
Chii Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4004923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visible light-driven g-C3N4 peroxymonosulfate activation process for carbamazepine degradation: Activation mechanism and matrix effects. Chemosphere, 2022, 286, 131906.	8.2	22
2	Sequential ClO2-UV/chlorine process for micropollutant removal and disinfection byproduct control. Science of the Total Environment, 2022, 806, 150354.	8.0	9
3	A Novel UVA/ClO ₂ Advanced Oxidation Process for the Degradation of Micropollutants in Water. Environmental Science & amp; Technology, 2022, 56, 1257-1266.	10.0	40
4	Concentration-dependent chloride effect on radical distribution and micropollutant degradation in the sulfate radical-based AOPs. Journal of Hazardous Materials, 2022, 430, 128450.	12.4	32
5	Dosing low-level ferrous iron in coagulation enhances the removal of micropollutants, chlorite and chlorate during advanced water treatment. Journal of Environmental Sciences, 2022, 117, 119-128.	6.1	9
6	Multi-angle comparison of UV/chlorine, UV/monochloramine, and UV/chlorine dioxide processes for water treatment and reuse. Water Research, 2022, 217, 118414.	11.3	32
7	CIO2 pre-oxidation changes dissolved organic matter at the molecular level and reduces chloro-organic byproducts and toxicity of water treated by the UV/chlorine process. Water Research, 2022, 216, 118341.	11.3	15
8	Effects of operating conditions on disinfection by-product formation, calculated toxicity, and changes in organic matter structures during seawater chlorination. Water Research, 2022, 220, 118631.	11.3	2
9	Revisiting the protocol for determining submicromolar concentrations of ozone in the water treated by advanced oxidation processes. Chemosphere, 2022, 303, 135117.	8.2	3
10	Transformation of dissolved organic matter during biological wastewater treatment and relationships with the formation of nitrogenous disinfection byproducts. Water Research, 2022, 222, 118870.	11.3	20
11	Molecular characterization of transformation and halogenation of natural organic matter during the UV/chlorine AOP using FT-ICR mass spectrometry. Journal of Environmental Sciences, 2021, 102, 24-36.	6.1	49
12	The multiple roles of chlorite on the concentrations of radicals and ozone and formation of chlorate during UV photolysis of free chlorine. Water Research, 2021, 190, 116680.	11.3	36
13	New Insights into Micropollutant Abatement in Ammonia-Containing Water by the UV/Breakpoint Chlorination Process. ACS ES&T Water, 2021, 1, 1025-1034.	4.6	10
14	What Water Professionals Should Know about Antibiotics and Antibiotic Resistance: An Overview. ACS ES&T Water, 2021, 1, 1334-1351.	4.6	37
15	Evanescent waves modulate energy efficiency of photocatalysis within TiO2 coated optical fibers illuminated using LEDs. Nature Communications, 2021, 12, 4101.	12.8	28
16	Near-Ultraviolet Light-Driven Photocatalytic Chlorine Activation Process with Novel Chlorine Activation Mechanisms. ACS ES&T Water, 2021, 1, 2067-2075.	4.6	15
17	Simultaneous removal of hydrogen sulfide, phosphate and emerging organic contaminants, and improvement of sludge dewaterability by oxidant dosing in sulfide-iron-laden sludge. Water Research, 2021, 203, 117557.	11.3	14
18	Micropollutant abatement and byproduct formation during the co-exposure of chlorine dioxide (ClO2) and UVC radiation. Journal of Hazardous Materials, 2021, 419, 126424.	12.4	25

#	Article	IF	CITATIONS
19	A review on the degradation efficiency, DBP formation, and toxicity variation in the UV/chlorine treatment of micropollutants. Chemical Engineering Journal, 2021, 424, 130053.	12.7	91
20	Microbial iron reduction enhances in-situ control of biogenic hydrogen sulfide by FeOOH granules in sediments of polluted urban waters. Water Research, 2020, 171, 115453.	11.3	21
21	Influence of the UV/H ₂ O ₂ Advanced Oxidation Process on Dissolved Organic Matter and the Connection between Elemental Composition and Disinfection Byproduct Formation. Environmental Science & Technology, 2020, 54, 14964-14973.	10.0	60
22	Degradation of aliphatic halogenated contaminants in water by UVA/Cu–TiO2 and UVA/TiO2 photocatalytic processes: Structure-activity relationship and role of reactive species. Chemosphere, 2020, 260, 127644.	8.2	7
23	Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption. Water Research, 2020, 185, 116297.	11.3	53
24	Novel Visible Light-Driven Photocatalytic Chlorine Activation Process for Carbamazepine Degradation in Drinking Water. Environmental Science & Technology, 2020, 54, 11584-11593.	10.0	79
25	Rapid degradation of dichloroacetonitrile by hydrated electron (eaq–) produced in vacuum ultraviolet photolysis. Chemosphere, 2020, 256, 126994.	8.2	23
