
Renier J Brentjens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4006693/publications.pdf Version: 2024-02-01

RENIED I RDENTIENS

#	Article	IF	CITATIONS
1	Multipurposing CARs: Same engine, different vehicles. Molecular Therapy, 2022, 30, 1381-1395.	8.2	9
2	Engineering CAR-T cells to activate small-molecule drugs in situ. Nature Chemical Biology, 2022, 18, 216-225.	8.0	39
3	CD19-directed chimeric antigen receptor T cell therapy in Waldenström macroglobulinemia: a preclinical model and initial clinical experience. , 2022, 10, e004128.		18
4	Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nature Medicine, 2022, 28, 713-723.	30.7	117
5	Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nature Reviews Clinical Oncology, 2022, 19, 342-355.	27.6	113
6	Frontiers in cancer immunotherapy—a symposium report. Annals of the New York Academy of Sciences, 2021, 1489, 30-47.	3.8	39
7	Impact of bridging chemotherapy on clinical outcome of CD19 CAR T therapy in adult acute lymphoblastic leukemia. Leukemia, 2021, 35, 3268-3271.	7.2	21
8	Chimeric Antigen Receptor–Modified Immune Effector Cell Therapies. Cancer Journal (Sudbury, Mass), 2021, 27, 90-91.	2.0	0
9	Bispecific T-Cell Engaging Antibodies Against MUC16 Demonstrate Efficacy Against Ovarian Cancer in Monotherapy and in Combination With PD-1 and VEGF Inhibition. Frontiers in Immunology, 2021, 12, 663379.	4.8	20
10	A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti–PD-1 Agent Pembrolizumab. Cancer Discovery, 2021, 11, 2748-2763.	9.4	222
11	Modified EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Advances, 2021, 5, 3397-3406.	5.2	59
12	Depletion of high-content CD14+ cells from apheresis products is critical for successful transduction and expansion of CAR TÂcells during large-scale cGMP manufacturing. Molecular Therapy - Methods and Clinical Development, 2021, 22, 377-387.	4.1	17
13	Human cytomegalovirus expands a CD8 ⁺ T cell population with loss of <i>BCL11B</i> expression and gain of NK cell identity. Science Immunology, 2021, 6, eabe6968.	11.9	25
14	Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nature Reviews Clinical Oncology, 2020, 17, 147-167.	27.6	786
15	The Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of acute leukemia. , 2020, 8, e000810.		5
16	CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function. Nature Communications, 2020, 11, 6171.	12.8	20
17	Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers, 2020, 12, 2175.	3.7	17
18	Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nature Communications, 2020, 11, 6298.	12.8	82

#	Article	IF	CITATIONS
19	Low toxicity and favorable overall survival in relapsed/refractory B-ALL following CAR T cells and CD34-selected T-cell depleted allogeneic hematopoietic cell transplant. Bone Marrow Transplantation, 2020, 55, 2160-2169.	2.4	11
20	CAR T Cells for Mantle Cell Lymphoma: Is it Time to Reshuffle the Deck?. Cancer Cell, 2020, 37, 761-763.	16.8	0
21	Early experience using salvage radiotherapy for relapsed/refractory nonâ€Hodgkin lymphomas after CD19 chimericÂantigen receptor (CAR)ÂT cell therapy. British Journal of Haematology, 2020, 190, 45-51.	2.5	51
22	Excessive Costimulation Leads to Dysfunction of Adoptively Transferred T Cells. Cancer Immunology Research, 2020, 8, 732-742.	3.4	16
23	Defining an Optimal Dual-Targeted CAR T-cell Therapy Approach Simultaneously Targeting BCMA and GPRC5D to Prevent BCMA Escape–Driven Relapse in Multiple Myeloma. Blood Cancer Discovery, 2020, 1, 146-154.	5.0	114
24	Enhancing CAR T cell efficacy: the next step toward a clinical revolution?. Expert Review of Hematology, 2020, 13, 533-543.	2.2	10
25	Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management. Blood Advances, 2020, 4, 676-686.	5.2	101
26	Application of CAR T cells for the treatment of solid tumors. Progress in Molecular Biology and Translational Science, 2019, 164, 293-327.	1.7	15
27	CARs of the future. American Journal of Hematology, 2019, 94, S55-S58.	4.1	10
28	CAR T ell therapy: Full speed ahead. Hematological Oncology, 2019, 37, 95-100.	1.7	131
29	BCMA-Targeted CAR T-cell Therapy plus Radiotherapy for the Treatment of Refractory Myeloma Reveals Potential Synergy. Cancer Immunology Research, 2019, 7, 1047-1053.	3.4	59
30	CD40 Ligand-Modified Chimeric Antigen Receptor T Cells Enhance Antitumor Function by Eliciting an Endogenous Antitumor Response. Cancer Cell, 2019, 35, 473-488.e6.	16.8	159
31	GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Science Translational Medicine, 2019, 11, .	12.4	229
32	Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood, 2019, 134, 2361-2368.	1.4	190
33	Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. EBioMedicine, 2019, 39, 173-181.	6.1	47
34	Building a CAR Garage: Preparing for the Delivery of Commercial CAR T Cell Products at Memorial Sloan Kettering Cancer Center. Biology of Blood and Marrow Transplantation, 2018, 24, 1135-1141.	2.0	60
35	Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2018, 378, 449-459.	27.0	1,951
36	Development and Evaluation of an Optimal Human Single-Chain Variable Fragment-Derived BCMA-Targeted CAR T Cell Vector. Molecular Therapy, 2018, 26, 1447-1456.	8.2	77

