fission in 9,10-bis(phenylethynyl)anthracenes. Journal of Chemical Physics, 2019, 151, 044501.	3.0	20
400	Atomic Layer Deposition Nucleation on Isolated Self-Assembled Monolayer Functional Groups: A Combined DFT and Experimental Study. ACS Applied Energy Materials, 2019, 2, 4618-4628.	5.1	20
401	Plasmon-Driven Chemistry in Ferri-/Ferrocyanide Gold Nanoparticle Oligomers: A SERS Study. Journal of the American Chemical Society, 2020, 142, 13120-13129.	13.7	20
402	Hyperthermal Reactions of O+(4S3/2) with CD4and CH4: Theory and Experimentâ€. Journal of Physical Chemistry A, 2004, 108, 9794-9804.	2.5	19
403	O(³ <i>P</i>) + CO ₂ Collisions at Hyperthermal Energies: Dynamics of Nonreactive Scattering, Oxygen Isotope Exchange, and Oxygen-Atom Abstraction. Journal of Physical Chemistry A, 2012, 116, 64-84.	2.5	19
404	Ground and excited state electronic spectra of perylenediimide dimers with flexible and rigid geometries in DNA conjugates. Chemical Science, 2014, 5, 973-981.	7.4	19
405	Inhomogeneous Surface Plasmon Polaritons. ACS Photonics, 2014, 1, 739-745.	6.6	19
406	Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering. Journal of Chemical Physics, 2016, 145, 094106.	3.0	19
407	Review of Plasmon-Induced Hot-Electron Dynamics and Related SERS Chemical Effects. ACS Symposium Series, 2016, , 1-22.	0.5	19
408	Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy at 1 MHz Repetition Rates. Journal of Physical Chemistry Letters, 2016, 7, 4629-4634.	4.6	19
409	Deterministic Symmetry Breaking of Plasmonic Nanostructures Enabled by DNA-Programmable Assembly. Nano Letters, 2017, 17, 5830-5835.	9.1	19
410	Fabrication of Gold Nanosphere Oligomers for Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 27004-27008.	3.1	19
411	Deducing the Adsorption Geometry of Rhodamine 6G from the Surface-Induced Mode Renormalization in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 465-473.	3.1	19
412	Control of Charge Carriers and Band Structure in 2D Monolayer Molybdenum Disulfide via Covalent Functionalization. ACS Applied Materials & Interfaces, 2020, 12, 4607-4615.	8.0	19
413	Analytical Approaches To Identify Plasmon-like Excited States in Bare and Ligand-Protected Metal Nanoclusters. Journal of Physical Chemistry C, 2020, 124, 3260-3269.	3.1	19
414	A quasiclassical trajectory study of the H+HCN→H2+CN reaction dynamics. Journal of Chemical Physics, 2000, 113, 6253-6263.	3.0	18

#	Article	IF	CITATIONS
415	Structure and Electronic Spectra of Purine–Methyl Viologen Charge Transfer Complexes. Journal of Physical Chemistry B, 2014, 118, 125-133.	2.6	18
416	All-Atom Molecular Dynamics Simulations of Peptide Amphiphile Assemblies That Spontaneously Form Twisted and Helical Ribbon Structures. Journal of Physical Chemistry Letters, 2017, 8, 2170-2174.	4.6	18
417	Isothermal Titration Calorimetry for the Screening of Aflatoxin B1 Surface-Enhanced Raman Scattering Sensor Affinity Agents. Analytical Chemistry, 2018, 90, 13409-13418.	6.5	18
418	Mechanically interlocked pyrene-based photocatalysts. Nature Catalysis, 2022, 5, 524-533.	34.4	18
419	Quantum Mechanical Identification of Quadrupolar Plasmonic Excited States in Silver Nanorods. Journal of Physical Chemistry A, 2016, 120, 9324-9329.	2.5	17
420	Interfacial Effects on Nanoscale Wrinkling in Gold-Covered Polystyrene. ACS Applied Materials & Interfaces, 2016, 8, 24339-24344.	8.0	17
421	Exciton Absorption Spectra by Linear Response Methods: Application to Conjugated Polymers. Journal of the American Chemical Society, 2017, 139, 3728-3735.	13.7	17
422	Semiempirical modeling of electrochemical charge transfer. Faraday Discussions, 2017, 199, 547-563.	3.2	17
423	Optimizing linear polymer affinity agent properties for surface-enhanced Raman scattering detection of aflatoxin B1. Molecular Systems Design and Engineering, 2019, 4, 1019-1031.	3.4	17
424	Polariton Dynamics in Two-Dimensional Ruddlesden–Popper Perovskites Strongly Coupled with Plasmonic Lattices. ACS Nano, 2022, 16, 3917-3925.	14.6	17
425	Spatial Nonlocality in the Calculation of Hamaker Coefficients. Journal of Physical Chemistry C, 2012, 116, 420-424.	3.1	16
426	Enhancing DNA-Mediated Assemblies of Supramolecular Cage Dimers through Tuning Core Flexibility and DNA Length—A Combined Experimental–Modeling Study. Journal of the American Chemical Society, 2015, 137, 13381-13388.	13.7	16
427	Quantitative Determination of the Differential Raman Scattering Cross Sections of Glucose by Femtosecond Stimulated Raman Scattering. Analytical Chemistry, 2017, 89, 6931-6935.	6.5	16
428	Virtual Issue on Metal-Halide Perovskite Nanocrystals—A Bright Future for Optoelectronics. Chemistry of Materials, 2017, 29, 8915-8917.	6.7	16
