Arndt von Haeseler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4007613/publications.pdf

Version: 2024-02-01

97 papers 55,472 citations

53 h-index 89 g-index

106 all docs

106 docs citations

106 times ranked 43134 citing authors

#	Article	IF	CITATIONS
1	IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 2015, 32, 268-274.	3.5	16,610
2	ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 2017, 14, 587-589.	9.0	9,486
3	IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 2020, 37, 1530-1534.	3 . 5	5,960
4	UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 2018, 35, 518-522.	3.5	5,798
5	Ultrafast Approximation for Phylogenetic Bootstrap. Molecular Biology and Evolution, 2013, 30, 1188-1195.	3 . 5	3,123
6	W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 2016, 44, W232-W235.	6.5	3,039
7	Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Systematic Biology, 2016, 65, 997-1008.	2.7	1,453
8	Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods, 2018, 15, 461-468.	9.0	1,175
9	Unexpected complexity of the Wnt gene family in a sea anemone. Nature, 2005, 433, 156-160.	13.7	516
10	Updating benchtop sequencing performance comparison. Nature Biotechnology, 2013, 31, 294-296.	9.4	423
11	Thiol-linked alkylation of RNA to assess expression dynamics. Nature Methods, 2017, 14, 1198-1204.	9.0	411
12	NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics, 2013, 29, 2790-2791.	1.8	408
13	A view of Neandertal genetic diversity. Nature Genetics, 2000, 26, 144-146.	9.4	330
14	The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology, 2011, 20, 1952-1963.	2.0	316
15	A Phylogenomic Approach to Resolve the Arthropod Tree of Life. Molecular Biology and Evolution, 2010, 27, 2451-2464.	3.5	308
16	SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science, 2018, 360, 800-805.	6.0	284
17	Genome-Wide RNAi Screen Identifies Genes Involved in Intestinal Pathogenic Bacterial Infection. Science, 2009, 325, 340-343.	6.0	277
18	Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Medicine, 2016, 8, 73.	3 . 6	265

#	Article	IF	CITATIONS
19	Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nature Communications, 2018, 9, 1517.	5.8	256
20	DNA sequence variation in a non-coding region of low recombination on the human X chromosome. Nature Genetics, 1999, 22, 78-81.	9.4	237
21	Pattern of Nucleotide Substitution and Rate Heterogeneity in the Hypervariable Regions I and II of Human mtDNA. Genetics, 1999, 152, 1103-1110.	1.2	232
22	A Stochastic Model for the Evolution of Autocorrelated DNA Sequences. Molecular Phylogenetics and Evolution, 1994, 3, 240-247.	1.2	224
23	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	2.6	221
24	A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans. Nature, 1995, 378, 489-492.	13.7	217
25	Central control of fever and female body temperature by RANKL/RANK. Nature, 2009, 462, 505-509.	13.7	212
26	A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Research, 2016, 26, 462-473.	2.4	157
27	IQPNNI: Moving Fast Through Tree Space and Stopping in Time. Molecular Biology and Evolution, 2004, 21, 1565-1571.	3.5	146
28	Inference of Population History Using a Likelihood Approach. Genetics, 1998, 149, 1539-1546.	1.2	141
29	A Consistent Phylogenetic Backbone for the Fungi. Molecular Biology and Evolution, 2012, 29, 1319-1334.	3.5	129
30	MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evolutionary Biology, 2018, 18, 11.	3.2	129
31	The mitochondrial genome of a monotremeâ€"the platypus (Ornithrohynchus anatinus). Journal of Molecular Evolution, 1996, 42, 153-159.	0.8	127
32	Decisive Data Sets in Phylogenomics: Lessons from Studies on the Phylogenetic Relationships of Primarily Wingless Insects. Molecular Biology and Evolution, 2014, 31, 239-249.	3.5	127
33	Mapping Human Genetic Ancestry. Molecular Biology and Evolution, 2007, 24, 2266-2276.	3.5	117
34	Simultaneous Statistical Multiple Alignment and Phylogeny Reconstruction. Systematic Biology, 2005, 54, 548-561.	2.7	114
35	The genetical archaeology of the human genome. Nature Genetics, 1996, 14, 135-140.	9.4	105
36	A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science, 2020, 370, 935-941.	6.0	101