#	Article	IF	CITATIONS
37	Concurrent therapy of chronic lymphocytic leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia utilizing CD19-targeted CAR T-cells. Leukemia and Lymphoma, 2018, 59, 1717-1721.	1.3	6
38	Dawn of chimeric antigen receptor T cell therapy in non-Hodgkin Lymphoma. Advances in Cell and Gene Therapy, 2018, 1, e23.	0.9	1
39	Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. , 2018, 6, 137.		182
40	Tumors evading CARs—the chase is on. Nature Medicine, 2018, 24, 1492-1493.	30.7	32
41	Screening Clinical Cell Products for Replication Competent Retrovirus: The National Gene Vector Biorepository Experience. Molecular Therapy - Methods and Clinical Development, 2018, 10, 371-378.	4.1	24
42	Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System. Cell Reports, 2018, 23, 2130-2141.	6.4	233
43	CAR T cells, immunologic and cellular therapies in hematologic malignancies. Best Practice and Research in Clinical Haematology, 2018, 31, 115-116.	1.7	1
44	Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nature Biotechnology, 2018, 36, 847-856.	17.5	564
45	Autologous CD19-Targeted CAR T Cells in Patients with Residual CLL following Initial Purine Analog-Based Therapy. Molecular Therapy, 2018, 26, 1896-1905.	8.2	65
46	Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-cell Therapy in Patients with B-cell Acute Lymphoblastic Leukemia. Cancer Discovery, 2018, 8, 958-971.	9.4	594
47	Intestinal Microbiota Composition Prior to CAR T Cell Infusion Correlates with Efficacy and Toxicity. Blood, 2018, 132, 3492-3492.	1.4	13
48	Hiding in plain sight: immune escape in the era of targeted T-cell-based immunotherapies. Nature Reviews Clinical Oncology, 2017, 14, 333-334.	27.6	10
49	Development of CAR T cells designed to improve antitumor efficacy and safety. , 2017, 178, 83-91.		90
50	Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Scientific Reports, 2017, 7, 10541.	3.3	288
51	Emerging Role of CAR T Cells in Non-Hodgkin's Lymphoma. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 1429-1437.	4.9	18
52	Adoptive T-Cell Therapy for Solid Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 193-204.	3.8	44
53	Development and Evaluation of a Human Single Chain Variable Fragment (scFv) Derived Bcma Targeted CAR T Cell Vector Leads to a High Objective Response Rate in Patients with Advanced MM. Blood, 2017, 130, 742-742.	1.4	92
54	Enhancing CAR T Cell Anti-Tumor Efficacy through Secreted Single Chain Variable Fragment (scFv) Immune Checkpoint Blockade. Blood, 2017, 130, 842-842.	1.4	3

