
Maria S Salvato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
2	The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology, 1989, 173, 1-10.	2.4	214
3	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
4	Past, present, and future of arenavirus taxonomy. Archives of Virology, 2015, 160, 1851-1874.	2.1	158
5	Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 2018, 163, 2295-2310.	2.1	157
6	An Arenavirus RING (Zinc-Binding) Protein Binds the Oncoprotein Promyelocyte Leukemia Protein (PML) and Relocates PML Nuclear Bodies to the Cytoplasm. Journal of Virology, 1998, 72, 758-766.	3.4	154
7	A Live Attenuated Vaccine for Lassa Fever Made by Reassortment of Lassa and Mopeia Viruses. Journal of Virology, 2005, 79, 13934-13942.	3.4	134
8	Virus-lymphocyte interactions IV. Molecular characterization of LCMV Armstrong (CTL+) small genomic segment and that of its variant, clone 13 (CTLâ^'). Virology, 1988, 164, 517-522.	2.4	133
9	Lassa and mopeia virus replication in human monocytes/macrophages and in endothelial cells: Different effects on IL-8 and TNF-? gene expression. Journal of Medical Virology, 1999, 59, 552-560.	5.0	121
10	Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates. Vaccine, 2008, 26, 5246-5254.	3.8	117
11	The Lymphocytic Choriomeningitis Virus RING Protein Z Associates with Eukaryotic Initiation Factor 4E and Selectively Represses Translation in a RING-Dependent Manner. Journal of Virology, 2000, 74, 3293-3300.	3.4	116
12	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
13	A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. Virology, 2006, 345, 299-304.	2.4	114
14	The primary structure of the lymphocytic choriomeningitis virus L gene encodes a putative RNA polymerase. Virology, 1989, 169, 377-384.	2.4	113
15	Two RING Finger Proteins, the Oncoprotein PML and the Arenavirus Z Protein, Colocalize with the Nuclear Fraction of the Ribosomal P Proteins. Journal of Virology, 1998, 72, 3819-3826.	3.4	109
16	Complement Component 3 Is Required for Optimal Expansion of CD8 T Cells During a Systemic Viral Infection. Journal of Immunology, 2003, 170, 788-794.	0.8	105
17	Effects of Promyelocytic Leukemia Protein on Virus-Host Balance. Journal of Virology, 2002, 76, 3810-3818.	3.4	101
18	Biochemical and immunological evidence that the 11 kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Research, 1992, 22, 185-198.	2.2	99

#	Article	IF	CITATIONS
19	The Role of Platelets in the Pathogenesis of Viral Hemorrhagic Fevers. PLoS Neglected Tropical Diseases, 2014, 8, e2858.	3.0	92
20	A ML29 reassortant virus protects guinea pigs against a distantly related Nigerian strain of Lassa virus and can provide sterilizing immunity. Vaccine, 2007, 25, 4093-4102.	3.8	86
21	Monocytes Treated with Human Immunodeficiency Virus Tat Kill Uninfected CD4 ⁺ Cells by a Tumor Necrosis Factor-Related Apoptosis-Induced Ligand-Mediated Mechanism. Journal of Virology, 2003, 77, 6700-6708.	3.4	85
22	Role of the Promyelocytic Leukemia Protein PML in the Interferon Sensitivity of Lymphocytic Choriomeningitis Virus. Journal of Virology, 2001, 75, 6204-6208.	3.4	77
23	Pathogenesis of SIV _{mac251} after atraumatic inoculation of the rectal mucosa in rhesus monkeys. Journal of Medical Primatology, 1993, 22, 154-161.	0.6	76
24	The promyelocytic leukemia protein PML has a pro-apoptotic activity mediated through its RING domain. FEBS Letters, 1997, 418, 30-34.	2.8	74
25	Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs. Vaccine, 2011, 29, 1248-1257.	3.8	67
26	Arenavirus-Mediated Liver Pathology: Acute Lymphocytic Choriomeningitis Virus Infection of Rhesus Macaques Is Characterized by High-Level Interleukin-6 Expression and Hepatocyte Proliferation. Journal of Virology, 2003, 77, 1727-1737.	3.4	66
27	ICTV Virus Taxonomy Profile: Arenaviridae. Journal of General Virology, 2019, 100, 1200-1201.	2.9	66
28	Completion of the Lassa Fever Virus Sequence and Identification of a RING Finger Open Reading Frame at the L RNA 5′ End. Virology, 1997, 235, 414-418.	2.4	64
29	Early Blood Profiles of Virus Infection in a Monkey Model for Lassa Fever. Journal of Virology, 2007, 81, 7960-7973.	3.4	64
30	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
31	Utility of SHIV for Testing HIV-1 Vaccine Candidates in Macaques. Journal of Acquired Immune Deficiency Syndromes, 1996, 12, 99-106.	0.3	62
32	Arenavirus Variations Due to Host-Specific Adaptation. Viruses, 2013, 5, 241-278.	3.3	52
33	Hemorrhagic fever occurs after intravenous, but not after intragastric, inoculation of rhesus macaques with lymphocytic choriomeningitis virus. Journal of Medical Virology, 2002, 67, 171-186.	5.0	51
34	An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunity. Virology Journal, 2013, 10, 52.	3.4	46
35	Cellular immune responses in rhesus macaques infected rectally with low dose simian immunodeficiency virus. Journal of Medical Primatology, 1994, 23, 125-130.	0.6	43
36	Arenavirus Z protein as an antiviral target: virus inactivation and protein oligomerization by zinc finger-reactive compounds. Journal of General Virology, 2006, 87, 1217-1228.	2.9	40