429	Peptide amphiphile self-assembly. Europhysics Letters, 2017, 119, 38002.	2.0	16
430	Wave Functions, Density Functionals, and Artificial Intelligence for Materials and Energy Research: Future Prospects and Challenges. ACS Energy Letters, 2018, 3, 155-162.	17.4	16
431	Enhancing Entangled Two-Photon Absorption for Picosecond Quantum Spectroscopy. Journal of the American Chemical Society, 2021, 143, 16930-16934.	13.7	16
432	Quantum reactive scattering for A+BCD→AB+CD reactions: Coupled channel distorted wave theory. Journal of Chemical Physics, 1986, 85, 2038-2053.	3.0	15

#	Article	IF	CITATIONS
433	Mechanical properties of ultrananocrystalline diamond prepared in a nitrogen-rich plasma: A theoretical study. Physical Review B, 2006, 74, .	3.2	15
434	Nanoscale fracture of tetrahedral amorphous carbon by molecular dynamics: Flaw size insensitivity. Physical Review B, 2008, 77, .	3.2	15
435	Van der Waals Torque Coupling between Slabs Composed of Planar Arrays of Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 5492-5496.	3.1	15
436	Conformal, Macroscopic Crystalline Nanoparticle Sheets Assembled with DNA. Advanced Materials, 2015, 27, 3159-3163.	21.0	15
437	Liquid-Phase Beam Pen Lithography. Small, 2016, 12, 988-993.	10.0	15
438	Benchmarking Semiempirical Methods To Compute Electrochemical Formal Potentials. Journal of Physical Chemistry A, 2018, 122, 6809-6818.	2.5	15
439	Interrogating Intracellular Zinc Chemistry with a Long Stokes Shift Zinc Probe ZincBY-4. Journal of the American Chemical Society, 2019, 141, 16696-16705.	13.7	15
440	Active Plasmonics and Active Chiral Plasmonics through Orientation-Dependent Multipolar Interactions. ACS Nano, 2020, 14, 11518-11532.	14.6	15
441	Discrete Open-Shell Tris(bipyridinium radical cationic) Inclusion Complexes in the Solid State. Journal of the American Chemical Society, 2021, 143, 163-175.	13.7	15
442	Identification of Brillouin Zones by In-Plane Lasing from Light-Cone Surface Lattice Resonances. ACS Nano, 2021, 15, 5567-5573.	14.6	15
443	A quasiclassical trajectory study of vibrational predissociation and collisional relaxation in Ar–OCS. Journal of Chemical Physics, 1985, 83, 3433-3440.	3.0	14
444	Collision induced dissociation of H+2 and D+2 with H2 using a surface hopping trajectory method. Journal of Chemical Physics, 1988, 89, 6713-6718.	3.0	14
445	The evolution of vibrational phase space during the collisional relaxation of highly excited collinear CS2. Journal of Chemical Physics, 1990, 92, 6561-6573.	3.0	14
446	A Quasiclassical Trajectory Study of the Cl + HCN → HCl + CN Reaction Dynamics. Microscopic Reaction Mechanism of the H(Cl) + HCN → H2(HCl) + CN Reactionsâ€. Journal of Physical Chemistry A, 2001, 105, 2285-2297.	2.5	14
447	Small Size Limit to Self-Assembled Monolayer Formation on Gold(111). Journal of Physical Chemistry C, 2011, 115, 13193-13199.	3.1	14
448	Near-Quantitative Yield for Transfer of Near-Infrared Excitons within Solution-Phase Assemblies of PbS Quantum Dots. Journal of Physical Chemistry C, 2016, 120, 22186-22194.	3.1	14
449	Reactive Force Field Modeling of Zinc Oxide Nanoparticle Formation. Journal of Physical Chemistry C, 2016, 120, 2950-2961.	3.1	14
450	Wrinkles in Polytetrafluoroethylene on Polystyrene: Persistence Lengths and the Effect of Nanoinclusions. ACS Applied Materials & amp; Interfaces, 2017, 9, 9079-9088.	8.0	14

#	Article	IF	CITATIONS
451	Molecular Dynamics Simulation and Experimental Studies of Gold Nanoparticle Templated HDL-like Nanoparticles for Cholesterol Metabolism Therapeutics. ACS Applied Materials & Interfaces, 2017, 9, 1247-1254.	8.0	14
452	Improved Scaling of Molecular Network Calculations: The Emergence of Molecular Domains. Journal of Physical Chemistry Letters, 2017, 8, 415-421.	4.6	14
453	Native Electron Capture Dissociation Maps to Iron-Binding Channels in Horse Spleen Ferritin. Analytical Chemistry, 2017, 89, 10711-10716.	6.5	14
454	Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials. Nano Letters, 2018, 18, 442-448.	9.1	14
455	Charge Transport and Thermoelectric Properties of Carbon Sulfide Nanobelts in Single-Molecule Sensors. Chemistry of Materials, 2019, 31, 6506-6518.	6.7	14
456	Local electric field factors by a combined charge-transfer and point–dipole interaction model. RSC Advances, 2015, 5, 31594-31605.	3.6	13
457	Magneto-Optical Response of Cobalt Interacting with Plasmonic Nanoparticle Superlattices. Journal of Physical Chemistry Letters, 2016, 7, 4732-4738.	4.6	13
458	Electronic Structure and Potential Reactivity of Silaaromatic Molecules. Journal of Physical Chemistry A, 2016, 120, 9476-9488.	2.5	13
459	Connection between Hybrid Functionals and Importance of the Local Density Approximation. Journal of Physical Chemistry A, 2016, 120, 1605-1612.	2.5	13