#	Article	IF	CITATIONS
55	Medical management of side effects related to CAR T cell therapy in hematologic malignancies. Expert Review of Hematology, 2016, 9, 511-513.	2.2	43
56	CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood, 2016, 127, 3312-3320.	1.4	346
57	Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy, 2016, 18, 1393-1409.	0.7	79
58	Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochemical Society Transactions, 2016, 44, 412-418.	3.4	182
59	Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell, 2016, 167, 405-418.e13.	28.9	204
60	At the Bench: Chimeric antigen receptor (CAR) T cell therapy for the treatment of B cell malignancies. Journal of Leukocyte Biology, 2016, 100, 1255-1264.	3.3	10
61	Toxicity and management in CAR T-cell therapy. Molecular Therapy - Oncolytics, 2016, 3, 16011.	4.4	686
62	Driving CAR T-cells forward. Nature Reviews Clinical Oncology, 2016, 13, 370-383.	27.6	492
63	The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nature Reviews Clinical Oncology, 2016, 13, 273-290.	27.6	909
64	Novel immunotherapies in lymphoid malignancies. Nature Reviews Clinical Oncology, 2016, 13, 25-40.	27.6	224
65	CD33-Directed Chimeric Antigen Receptor (CAR) T Cells for the Treatment of Acute Myeloid Leukemia (AML). Blood, 2016, 128, 2825-2825.	1.4	9
66	IL-18 Secreting CAR T Cells Enhance Cell Persistence, Induce Prolonged B Cell Aplasia and Eradicate CD19+ Tumor Cells without Need for Prior Conditioning. Blood, 2016, 128, 816-816.	1.4	28
67	The Development of a qPCR Assay for the Evaluation of the Dendritic Cell Chimeric Antigen Receptor Transcriptome. Blood, 2016, 128, 5895-5895.	1.4	0
68	High day 28 ST2 levels predict for acute graft-versus-host disease and transplant-related mortality after cord blood transplantation. Blood, 2015, 125, 199-205.	1.4	109
69	A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16ecto directed chimeric antigen receptors for recurrent ovarian cancer. Journal of Translational Medicine, 2015, 13, 102.	4.4	221
70	CD19 CAR Therapy for Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e360-e363.	3.8	45
71	IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors <i>in vivo</i> . Oncolmmunology, 2015, 4, e994446.	4.6	336
72	Overcoming Antigen Escape with CAR T-cell Therapy. Cancer Discovery, 2015, 5, 1238-1240.	9.4	69

#	Article	IF	CITATIONS
73	Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression. Molecular Therapy, 2015, 23, 769-778.	8.2	195
74	CAR therapy for hematological cancers: can success seen in the treatment of B-cell acute lymphoblastic leukemia be applied to other hematological malignancies?. Immunotherapy, 2015, 7, 545-561.	2.0	26
75	Multi-Center Clinical Trial of CAR T Cells in Pediatric/Young Adult Patients with Relapsed B-Cell ALL. Blood, 2015, 126, 2533-2533.	1.4	10
76	Implications of Minimal Residual Disease Negative Complete Remission (MRD-CR) and Allogeneic Stem Cell Transplant on Safety and Clinical Outcome of CD19-Targeted 19-28z CAR Modified T Cells in Adult Patients with Relapsed, Refractory B-Cell ALL. Blood, 2015, 126, 682-682.	1.4	37
77	CAR T Cells in Acute Lymphoblastic Leukemia. , 2015, 12, .		Ο
78	Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014, 6, 224ra25.	12.4	2,069
79	Acute myeloid leukemia arising from a donor derived premalignant hematopoietic clone: A possible mechanism for the origin of leukemia in donor cells. Leukemia Research Reports, 2014, 3, 38-41.	0.4	14
80	CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Science Translational Medicine, 2013, 5, 177ra38.	12.4	1,748
81	Chronic Myeloid Leukemia After Adjuvant Treatment For Breast Cancer: Is It Therapy Related?. Blood, 2013, 122, 2740-2740.	1.4	1
82	Safe and Effective Re-Induction Of Complete Remissions In Adults With Relapsed B-ALL Using 19-28z CAR CD19-Targeted T Cell Therapy. Blood, 2013, 122, 69-69.	1.4	5
83	Phase I Trial Of Autologous CD19-Targeted CAR-Modified T Cells As Consolidation After Purine Analog-Based First-Line Therapy In Patients With Previously Untreated CLL. Blood, 2013, 122, 874-874.	1.4	5
84	Impact of the Conditioning Chemotherapy On Outcomes in Adoptive T Cell Therapy: Results From a Phase I Clinical Trial of Autologous CD19-Targeted T Cells for Patients with Relapsed CLL. Blood, 2012, 120, 1797-1797.	1.4	6
85	CD19 Targeted Allogeneic EBV-Specific T Cells for the Treatment of Relapsed ALL in Pediatric Patients Post HSCT. Blood, 2012, 120, 353-353.	1.4	6
86	Constitutive Expression of CD40L by CAR-Modified Tumor Targeted T Cells Enhances Anti-Tumor Efficacy Both in Vitro and in Vivo. Blood, 2012, 120, 4120-4120.	1.4	1
87	Conditioning Intensity and T Cell Dose Determine Efficacy of CD19-Targeted T Cell-Mediated Tumor Eradication in an Immunocompetent Mouse Model of B-ALL Blood, 2012, 120, 2613-2613.	1.4	0
88	Aerobic Glycolysis Predicts Outcome in Early Chronic Lymphocytic Leukemia Blood, 2012, 120, 2482-2482.	1.4	1
89	Molecular Remission and B Cell Aplasia Induced in a First Cohort of Adults with Relapsed B-ALL Treated with 19–28z CAR-Targeted T Cells. Blood, 2012, 120, 3566-3566.	1.4	1
90	Highly Sensitive Bioluminescence in Vivo Imaging Enables Individualized Preclinical Treatment Trials On Patients ALL Tumor Cells Growing in Mice Blood, 2012, 120, 2602-2602.	1.4	0