#	Article	IF	Citations
37	The genomic basis of circadian and circalunar timing adaptations in a midge. Nature, 2016, 540, 69-73.	13.7	96
38	Distribution and Phylogeny of Light-Oxygen-Voltage-Blue-Light-Signaling Proteins in the Three Kingdoms of Life. Journal of Bacteriology, 2009, 191, 7234-7242.	1.0	95
39	EST sequencing of Onychophora and phylogenomic analysis of Metazoa. Molecular Phylogenetics and Evolution, 2007, 45, 942-951.	1.2	92
40	The evolution of the ribosome biogenesis pathway from a yeast perspective. Nucleic Acids Research, 2014, 42, 1509-1523.	6.5	87
41	Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets. BMC Bioinformatics, 2019, 20, 258.	1.2	86
42	A Developmentally Regulated Aconitase Related to Iron-regulatory Protein-1 Is Localized in the Cytoplasm and in the Mitochondrion of Trypanosoma brucei. Journal of Biological Chemistry, 2000, 275, 2745-2755.	1.6	82
43	Cooperation of Multiple Chromatin Modifications Can Generate Unanticipated Stability of Epigenetic States in <i>Arabidopsis</i> /i>Â Â Â. Plant Cell, 2010, 22, 34-47.	3.1	82
44	Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs. Genome Research, 2012, 22, 1468-1476.	2.4	80
45	A Coalescent Approach to Study Linkage Disequilibrium between Single-Nucleotide Polymorphisms. American Journal of Human Genetics, 2000, 66, 615-628.	2.6	77
46	Split diversity in constrained conservation prioritization using integer linear programming. Methods in Ecology and Evolution, 2015, 6, 83-91.	2.2	75
47	GHOST: Recovering Historical Signal from Heterotachously Evolved Sequence Alignments. Systematic Biology, 2020, 69, 249-264.	2.7	7 5
48	Conserved pore-forming regions in polypeptide- transporting proteins. FEBS Journal, 2005, 272, 1367-1378.	2.2	74
49	Functional and Phylogenetic Properties of the Pore-forming \hat{I}^2 -Barrel Transporters of the Omp85 Family. Journal of Biological Chemistry, 2007, 282, 1882-1890.	1.6	74
50	Reversible polymorphism-aware phylogenetic models and their application to tree inference. Journal of Theoretical Biology, 2016, 407, 362-370.	0.8	70
51	plQPNNI: parallel reconstruction of large maximum likelihood phylogenies. Bioinformatics, 2005, 21, 3794-3796.	1.8	69
52	A Phylogenomic Approach to Resolve the Basal Pterygote Divergence. Molecular Biology and Evolution, 2009, 26, 2719-2730.	3.5	66
53	Quartet-Mapping, a Generalization of the Likelihood-Mapping Procedure. Molecular Biology and Evolution, 2001, 18, 1204-1219.	3.5	63
54	NGC: lossless and lossy compression of aligned high-throughput sequencing data. Nucleic Acids Research, 2013, 41, e27-e27.	6.5	57

#	Article	IF	CITATIONS
55	The Tetratricopeptide Repeats of Receptors Involved in Protein Translocation across Membranes. Molecular Biology and Evolution, 2007, 24, 2763-2774.	3.5	56
56	Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. ELife, 2019, 8, .	2.8	51
57	The Candida albicans Histone Acetyltransferase Hat1 Regulates Stress Resistance and Virulence via Distinct Chromatin Assembly Pathways. PLoS Pathogens, 2015, 11, e1005218.	2.1	48
58	Recent Origin and Cultural Reversion of a Hunter–Gatherer Group. PLoS Biology, 2005, 3, e71.	2.6	47
59	Modeling the Polymerase Chain Reaction. Journal of Computational Biology, 1995, 2, 49-61.	0.8	46
60	ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain. Nucleic Acids Research, 2014, 42, 12155-12168.	6.5	42
61	Network models for sequence evolution. Journal of Molecular Evolution, 1993, 37, 77-85.	0.8	39
62	Pegylated granulocyte colony-stimulating factor mobilizes CD34+ cells with different stem and progenitor subsets and distinct functional properties in comparison with unconjugated granulocyte colony-stimulating factor. Haematologica, 2008, 93, 347-355.	1.7	39
63	Performance of the Maximum Likelihood, Neighbor Joining, and Maximum Parsimony Methods When Sequence Sites are Not Independent. Systematic Biology, 1995, 44, 533-547.	2.7	37
64	Phylogenetic Diversity within Seconds. Systematic Biology, 2006, 55, 769-773.	2.7	37
65	Innate Immune Response to Streptococcus pyogenes Depends on the Combined Activation of TLR13 and TLR2. PLoS ONE, 2015, 10, e0119727.	1.1	37
66	Towards Integration of Multiple Alignment and Phylogenetic Tree Construction. Journal of Computational Biology, 1997, 4, 23-34.	0.8	35
67	ATM controls meiotic DNA double-strand break formation and recombination and affects synaptonemal complex organization in plants. Plant Cell, 2021, 33, 1633-1656.	3.1	33
68	Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nature Communications, 2021, 12, 387.	5.8	32
69	Identifying Site-Specific Substitution Rates. Molecular Biology and Evolution, 2003, 20, 182-189.	3.5	29
70	Polymorphism-Aware Species Trees with Advanced Mutation Models, Bootstrap, and Rate Heterogeneity. Molecular Biology and Evolution, 2019, 36, 1294-1301.	3.5	27
71	Teaser: Individualized benchmarking and optimization of read mapping results for NGS data. Genome Biology, 2015, 16, 235.	3.8	25
72	TRUmiCount: correctly counting absolute numbers of molecules using unique molecular identifiers. Bioinformatics, 2018, 34, 3137-3144.	1.8	25