460	The photoluminescence spectral profiles of water-soluble aggregates of PbS quantum dots assembled through reversible metal coordination. Chemical Communications, 2017, 53, 1981-1984.	4.1	13
461	Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations. Physical Review A, 2017, 96, .	2.5	13
462	Long-Range Energy Transfer in Protein Megamolecules. Journal of the American Chemical Society, 2018, 140, 15731-15743.	13.7	13
463	Hofmeister Effects on Peptide Amphiphile Nanofiber Self-Assembly. Journal of Physical Chemistry B, 2019, 123, 7006-7013.	2.6	13
464	Vibrational Probe of Aqueous Electrolytes: The Field Is Not Enough. Journal of Physical Chemistry B, 2020, 124, 7013-7026.	2.6	13
465	Thermodynamics and Mechanism of a Photocatalyzed Stereoselective [2 + 2] Cycloaddition on a CdSe Quantum Dot. Journal of the American Chemical Society, 2020, 142, 15488-15495.	13.7	13
466	Synthesis and Structure–Activity Characterization of a Single-Site MoO ₂ Catalytic Center Anchored on Reduced Graphene Oxide. Journal of the American Chemical Society, 2021, 143, 21532-21540.	13.7	13
467	Synthesis and Characterization of a Plasmonic–Semiconductor Composite Containing Rationally Designed, Optically Tunable Gold Nanorod Dimers and Anatase TiO ₂ . Chemistry of Materials, 2014, 26, 3818-3824.	6.7	12
468	QM/MM Study of Photoinduced Reduction of a Tetrahedral Ag ₂₀ ⁺ Cluster by a Ag Atom. Journal of Physical Chemistry C, 2014, 118, 1755-1762.	3.1	12

#	Article	IF	CITATIONS
469	Energetic and Dynamic Analysis of Transport of Na+ and K+ through a Cyclic Peptide Nanotube in Water and in Lipid Bilayers. Journal of Physical Chemistry B, 2016, 120, 11912-11922.	2.6	12
470	Ultrafast dynamics of two copper bis-phenanthroline complexes measured by x-ray transient absorption spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 154006.	1.5	12
471	Are Transport Models Able To Predict Charge Carrier Mobilities in Organic Semiconductors?. Journal of Physical Chemistry C, 2019, 123, 29499-29512.	3.1	12
472	Wavelength and Polarization Dependence of Second-Harmonic Responses from Gold Nanocrescent Arrays. Journal of Physical Chemistry C, 2020, 124, 20424-20435.	3.1	12
473	Investigating Single-Molecule Fluorescence Spectral Heterogeneity of Rhodamines Using High-Throughput Single-Molecule Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 3914-3921.	4.6	12
474	A contorted nanographene shelter. Nature Communications, 2021, 12, 5191.	12.8	12
475	Photoinitiated Reaction Dynamics between Aligned Adsorbates on Solid Surfaces:Â A Theoretical Exploration of the H + CO2System on LiF(001). Journal of Physical Chemistry B, 1997, 101, 5352-5361.	2.6	11
476	COMPUTATIONAL METHODS FOR POLYATOMIC BIMOLECULAR REACTIONS. , 1998, , 1-33.		11
477	Reactive and Nonreactive Quenching of OH(A2Σ+) in Collisions with H Atomsâ€. Journal of Physical Chemistry A, 2001, 105, 2515-2521.	2.5	11
478	Defects in DNA: Lessons from Molecular Motor Design. Journal of Physical Chemistry Letters, 2012, 3, 689-693.	4.6	11
479	Controlling Orientational Order in 1-D Assemblies of Multivalent Triangular Prisms. Journal of Physical Chemistry Letters, 2013, 4, 203-208.	4.6	11
480	Fluorine Tuning of Morphology, Energy Loss, and Carrier Dynamics in Perylenediimide Polymer Solar Cells. ACS Energy Letters, 0, , .	17.4	11
481	PRODUCT STATE DISTRIBUTIONS IN CHEMICAL REACTIONS: THE REACTION OH + CO â†' H + CO ₂ . Advanced Series in Physical Chemistry, 1996, , 438-465.	1.5	10
482	Perspective on "Exchange reactions with activation energy. I. Simple barrier potential for (H, H 2)". Theoretical Chemistry Accounts, 2000, 103, 270-272.	1.4	10
483	Properties and Improved Space Survivability of POSS (Polyhedral Oligomeric Silsesquioxane) Polyimides. Materials Research Society Symposia Proceedings, 2004, 851, 487.	0.1	10
484	Hydrophobic Organic Linkers in the Self-Assembly of Small Molecule-DNA Hybrid Dimers: A Computational–Experimental Study of the Role of Linkage Direction in Product Distributions and Stabilities. Journal of Physical Chemistry B, 2014, 118, 2366-2376.	2.6	10
485	Balancing the Effects of Extinction and Enhancement for Optimal Signal in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 29449-29454.	3.1	10
486	Studying Stimulated Raman Activity in Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy by Varying the Excitation Wavelength. Journal of Physical Chemistry Letters, 2017, 8, 3328-3333.	4.6	10

#	Article	IF	CITATIONS
487	Quantum Interference and Substantial Property Tuning in Conjugated <i>Z</i> - <i>ortho</i> -Regio-Resistive Organic (ZORRO) Junctions. Nano Letters, 2019, 19, 8956-8963.	9.1	10
488	Domain Separation in Density Functional Theory. Journal of Physical Chemistry A, 2019, 123, 4785-4795.	2.5	10