#	Article	IF	CITATIONS
91	Micafungin Versus Posaconazole Anti-Fungal Prophylaxis in Adult Patients with Acute Leukemia Undergoing Induction Chemotherapy. Blood, 2012, 120, 3556-3556.	1.4	0
92	Abstract Title Submitted by Hollie Pegram to the 2012 ASH Annual Meeting: Expansion and Modification of Umbilical Cord Blood T Cells with a Chimeric Antigen Receptor and IL-12. Blood, 2012, 120, 1907-1907.	1.4	0
93	Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011, 118, 4817-4828.	1.4	1,135
94	Tumor Specific T Cells Modified to Secrete IL-12 Eradicate Systemic Tumors in the Absence of Prior Toxic Chemotherapy Conditioning Regimens. Blood, 2011, 118, 3120-3120.	1.4	0
95	Elevated Mitochondrial Membrane Potential in CLL Cells Is Associated with a more aggressive Natural History. Blood, 2011, 118, 1765-1765.	1.4	0
96	In Vivo comparison of 3 Suicide Gene-Prodrug Combinations in a Mouse Graft-Versus-Host-Disease Model. Blood, 2011, 118, 3121-3121.	1.4	0
97	Influence of National Comprehensive Cancer Network (NCCN) Guidelines on Clinical Practice in Patients with Chronic Myelogenous Leukemia (CML) Treated At a Single Academic Medical Center. Blood, 2011, 118, 4433-4433.	1.4	0
98	Enhanced Antitumor Efficacy of MUC-16 Targeted T Cells Further Modified to Constitutively Express the IL-12 Cytokine in a Syngeneic Model of Ovarian Cancer,. Blood, 2011, 118, 4176-4176.	1.4	0
99	Virus Specific T-Lymphocytes Genetically Modified to Target the CD19 Antigen Eradicates Systemic Lymphoma In Mice. Blood, 2010, 116, 2092-2092.	1.4	1
100	Characteristic Proinflammatory Serum Cytokine Profiles In Patients with B-Cell Chronic Lymphocytic Leukemia. Blood, 2010, 116, 3595-3595.	1.4	0
101	CD19 Targeted Cord Blood Derived T Cells for Cancer Immunotherapy Blood, 2010, 116, 3767-3767.	1.4	0
102	Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nature Medicine, 2009, 15, 338-344.	30.7	120
103	Discovery and Validation of a Novel Class of Small Molecule Inhibitors of the CDC7 Kinase: Modulation of Tumor Cell Growth in Vitro and In Vivo Blood, 2009, 114, 3771-3771.	1.4	1
104	Cellular therapies in acute lymphoblastic leukemia. Current Opinion in Molecular Therapeutics, 2009, 11, 375-82.	2.8	6
105	Genetically Targeted T Cells Eradicate Systemic Acute Lymphoblastic Leukemia Xenografts. Clinical Cancer Research, 2007, 13, 5426-5435.	7.0	398
106	Novel approaches to immunotherapy for B-cell malignancies. Psychophysiology, 2005, 4, 64-72.	1.1	2
107	Novel approaches to immunotherapy for B-cell malignancies. Current Oncology Reports, 2004, 6, 339-347.	4.0	4
108	Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature Medicine, 2003, 9, 279-286.	30.7	586