
Richard Hartel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4006601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arrested coalescence in Pickering emulsions. Soft Matter, 2011, 7, 7710.	2.7	219
2	Effects of overrun on structural and physical characteristics of ice cream. International Dairy Journal, 2004, 14, 255-262.	3.0	213
3	Fat bloom in chocolate and compound coatings. European Journal of Lipid Science and Technology, 2004, 106, 241-274.	1.5	208
4	Sugar crystallization in food products. Critical Reviews in Food Science and Nutrition, 1991, 30, 49-112.	10.3	165
5	The effect of minor components on milk fat crystallization. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 463-475.	1.9	163
6	Ice Cream. , 2013, , .		142
7	Effect of Sweetener, Stabilizer, and Storage Temperature on Ice Recrystallization in Ice Cream. Journal of Dairy Science, 1996, 79, 735-744.	3.4	116
8	Effect of milk fat fractions on fat bloom in dark chocolate. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 267-276.	1.9	108
9	Recrystallization of ice in ice cream during controlled accelerated storage. International Dairy Journal, 1996, 6, 1191-1208.	3.0	105
10	Arrested coalescence of viscoelastic droplets with internal microstructure. Faraday Discussions, 2012, 158, 341.	3.2	99
11	Ice Recrystallization in Ice Cream: Interactions Between Sweeteners and Stabilizers. Journal of Dairy Science, 1997, 80, 447-456.	3.4	88
12	Phase/State Transitions of Confectionery Sweeteners: Thermodynamic and Kinetic Aspects. Comprehensive Reviews in Food Science and Food Safety, 2011, 10, 17-32.	11.7	78
13	Recrystallization of ice during bulk storage of ice cream. International Dairy Journal, 1996, 6, 1209-1221.	3.0	76
14	Evaluation of high oleic-high stearic sunflower hard stearins for cocoa butter equivalent formulation. Food Chemistry, 2012, 134, 1409-1417.	8.2	75
15	Relationship between Recrystallization Rate of Ice Crystals in Sugar Solutions and Water Mobility in Freeze-Concentrated Matrix. Food Biophysics, 2006, 1, 74-82.	3.0	73
16	Advances in Food Crystallization. Annual Review of Food Science and Technology, 2013, 4, 277-292.	9.9	72
17	Crystal morphology, microstructure, and textural properties of model lipid systems. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 399-408.	1.9	70
18	Surface bloom on improperly tempered chocolate. European Journal of Lipid Science and Technology, 2006, 108, 159-168.	1.5	58

RICHARD HARTEL

#	Article	IF	CITATIONS
19	Applications of milk-fat fractions in confectionery products. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 945-953.	1.9	57
20	Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties. Journal of Food Science, 2018, 83, 639-647.	3.1	52
21	Confectionery Science and Technology. , 2018, , .		49
22	Mixtures of palm kernel oil with cocoa butter and milk fat in compound coatings. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 357-366.	1.9	38
23	Phase behavior of model lipid systems: Solubility of high-melting fats in low-melting fats. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 505-511.	1.9	37
24	The Effect of Overrun, Fat Destabilization, and Ice Cream Mix Viscosity on Entire Meltdown Behavior. Journal of Food Science, 2019, 84, 2562-2571.	3.1	36
25	Thermal, Mechanical, and Molecular Relaxation Properties of Frozen Sucrose and Fructose Solutions Containing Hydrocolloids. Food Biophysics, 2007, 2, 20-28.	3.0	34
26	Mechanisms and kinetics of recrystallization in ice cream. , 1998, , 287-319.		30
27	Confectionery gels: Gelling behavior and gel properties of gelatin in concentrated sugar solutions. Food Hydrocolloids, 2022, 124, 107132.	10.7	30
28	Structural, Compositional, and Sensorial Properties of United States Commercial Ice Cream Products. Journal of Food Science, 2014, 79, E2005-13.	3.1	29
29	The stability of aerated emulsions: Effects of emulsifier synergy on partial coalescence and crystallization of milk fat. Journal of Food Engineering, 2021, 291, 110257.	5.2	26
30	Correlation of Rheological and Microstructural Properties in a Model Lipid System. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 397-404.	1.9	23
31	Sucrose crystallization in caramel. Journal of Food Engineering, 2015, 153, 28-38.	5.2	23
32	Influence of temperature on crystallization of lactose in iceâ€cream. International Journal of Food Science and Technology, 1995, 30, 311-320.	2.7	21
33	Accelerated Fat Bloom in Chocolate Model Systems: Solid Fat Content and Temperature Fluctuation Frequency. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1473-1481.	1.9	20
34	Effects of moisture content and saccharide distribution on the stickiness of syrups. Journal of Food Engineering, 2020, 284, 110067.	5.2	19
35	Milk fat fractionation by solid-layer melt crystallization. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 579-584.	1.9	18
36	Determination of sorbitol crystal content and crystallization rate using TD-NMR. Journal of Food Engineering, 2016, 178, 117-123.	5.2	17