489	Germanium Fluoride Nanocages as Optically Transparent n-Type Materials and Their Endohedral Metallofullerene Derivatives. Journal of the American Chemical Society, 2019, 141, 1672-1684.	13.7	10
490	Thermodynamic Determination of Bimetallic Particle Geometry: Suitability of Poorly Miscible Alloys for Surface-Enhanced Raman. Journal of Physical Chemistry C, 2020, 124, 3287-3296.	3.1	10
491	Modulating the Electron Affinity of Small Bipyridyl Molecules on Single Gold Nanoparticles for Plasmon-Driven Electron Transfer. Journal of Physical Chemistry C, 2021, 125, 22142-22153.	3.1	10
492	Programmable Selfâ€Regulation with Wrinkled Hydrogels and Plasmonic Nanoparticle Lattices. Small, 2022, 18, e2103865.	10.0	10
493	The formation of highly excited H3+ in the reaction H2+(v) + H2 ? H3+ + H. International Journal of Quantum Chemistry, 1987, 31, 57-63.	2.0	9
494	Quantum scattering study of collisional energy transfer in He+NO2: The importance of the vibronic mixing. Journal of Chemical Physics, 2000, 112, 5672-5678.	3.0	9
495	Theoretical calculation of the photo-induced electron transfer rate between a gold atom and a gold cation solvated in CCl4. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 143-147.	3.9	9
496	Dependence of Plasmon Energies on the Acoustic Normal Modes of Ag _{<i>n</i>} (<i>n</i> =) Tj ETQc	0 0 0 rgB ⁻ 3.1	Г/gverlock 1
497	ACS Virtual Issue on Multicomponent Systems: Absorption, Adsorption, and Diffusion. Journal of Chemical & Engineering Data, 2018, 63, 3651-3651.	1.9	9
498	Molecular Junctions Inspired by Nature: Electrical Conduction through Noncovalent Nanobelts. Journal of Physical Chemistry B, 2019, 123, 8096-8102.	2.6	9
499	Enhancement and Suppression of Resonance Energy Transfer Near Metal Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 20589-20597.	3.1	9
500	Nanopipetteâ€based electrochemical SERS platforms: Using electrodeposition to produce versatile and adaptable plasmonic substrates. Journal of Raman Spectroscopy, 2021, 52, 339-347.	2.5	9
501	A direct method for determining moments of final state distributions in molecular collisions. Molecular Physics, 1978, 35, 477-500.	1.7	8
502	Evaluation of thermal rates for reactions with intermediate wells: Removal of bound state contributions to quantum flux correlation functions. Journal of Chemical Physics, 1993, 99, 3516-3525.	3.0	8
503	Quantum scattering studies of collisional energy transfer from highly excited polyatomic molecules: A bendâ€stretch model of He + CS ₂ . Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 587-594.	0.9	8
504	Wave Packet Methods for the Direct Calculation of Energy-Transfer Moments in Molecular Collisions. Journal of Physical Chemistry A, 1999, 103, 947-952.	2.5	8

#	Article	IF	CITATIONS
505	Lattice Gas Monte Carlo Simulation of Capillary Forces in Atomic Force Microscopy. Journal of Adhesion Science and Technology, 2010, 24, 2429-2451.	2.6	8
506	Northwestern University Initiative for Teaching NanoSciences (NUITNS): An Approach for Teaching Computational Chemistry to Engineering Undergraduate Students. Journal of Chemical Education, 2011, 88, 1079-1084.	2.3	8
507	Ultrafast Energy Migration in Porphyrin-based Metal Organic Frameworks (MOFs). Materials Research Society Symposia Proceedings, 2013, 1539, 8701.	0.1	8
508	Operational Regimes in Picosecond and Femtosecond Pulse-Excited Ultrahigh Vacuum SERS. Journal of Physical Chemistry Letters, 2016, 7, 2971-2976.	4.6	8
509	Charge transport through extended molecular wires with strongly correlated electrons. Chemical Science, 2021, 12, 11121-11129.	7.4	8
510	Synthesis and Characterization of Tellurium Catecholates and Their <i>N</i> Oxide Adducts. Inorganic Chemistry, 2021, 60, 3460-3470.	4.0	8
511	Selective Reduction of Niobium(V) Species to Promote Molecular Niobium/Tantalum Separation. Inorganic Chemistry, 2022, 61, 23-27.	4.0	8
512	A quasiclassical trajectory study of final state distributions in collisions of fast H(D) atoms with HF(DF). Journal of Chemical Physics, 1987, 86, 6738-6744.	3.0	7
513	Finite element method for two-dimensional vibrational wave functions: Theory and application to van der Waals molecules. Journal of Chemical Physics, 2001, 114, 6166-6179.	3.0	7
514	Tensile Mechanics of \hat{I} ±-Helical Polypeptides. Macromolecules, 2013, 46, 7947-7956.	4.8	7
515	Molecular-Scale Mechanistic Investigation of Oxygen Dissociation and Adsorption on Metal Surface-Supported Cobalt Phthalocyanine. Journal of Physical Chemistry Letters, 2019, 10, 3966-3971.	4.6	7
516	Layered structures of assembled imine-linked macrocycles and two-dimensional covalent organic frameworks give rise to prolonged exciton lifetimes. Journal of Materials Chemistry C, 2022, 10, 3015-3026.	5.5	7