26	UV Photolysis of Mono- and Dichloramine Using UV-LEDs as Radiation Sources: Photodecay Rates and Radical Concentrations. Environmental Science & Technology, 2020, 54, 8420-8429.	10.0	74
27	Influence of pre-ozonation of DOM on micropollutant abatement by UV-based advanced oxidation processes. Journal of Hazardous Materials, 2020, 391, 122201.	12.4	23
28	Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2. Water Research, 2019, 162, 471-481.	11.3	70
29	Transformation of adenine and cytosine in chlorination — An ESI-tqMS investigation. Chemosphere, 2019, 234, 505-512.	8.2	12
30	Oxidative debromination of 2,2-bis(bromomethyl)-1,3-propanediol by UV/persulfate process and corresponding formation of brominated by-products. Chemosphere, 2019, 228, 735-743.	8.2	19
31	The influence of the UV/chlorine advanced oxidation of natural organic matter for micropollutant degradation on the formation of DBPs and toxicity during post-chlorination. Chemical Engineering Journal, 2019, 373, 870-879.	12.7	50
32	Controlling bromate formation in the Co(II)/peroxymonosulfate process by ammonia, chlorine-ammonia and ammonia-chlorine pretreatment strategies. Water Research, 2018, 139, 220-227.	11.3	30
33	The Multiple Role of Bromide Ion in PPCPs Degradation under UV/Chlorine Treatment. Environmental Science & Technology, 2018, 52, 1806-1816.	10.0	157
34	Recycling and reuse of rusted iron particles containing core-shell Fe-FeOOH for ibuprofen removal: Adsorption and persulfate-based advanced oxidation. Journal of Cleaner Production, 2018, 178, 441-448.	9.3	86
35	Enhanced photocatalytic reduction of chromium (VI) by Cu-doped TiO 2 under UV-A irradiation. Separation and Purification Technology, 2018, 190, 53-59.	7.9	48
36	The fate of dichloroacetonitrile in UV/Cl ₂ and UV/H ₂ O ₂ processes: implications on potable water reuse. Environmental Science: Water Research and Technology, 2018, 4, 1295-1302.	2.4	23

#	Article	IF	CITATIONS
37	A modified method of high molecular weight adsorbable organic chlorine measurement in saline water: Dialysis pretreatment. Science of the Total Environment, 2018, 639, 258-262.	8.0	5
38	Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources. Water Research, 2018, 142, 452-458.	11.3	98
39	Degradation Investigation of Selected Taste and Odor Compounds by a UV/Chlorine Advanced Oxidation Process. International Journal of Environmental Research and Public Health, 2018, 15, 284.	2.6	21
40	Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps. Chemosphere, 2017, 183, 582-588.	8.2	72
41	UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics. Water Research, 2017, 116, 254-265.	11.3	125
42	Degradation kinetics and pathways of haloacetonitriles by the UV/persulfate process. Chemical Engineering Journal, 2017, 320, 478-484.	12.7	57
43	Coupling Light Emitting Diodes with Photocatalyst-Coated Optical Fibers Improves Quantum Yield of Pollutant Oxidation. Environmental Science & Technology, 2017, 51, 13319-13326.	10.0	39
44	Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process. Water Research, 2017, 126, 351-360.	11.3	263
45	A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms. Water Research, 2017, 124, 446-453.	11.3	147
46	Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water. Environmental Science & Technology, 2017, 51, 10431-10439.	10.0	449
47	DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination. Journal of Environmental Sciences, 2017, 58, 146-154.	6.1	33
48	A novel Fe(II)/citrate/UV/peroxymonosulfate process for micropollutant degradation: Optimization by response surface methodology and effects of water matrices. Chemosphere, 2017, 184, 417-428.	8.2	24
49	Laboratory study investigating the regeneration potential of iron particles by and the hydrodynamics of a dam-break generated flow from an infinite reservoir into a channel with an adverse slope. Environmental Fluid Mechanics, 2016, 16, 1043-1064.	1.6	0
50	PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters. Water Research, 2016, 98, 309-318.	11.3	186
51	Kinetics and mechanisms of degradation of chloroacetonitriles by the UV/H2O2 process. Water Research, 2016, 99, 209-215.	11.3	25
52	Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. Water Research, 2016, 104, 272-282.	11.3	267
53	Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways. Chemosphere, 2016, 150, 731-739.	8.2	26
54	Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water Research, 2016, 90, 301-308.	11.3	351

#	Article	IF	CITATIONS
55	Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate. Water Research, 2015, 83, 132-140.	11.3	103
56	E. coli and bacteriophage MS2 disinfection by UV, ozone and the combined UV and ozone processes. Frontiers of Environmental Science and Engineering, 2014, 8, 547-552.	6.0	41