3

RICHARD HARTEL

#	Article	IF	CITATIONS
37	Effects of structural attributes on the rheological properties of ice cream and melted ice cream. Journal of Food Science, 2020, 85, 3885-3898.	3.1	17
38	Understanding stickiness in sugarâ€rich food systems: A review of mechanisms, analyses, and solutions of adhesion. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5901-5937.	11.7	16
39	Caramel stickiness: Effects of composition, rheology, and surface energy. Journal of Food Engineering, 2021, 289, 110246.	5.2	12
40	Protein content affects caramel processing and properties. Journal of Food Engineering, 2016, 186, 58-68.	5.2	11
41	Crystallization Behavior and Kinetics of Chocolate‣auric Fat Blends and Model Systems. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 683-692.	1.9	11
42	Citric acid and heating on gelatin hydrolysis and gelation in confectionery gels. Food Hydrocolloids, 2022, 129, 107642.	10.7	11
43	Phase equilibrium and crystallization behavior of mixed lipid systems. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 301-306.	1.9	10
44	Approaches to quantification of microstructure for model lipid systems. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 389-399.	1.9	10
45	Effects of Fat Content and Solid Fat Content on Caramel Texture Attributes. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 1191-1199.	1.9	10
46	The microstructural, melting, rheological, and sensorial properties of highâ€overrun frozen desserts. Journal of Texture Studies, 2020, 51, 92-100.	2.5	10
47	FT-NIR Microspectroscopy: A Method for Quantitatively Mapping One-Dimensional Moisture Penetration Into Sugar Glasses. Food Biophysics, 2007, 2, 93-99.	3.0	9
48	Crystallization and Drying in Thin Sucrose Films During Panning. Journal of Food Science, 1996, 61, 978-981.	3.1	8
49	Investigation into the Microstructure, Texture and Rheological Properties of Chocolate Ganache. Journal of Food Science, 2018, 83, 689-699.	3.1	8
50	Shrinkage in frozen desserts. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 780-808.	11.7	8
51	ANALYSIS of BUTTERFAT EXTRACTION and FRACTIONATION USING SUPERCRITICAL CARBON DIOXIDE. Journal of Food Processing and Preservation, 1993, 17, 471-484.	2.0	7
52	Interlaboratory Measurement of Rheological Properties of Tomato Salad Dressing. Journal of Food Science, 2019, 84, 3204-3212.	3.1	7
53	Characterizing Lecithin Interactions in Chocolate Using Interfacial Properties and Rheology. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 1309-1317.	1.9	7
54	Accelerated Fat Bloom in Chocolate Model Systems: Replacement of Cocoa Powder with Sugar Particles and the Effects of Lecithin. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 377-388.	1.9	7

RICHARD HARTEL

#	Article	IF	CITATIONS
55	Crystallization of Cocoa Butter in Cocoa Powder. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 911-926.	1.9	5
56	Characterizing Maillard reaction kinetics and rheological changes in white chocolate over extended heating. Journal of Food Science, 2021, 86, 2553-2568.	3.1	4
57	Thin-layer sugar crystallization principles. , 2020, , 169-178.		2
58	Emulsifiers in Confectionery. , 2019, , 323-346.		2
59	Final Thoughts After 10 Years as Editorâ€inâ€Chief. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 749-750.	1.9	1
60	Quantification of γâ€sorbitol crystal growth rate and solubility in the presence of mannitol and maltitol. Journal of Food Science, 2020, 85, 4319-4326.	3.1	1
61	It Is All in the Packaging. , 2008, , 85-87.		1
62	The effects of corn syrup, water content and sucrose replacers on sucrose crystallization in starch jellies. Journal of Food Processing and Preservation, 2022, 46, .	2.0	1
63	Editor's Response to Comments on the Paper: Kinetics Studies on Oxirane Cleavage of Epoxidized Soybean Oil by Methanol and Characterization of Polyols. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 1183-1183.	1.9	0
64	Aggregation in viscoelastic emulsion droplet gels with capillarity-driven rearrangements. Soft Matter, 2020, 16, 5506-5513.	2.7	0