517	Stochastic theory of vibrational energy transfer in collinear atom-diatom collisions: the role of non-markovian effects. Molecular Physics, 1979, 38, 257-272.	1.7	6
518	Comment on: Timeâ€dependent Hartree approximation applied to the photodissociation of ICN. Journal of Chemical Physics, 1992, 97, 7853-7854.	3.0	6
519	Evaluation of resonance contributions to thermal reaction rates using quantum flux correlation functions. Journal of Chemical Physics, 1994, 101, 6577-6585.	3.0	6
520	Quasiclassical trajectory studies of H(D)+HF(DF) collisions at 2 eV. Journal of Chemical Physics, 1997, 106, 2277-2285.	3.0	6
521	A further theoretical exploration of the surface-aligned photo-initiated H+CO2 reaction: Surface motion and temperature dependence. Journal of Chemical Physics, 1997, 107, 9176-9184.	3.0	6
522	Dynamics of Highly Excited States in Chemistry: An Overview. ACS Symposium Series, 1997, , 2-24.	0.5	6

#	Article	IF	CITATIONS
523	Effective Medium Theory of DNA-linked Gold Nanoparticle Aggregates:Effect of Aggregate Shape. Materials Research Society Symposia Proceedings, 2001, 635, C6.5.1.	0.1	6
524	Particle-Level Engineering of Thermal Conductivity in Matrix-Embedded Semiconductor Nanocrystals. Nano Letters, 2012, 12, 5797-5801.	9.1	6
525	Reply to "Comment on â€~Ultrafast Photoluminescence in Quantum-Confined Silicon Nanocrystals Arises from an Amorphous Surface Layer'― ACS Photonics, 2015, 2, 456-458.	6.6	6
526	Implementation of INDO/SCI with COSMO Implicit Solvation and Benchmarking for Solvatochromic Shifts. Journal of Physical Chemistry A, 2016, 120, 9878-9885.	2.5	6
527	Kinetic Master Equation Modeling of an Artificial Protein Pump. Journal of Physical Chemistry C, 2016, 120, 14495-14501.	3.1	6
528	Editorial for January 2017 for JPC A/B/C. Journal of Physical Chemistry C, 2017, 121, 1-3.	3.1	6
529	ACS Virtual Issue on Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2017, 62, 1927-1928.	1.9	6
530	Mechanisms of Formaldehyde and C ₂ Formation from Methylene Reacting with CO ₂ Adsorbed on Ni(110). Journal of Physical Chemistry C, 2018, 122, 13827-13833.	3.1	6
531	Free-Energy Profiles for A-/B-DNA Conformational Transitions in Isolated and Aggregated States from All-Atom Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2018, 122, 7990-7996.	2.6	6
532	Locally coupled open subsystems: A formalism for affordable electronic structure calculations featuring fractional charges and size consistency. Journal of Chemical Physics, 2018, 149, 034105.	3.0	6
533	Conformational Effects in the Transport of Glucose through a Cyclic Peptide Nanotube: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2018, 122, 8174-8184.	2.6	6
534	Molecular-Level Insight into the Hydroxylated Monomeric VO _{<i>x</i>} fi,-Al ₂ O ₃ (010) and Its Adsorption of Methanol. Journal of Physical Chemistry C, 2019, 123, 27704-27711.	3.1	6
535	Entangled Photon Resonance Energy Transfer in Arbitrary Media. Journal of Physical Chemistry Letters, 2019, 10, 3181-3188.	4.6	6
536	Broad-band high-gain room temperature photodetectors using semiconductor–metal nanofloret hybrids with wide plasmonic response. Nanoscale, 2019, 11, 6368-6376.	5.6	6
537	Photophysical implications of ring fusion, linker length, and twisting angle in a series of perylenediimide–thienoacene dimers. Chemical Science, 2020, 11, 7133-7143.	7.4	6
538	Multimetallic Nanoparticles on Mirrors for SERS Detection. Journal of Physical Chemistry C, 2021, 125, 12784-12791.	3.1	6
539	Mechanism of Long-Range Energy Transfer from Quantum Dots to Black Phosphorus. Journal of Physical Chemistry C, 2021, 125, 15458-15464.	3.1	6
540	Interfacial engineering of plasmonic nanoparticle metasurfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6

#	Article	IF	CITATIONS
541	Theoretical Studies of the O(³ P) + C ₂ Reaction at Hyperthermal Energies. Journal of Physical Chemistry C, 2012, 116, 26577-26585.	3.1	5
542	O2(X3Σgâ^) and O2(a1Δg) charge exchange with simple ions. Journal of Chemical Physics, 2014, 140, 214307.	3.0	5
543	Mechanistic understanding of entanglement and heralding in cascade emitters. Journal of Chemical Physics, 2021, 154, 024304.	3.0	5
544	Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exoâ€Binding with Cucurbit[6]uril. Angewandte Chemie, 2021, 133, 17728-17735.	2.0	5
545	Large-Area, Highly Crystalline DNA-Assembled Metasurfaces Exhibiting Widely Tunable Epsilon-Near-Zero Behavior. ACS Nano, 2021, 15, 18289-18296.	14.6	5
546	Molecular Insight into the β-Sheet Twist and Related Morphology of Self-Assembled Peptide Amphiphile Ribbons. Journal of Physical Chemistry Letters, 2021, 12, 11238-11244.	4.6	5