57	The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System. Environmental Science & Technology, 2014, 48, 1859-1868.	10.0	774
58	Removal of aqueous hydrogen sulfide by granular ferric hydroxide—Kinetics, capacity and reuse. Chemosphere, 2014, 117, 324-329.	8.2	35
59	Electrospray Ionization-Tandem Mass Spectrometry Method for Differentiating Chlorine Substitution in Disinfection Byproduct Formation. Environmental Science & amp; Technology, 2014, 48, 4877-4884.	10.0	29
60	Removal of aqueous fullerene nC60 from wastewater by alum-enhanced primary treatment. Separation and Purification Technology, 2013, 116, 61-66.	7.9	13
61	Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis. Water Research, 2013, 47, 1257-1266.	11.3	73
62	Bromate Formation from Bromide Oxidation by the UV/Persulfate Process. Environmental Science & Technology, 2012, 46, 8976-8983.	10.0	256
63	Nitrogen Origins and the Role of Ozonation in the Formation of Haloacetonitriles and Halonitromethanes in Chlorine Water Treatment. Environmental Science & Technology, 2012, 46, 12832-12838.	10.0	41
64	Formation of halogenated organic byproducts during medium-pressure UV and chlorine coexposure of model compounds, NOM and bromide. Water Research, 2011, 45, 6545-6554.	11.3	76
65	Effect of Reductive Property of Activated Carbon on Total Organic Halogen Analysis. Environmental Science & Technology, 2010, 44, 2105-2111.	10.0	62
66	Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa. Water Research, 2010, 44, 1934-1940.	11.3	252
67	Nitrogenous disinfection byproducts formation and nitrogen origin exploration during chloramination of nitrogenous organic compounds. Water Research, 2010, 44, 2691-2702.	11.3	148
68	Characterization of algal organic matter and formation of DBPs from chlor(am)ination. Water Research, 2010, 44, 5897-5906.	11.3	327
69	Effect of Fe(III) on the bromate reduction by humic substances in aqueous solution. Journal of Environmental Sciences, 2008, 20, 257-261.	6.1	24
70	Correlations between organic matter properties and DBP formation during chloramination. Water Research, 2008, 42, 2329-2339.	11.3	132
71	Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination. Water Research, 2007, 41, 1193-1200.	11.3	229
72	Comparison of colorimetric and membrane introduction mass spectrometry techniques for chloramine analysis. Water Research, 2007, 41, 3097-3102.	11.3	62

#	Article	IF	CITATIONS
73	MS2 Coliphage Inactivation with UV Irradiation and Free Chlorine/Monochloramine. Environmental Engineering Science, 2007, 24, 1321-1332.	1.6	36
74	ATR-FTIR and XPS study on the structure of complexes formed upon the adsorption of simple organic acids on aluminum hydroxide. Journal of Environmental Sciences, 2007, 19, 438-443.	6.1	154
75	THM, HAA and CNCl formation from UV irradiation and chlor(am)ination of selected organic waters. Water Research, 2006, 40, 2033-2043.	11.3	105
76	ATR-FTIR investigation on the complexation of myo-inositol hexaphosphate with aluminum hydroxide. Journal of Colloid and Interface Science, 2006, 293, 296-302.	9.4	81
77	Surface complexation of condensed phosphate to aluminum hydroxide: An ATR-FTIR spectroscopic investigation. Journal of Colloid and Interface Science, 2005, 289, 319-327.	9.4	79
78	Factors Affecting Inactivation Behavior in the Monochloramination Range. Journal of Environmental Engineering, ASCE, 2005, 131, 119-129.	1.4	6
79	Role of Humic Acid and Quinone Model Compounds in Bromate Reduction by Zerovalent Iron. Environmental Science & Technology, 2005, 39, 1092-1100.	10.0	143
80	Quantification of aqueous cyanogen chloride and cyanogen bromide in environmental samples by MIMS. Water Research, 2005, 39, 1709-1718.	11.3	37
81	Kinetics of cyanogen chloride destruction by chemical reduction methods. Water Research, 2005, 39, 2114-2124.	11.3	12
82	Bacteriophage MS-2 removal by submerged membrane bioreactor. Water Research, 2005, 39, 4211-4219.	11.3	60
83	DBP formation in breakpoint chlorination of wastewater. Water Research, 2005, 39, 4755-4767.	11.3	110
84	Chlorination Byproduct Formation in the Presence of Humic Acid, Model Nitrogenous Organic Compounds, Ammonia, and Bromide. Environmental Science & Technology, 2004, 38, 4995-5001.	10.0	113
85	Formation of haloacetic acids during monochloramination. Water Research, 2004, 38, 2375-2383.	11.3	50
86	Chlorination of pure bacterial cultures in aqueous solution. Water Research, 2001, 35, 244-254.	11.3	45
87	Breakpoint Chemistry and Volatile Byproduct Formation Resulting from Chlorination of Model Organic-N Compounds. Environmental Science & Technology, 2000, 34, 1721-1728.	10.0	77
88	Differentiation and Quantification of Free Chlorine and Inorganic Chloramines in Aqueous Solution by MIMS. Environmental Science & Technology, 1999, 33, 2218-2223.	10.0	133