#	Article	IF	CITATIONS
73	The Evolutionary Traceability of a Protein. Genome Biology and Evolution, 2019, 11, 531-545.	1.1	23
74	Genetic distances and nucleotide substitution models. , 2009, , 111-141.		20
75	In vivo insertion pool sequencing identifies virulence factors in a complex fungal–host interaction. PLoS Biology, 2018, 16, e2005129.	2.6	20
76	Do we still need supertrees?. BMC Biology, 2012, 10, 13.	1.7	19
77	A-to-I RNA Editing Uncovers Hidden Signals of Adaptive Genome Evolution in Animals. Genome Biology and Evolution, 2020, 12, 345-357.	1.1	17
78	Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nature Communications, 2020, 11, 4869.	5.8	16
79	Distinguishing Felsenstein Zone from Farris Zone Using Neural Networks. Molecular Biology and Evolution, 2020, 37, 3632-3641.	3.5	16
80	HvrBase++: a phylogenetic database for primate species. Nucleic Acids Research, 2006, 34, D700-D704.	6.5	15
81	Germline Variants in the POT1-Gene in High-Risk Melanoma Patients in Austria. G3: Genes, Genomes, Genetics, 2018, 8, 1475-1480.	0.8	12
82	Complex Models of Sequence Evolution Require Accurate Estimators as Exemplified with the Invariable Site Plus Gamma Model. Systematic Biology, 2018, 67, 552-558.	2.7	11
83	TMT-Opsins differentially modulate medaka brain function in a context-dependent manner. PLoS Biology, 2021, 19, e3001012.	2.6	9
84	Decreased expression of endogenous feline leukemia virus in cat lymphomas: a case control study. BMC Veterinary Research, 2015, 11, 90.	0.7	8
85	Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: Origin, Phylogeny, and Function. Molecular Biology and Evolution, 2021, 38, 819-837.	3.5	6
86	Exploring the sampling universe of RNA-seq. Statistical Applications in Genetics and Molecular Biology, 2013, 12, 175-88.	0.2	5
87	It Is Just a Matter of Time: Balancing Homologous Recombination and Non-homologous End Joining at the rDNA Locus During Meiosis. Frontiers in Plant Science, 2021, 12, 773052.	1.7	3
88	An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the Expected Fragment Starting-Point and Coverage Profile. Journal of Computational Biology, 2017, 24, 200-212.	0.8	2
89	Computational Molecular Evolution—Ziheng Yang. 2006. Oxford University Press, Oxford. 376 pp. ISBN 978-0-19-856699-1 (ISBN-10 0-19-856699-9) £60 \$115 (hardback). ISBN 978-0-19-856702-8 (ISBN-10 0-19-856£27.50 \$52.50 (paperback) Systematic Biology, 2007, 56, 1024-1026.	672072-2)	1
90	VARIFI—Web-Based Automatic Variant Identification, Filtering and Annotation of Amplicon Sequencing Data. Journal of Personalized Medicine, 2019, 9, 10.	1.1	1

#	Article	IF	CITATIONS
91	Structure of the space of taboo-free sequences. Journal of Mathematical Biology, 2020, 81, 1029-1057.	0.8	O
92	TMT-Opsins differentially modulate medaka brain function in a context-dependent manner., 2021, 19, e3001012.		0
93	TMT-Opsins differentially modulate medaka brain function in a context-dependent manner. , 2021, 19, e3001012.		O
94	TMT-Opsins differentially modulate medaka brain function in a context-dependent manner., 2021, 19, e3001012.		0
95	TMT-Opsins differentially modulate medaka brain function in a context-dependent manner. , 2021, 19, e3001012.		O
96	TMT-Opsins differentially modulate medaka brain function in a context-dependent manner., 2021, 19, e3001012.		0
97	TMT-Opsins differentially modulate medaka brain function in a context-dependent manner. , 2021, 19, e3001012.		0