547	Electronic Population Inversion in HCCO/DCCO Products from Hyperthermal Collisions of O(³ P) with HCCH/DCCD. Journal of Physical Chemistry Letters, 2013, 4, 1315-1321.	4.6	4
548	Light-Driven Ca ²⁺ Ion Pump: How Does It Work?. Journal of Physical Chemistry B, 2015, 119, 15110-15117.	2.6	4
549	Molecular Transport Junctions Created By Self ontacting Gapped Nanowires. Small, 2016, 12, 4349-4356.	10.0	4
550	Structure and Dynamics of Electron Injection and Charge Recombination in i-Motif DNA Conjugates. Journal of Physical Chemistry B, 2017, 121, 8058-8068.	2.6	4
551	Quantum embedding for material chemistry based on domain separation and open subsystems. International Journal of Quantum Chemistry, 2020, 120, e26184.	2.0	4
552	Orbital Control and Coherent Charge Transport in Transition Metal Platinum(II)–Platinum(II) Lantern Complexes in Molecular Junctions. Journal of Physical Chemistry C, 2020, 124, 3233-3241.	3.1	4
553	Lowâ€Đensity 2D Superlattices Assembled via Directional DNA Bonding. Angewandte Chemie - International Edition, 2021, 60, 19035-19040.	13.8	4
554	Second Linear Response Theory and the Analytic Calculation of Excited-State Properties. Journal of Physical Chemistry A, 2021, 125, 1093-1102.	2.5	4
555	Chapter 6. Computational Electrodynamics Methods. RSC Theoretical and Computational Chemistry Series, 2011, , 147-178.	0.7	4
556	Multipurpose made colorimetric materials for amines, pH change and metal ion detection. RSC Advances, 2022, 12, 2684-2692.	3.6	4
557	Late to the Party: Synthesis and Characterization of Tellurium and Selenium Half-Sandwich Complexes. Organometallics, 2021, 40, 4104-4109.	2.3	4
558	Atomic-Scale View of Redox Induced Changes for Monolayer MoO _{<i>x</i>} on α-TiO ₂ (110) with Chemical-State Sensitivity. Journal of Physical Chemistry Letters, 2022, 13, 5304-5309.	4.6	4

#	Article	IF	CITATIONS
559	A reference trajectory approach to Langevin equations in gas phase collision dynamics. Journal of Chemical Physics, 1980, 73, 2792-2801.	3.0	3
560	Quantum Scattering Studies of Collisional Energy Transfer from Highly Excited Polyatomic Molecules: Collinear He + CS2 at Energies up to 92 kcal/mol. ACS Symposium Series, 1997, , 202-219.	0.5	3
561	QUASICLASSICAL TRAJECTORY STUDIES OF FOUR-ATOM REACTIONS. Advanced Series in Physical Chemistry, 2004, , 249-290.	1.5	3
562	Alkanethiol Mediated Release of Surface Bound Nanoparticles Fabricated by Nanosphere Lithography. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	3
563	Enzymatically Controlled Vacancies in Nanoparticle Crystals. Nano Letters, 2016, 16, 5114-5119.	9.1	3
564	The competing effects of core rigidity and linker flexibility in the nanoassembly of trivalent small molecule-DNA hybrids (SMDH ₃ s)–a synergistic experimental-modeling study. Nanoscale, 2017, 9, 12652-12663.	5.6	3
565	Highly Stable, Ultrasmall Polymer-Grafted Nanobins (usPGNs) with Stimuli-Responsive Capability. Journal of Physical Chemistry Letters, 2018, 9, 1133-1139.	4.6	3
566	Development of formalisms based on locally coupled open subsystems for calculations in molecular electronic structure and dynamics. Physical Review A, 2018, 98, .	2.5	3
567	Empirical Mappings of the Frequency Response of an Electron Ratchet to the Characteristics of the Polymer Transport Layer. Journal of Physical Chemistry C, 2019, 123, 22050-22057.	3.1	3
568	Phonon-induced plasmon-exciton coupling changes probed via oscillation-associated spectra. Applied Physics Letters, 2019, 115, .	3.3	3
569	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry C, 2019, 123, 1-9.	3.1	3
570	SERS and the scientific career of Richard P. Van Duyne (1945–2019). Journal of Raman Spectroscopy, 2021, 52, 268-278.	2.5	3
571	Identification of the most stable silver cluster ions produced under plasma solution conditions. Molecular Physics, 2021, 119, .	1.7	3
572	Revealing the Three-Dimensional Orientation and Interplay between Plasmons and Interband Transitions for Single Gold Bipyramids by Photoluminescence Excitation Pattern Imaging. Journal of Physical Chemistry C, 2021, 125, 26978-26985.	3.1	3
573	Controlled Hysteresis of Conductance in Molecular Tunneling Junctions. ACS Nano, 2022, 16, 4206-4216.	14.6	3
574	Generating Bright Emissive States by Modulating the Bandgap of Monolayer Tungsten Diselenide. Journal of Physical Chemistry C, 2022, 126, 5598-5606.	3.1	3
575	125th Anniversary of <i>JPC</i> : A Historical Perspective. Journal of Physical Chemistry C, 2021, 125, 25927-25935.	3.1	3
576	Tantalum, easy as Pi: understanding differences in metal–imido bonding towards improving Ta/Nb separations. Chemical Science, 2022, 13, 6796-6805.	7.4	3

#	Article	IF	CITATIONS
577	Optical Properties of One-Dimensional Metal Nanostructures. Materials Research Society Symposia Proceedings, 2004, 818, 233.	0.1	2
578	Modeling Ion Channels Using Poisson–Nernst–Planck Theory as an Integrated Approach To Introducing Nanotechnology Concepts: The PNP Cyclic Peptide Ion Channel Model. Journal of Chemical Education, 2008, 85, 744.	2.3	2
579	Editorial for January 2017 for JPC A/B/C. Journal of Physical Chemistry A, 2017, 121, 1-3.	2.5	2
580	Energetic and Frictional Effects in the Transport of Ions in a Cyclic Peptide Nanotube. Bulletin of the Korean Chemical Society, 2017, 38, 19-26.	1.9	2
581	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry C, 2018, 122, 1-7.	3.1	2
582	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry B, 2018, 122, 1-7.	2.6	2
583	Hydrogenation of CO on Ni(110) by Energetic Deuterium. Journal of Physical Chemistry C, 2018, 122, 14671-14677.	3.1	2
584	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry A, 2019, 123, 5837-5848.	2.5	2
585	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry Letters, 2019, 10, 4051-4062.	4.6	2
586	Richard P. Van Duyne (1945–2019). Nature Nanotechnology, 2019, 14, 913-913.	31.5	2
587	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry B, 2019, 123, 1-9.	2.6	2
588	Editorial for January 2019 for JPC A/B/C. Journal of Physical Chemistry A, 2019, 123, 1-9.	2.5	2
589	Preface to the special issue dedicated to Professor Richard P. Van Duyne (1945–2019). Journal of Raman Spectroscopy, 2021, 52, 263-267.	2.5	2
590	Quantum electrodynamics description of localized surface plasmons at a metal nanosphere. Physical Review A, 2021, 103, .	2.5	2
591	Molecular Dynamics Studies of Ion Distributions around DNA Duplexes and Duplex Dimers: Salt Effects and the Connection to Cooperative DNA Melting. Materials Research Society Symposia Proceedings, 2002, 735, 1011.	0.1	1
592	Time-Dependent Density Functional Theory Examination of the Effects of Ligand Adsorption on Metal Nanoparticles. ACS Symposium Series, 2008, , 108-121.	0.5	1
593	A quasiclassical trajectory study of mode specific reaction rate enhancements in H + H2O (v1v2v3) → OH + H2. International Journal of Quantum Chemistry, 1981, 20, 611-619.	2.0	1
594	Direct Dynamics Simulations of the Reaction O ⁺ (⁴ S) + HCN at Hyperthermal Collision Energies. Journal of Physical Chemistry C, 2010, 114, 5263-5275.	3.1	1

#	Article	IF	CITATIONS
595	Nanoparticles and theory. , 2012, , .		1
596	Virtual Issue Celebrating the Life and Career of Millie Dresselhaus. Chemistry of Materials, 2017, 29, 5017-5018.	6.7	1
597	Ultra-High Vacuum Tip-Enhanced Raman Spectroscopy. , 2018, , 231-253.		1
598	SERS Theory: The Chemical Effect of Rhodamine 6G Adsorption on Silver Surfaces on Its Raman Spectrum. , 2018, , 401-414.		1
599	Editorial for January 2018 for JPC A/B/C. Journal of Physical Chemistry A, 2018, 122, 1-7.	2.5	1
600	Virtual Issue on Physical Chemistry in South Korea. Journal of Physical Chemistry A, 2018, 122, 6961-6962.	2.5	1
601	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry B, 2019, 123, 5973-5984.	2.6	1
602	The <i>JPC</i> Periodic Table. Journal of Physical Chemistry C, 2019, 123, 17063-17074.	3.1	1
603	International Year of the Periodic Table from a Physical Chemistry Perspective. Journal of Physical Chemistry Letters, 2019, 10, 5956-5956.	4.6	1
604	Young Scientists Virtual Special Issue. Journal of Physical Chemistry A, 2019, 123, 7335-7336.	2.5	1
605	Electromagnetic fields around silver nanoparticles and dimers. , 0, .		1
606	Extended kinetic lattice grand canonical Monte Carlo simulation method for transport of multicomponent ion mixtures through a model nanopore system. Bulletin of the Korean Chemical Society, 2022, 43, 343-354.	1.9	1
607	Localized π Surface States on 2D Molybdenum Disulfide from Carbene-Functionalization as a Qubit Design Strategy. ACS Physical Chemistry Au, 0, , .	4.0	1
608	Dynamic Control of Photocatalytic Proton Reduction through the Mechanical Actuation of a Hydrogel Host Matrix. Journal of Physical Chemistry Letters, 2021, 12, 12135-12141.	4.6	1
609	HN2 and DN2 Resonance Spectra. ACS Symposium Series, 1992, , 37-47.	0.5	Ο
610	Optical near-field enhancement around lithographic metallic nanostructures using an azo-dye polymer: direct observation and realization of sub-wavelength complex structures. Materials Research Society Symposia Proceedings, 2004, 838, 187.	0.1	0
611	Molecular dynamics simulation of ds-DNA on a gold surface at low surface coverage. Materials Research Society Symposia Proceedings, 2009, 1177, 68.	0.1	0
612	Inelastic and Reactive Scattering Dynamics of Hyperthermal Oxygen Atoms on Ionic Liquid Surfaces: [emim][NTf[sub 2]] and [C[sub 12]mim][NTf[sub 2]]. , 2011, , .		0

#	Article	IF	CITATIONS
613	Crossed-Beams and Theoretical Studies of Hyperthermal Reactions of O([sup 3]P) with HCl and H[sub 2]O. , 2011, , .		0
614	Advancing the Frontiers of Physical Chemistry. Journal of Physical Chemistry Letters, 2012, 3, 38-39.	4.6	0
615	Editorial for January 2017 for JPC A/B/C. Journal of Physical Chemistry B, 2017, 121, 1-3.	2.6	0
616	What Does "Important New Physical Insights―Mean? Tips for Writing Better Papers. Journal of Physical Chemistry A, 2017, 121, 3627-3628.	2.5	0
617	What Does "Important New Physical Insights―Mean? Tips for Writing Better Papers. Journal of Physical Chemistry B, 2017, 121, 4947-4948.	2.6	0
618	What Does "Important New Physical Insights―Mean? Tips for Writing Better Papers. Journal of Physical Chemistry C, 2017, 121, 10265-10266.	3.1	0
619	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry C, 2017, 121, 23849-23851.	3.1	0
620	Physical Chemistry in India. Journal of Physical Chemistry Letters, 2017, 8, 3122-3128.	4.6	0
621	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry A, 2017, 121, 8185-8187.	2.5	0
622	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry Letters, 2017, 8, 5306-5308.	4.6	0
623	Virtual Issue in Honor of the 150th Birthday of Marie Curie: Highlighting Female Physical Chemists. Journal of Physical Chemistry B, 2017, 121, 9983-9985.	2.6	0
624	Physical Chemistry in India. Journal of Physical Chemistry A, 2017, 121, 4843-4849.	2.5	0
625	Physical Chemistry in India. Journal of Physical Chemistry B, 2017, 121, 6287-6293.	2.6	0
626	Physical Chemistry in India. Journal of Physical Chemistry C, 2017, 121, 13977-13983.	3.1	0
627	Virtual Issue on New Physical Insights. Journal of Physical Chemistry A, 2018, 122, 3959-3961.	2.5	0
628	Virtual Issue on New Physical Insights. Journal of Physical Chemistry B, 2018, 122, 4385-4387.	2.6	0
629	Virtual Issue on New Physical Insights. Journal of Physical Chemistry C, 2018, 122, 8701-8703.	3.1	0
630	New Sections for <i>JPC A</i> / <i>B</i> / <i>C</i> . Journal of Physical Chemistry A, 2018, 122, 2611-2611.	2.5	0

#	Article	IF	CITATIONS
631	New Sections for JPC A/B/C. Journal of Physical Chemistry C, 2018, 122, 5215-5215.	3.1	0
632	New Sections for JPC A/B/C. Journal of Physical Chemistry B, 2018, 122, 2703-2703.	2.6	0
633	Virtual Issue on Physical Chemistry in South Korea. Journal of Physical Chemistry C, 2018, 122, 20055-20056.	3.1	0
634	Virtual Issue on Physical Chemistry in South Korea. Journal of Physical Chemistry Letters, 2018, 9, 4893-4894.	4.6	0
635	Virtual Issue on Physical Chemistry in South Korea. Journal of Physical Chemistry B, 2018, 122, 8315-8316.	2.6	0
636	International Year of the Periodic Table from a Physical Chemistry Perspective. Journal of Physical Chemistry A, 2019, 123, 8335-8335.	2.5	0
637	International Year of the Periodic Table from a Physical Chemistry Perspective. Journal of Physical Chemistry B, 2019, 123, 8167-8167.	2.6	0
638	International Year of the Periodic Table from a Physical Chemistry Perspective. Journal of Physical Chemistry C, 2019, 123, 23759-23759.	3.1	0
639	Young Scientists Virtual Special Issue. Journal of Physical Chemistry C, 2019, 123, 20689-20690.	3.1	0
640	Young Scientists Virtual Special Issue. Journal of Physical Chemistry B, 2019, 123, 7241-7242.	2.6	0
641	Retirement as Editor-in-Chief. Journal of Physical Chemistry C, 2019, 123, 30767-30767.	3.1	0
642	Retirement as Editor-in-Chief. Journal of Physical Chemistry B, 2019, 123, 10903-10903.	2.6	0
643	Retirement as Editor-in-Chief. Journal of Physical Chemistry Letters, 2019, 10, 7870-7871.	4.6	0
644	Atom vacancies and electronic transmission Stark effects in boron nanoflake junctions. Journal of Materials Chemistry C, 2020, 8, 15208-15218.	5.5	0
645	Domain Separated Density Functional Theory for Reaction Energy Barriers and Optical Excitations. Journal of Physical Chemistry A, 2020, 124, 5954-5962.	2.5	0
646	Virtual Issue in Honor of Prof. Richard Van Duyne (1945–2019). Analytical Chemistry, 2020, 92, 4165-4166.	6.5	0
647	Lowâ€Density 2D Superlattices Assembled via Directional DNA Bonding. Angewandte Chemie, 2021, 133, 19183-19188	2.0	0
648	Quasiclassical Trajectory Study of the O(3P) + CO2(1Σg+) Reaction at Hyperthermal Energies. Journal of Physical Chemistry A, 2021, 125, 8626-8634.	2.5	0

#	Article	IF	CITATIONS
649	Retirement as Editor-in-Chief. Journal of Physical Chemistry A, 2019, 123, 10845-10845.	2.5	0
650	Localized Surface Plasmons in Nanoparticles. , 2020, , 69-94.		0
651	125th Anniversary of <i>JPC</i> : A Historical Perspective. Journal of Physical Chemistry B, 2021, 125, 12909-12917.	2.6	0
652	125th Anniversary of <i>JPC</i> : A Historical Perspective. Journal of Physical Chemistry A, 2021, 125, 10121-10129.	2.5	0
653	Atomic-Site-Specific Surface Valence-Band Structure from X-Ray Standing-Wave Excited Photoemission. Physical Review Letters, 2022, 128, .	7.8	0