#	Article	IF	CITATIONS
37	HIV Tat Protein Increases Bcl-2 Expression in Monocytes Which Inhibits Monocyte Apoptosis Induced by Tumor Necrosis Factor-Alpha-Related Apoptosis-Induced Ligand. Intervirology, 2007, 50, 224-228.	2.8	40
38	Role of the Fas/FasL Pathway in HIV or SIV Disease. Retrovirology, 2009, 6, 91.	2.0	40
39	ILâ€33 promotes innate IFNâ€Î³ production and modulates dendritic cell response in LCMVâ€induced hepatitis in mice. European Journal of Immunology, 2015, 45, 3052-3063.	2.9	40
40	Lymphocytic choriomeningitis virus (LCMV) infection of macaques: A model for Lassa fever. Antiviral Research, 2011, 92, 125-138.	4.1	36
41	A novel calmodulin-like gene from the nematode Caenorhabditis elegans. Journal of Molecular Biology, 1986, 190, 281-290.	4.2	35
42	Mucosal arenavirus infection of primates can protect them from lethal hemorrhagic fever. Journal of Medical Virology, 2004, 72, 424-435.	5.0	34
43	Evaluation of Lassa virus vaccine immunogenicity in a CBA/J-ML29 mouse model. Vaccine, 2012, 30, 1445-1452.	3.8	34
44	Sequence comparison of the large genomic RNA segments of two strains of lymphocytic choriomeningitis virus differing in pathogenic potential for guinea pigs. Virus Genes, 1998, 17, 151-155.	1.6	33
45	Gene expression in primate liver during viral hemorrhagic fever. Virology Journal, 2009, 6, 20.	3.4	30
46	T-Cell Response to Viral Hemorrhagic Fevers. Vaccines, 2019, 7, 11.	4.4	30
47	Recessive lethality of yeast strains carrying the SUP61 suppressor results from loss of a transfer RNA with a unique decoding function. Journal of Molecular Biology, 1982, 158, 599-618.	4.2	29
48	Use of avian myeloblastosis virus reverse transcriptase at high temperature for sequence analysis of highly structured RNA. Gene Analysis Techniques, 1989, 6, 25-28.	1.0	28
49	The Proline-Rich Homeodomain (PRH/HEX) Protein Is Down-Regulated in Liver during Infection with Lymphocytic Choriomeningitis Virus. Journal of Virology, 2005, 79, 2461-2473.	3.4	28
50	The Lymphocytosis-Promoting Agent Pertussis Toxin Affects Virus Burden and Lymphocyte Distribution in the SIV-Infected Rhesus Macaque. AIDS Research and Human Retroviruses, 1997, 13, 87-95.	1.1	27
51	Transcriptome Analysis of Human Peripheral Blood Mononuclear Cells Exposed to Lassa Virus and to the Attenuated Mopeia/Lassa Reassortant 29 (ML29), a Vaccine Candidate. PLoS Neglected Tropical Diseases, 2013, 7, e2406.	3.0	27
52	Molecular characterization of a reassortant virus derived from Lassa and Mopeia viruses. Virus Genes, 2007, 34, 169-176.	1.6	26
53	Molecular Biology of the Prototype Arenavirus, Lymphocytic Choriomeningitis Virus. , 1993, , 133-156.		25
54	An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein. Biochemical and Biophysical Research Communications, 2010, 393, 625-630.	2.1	24

#	Article	IF	CITATIONS
55	Pathogenic Old World Arenaviruses Inhibit TLR2/Mal-Dependent Proinflammatory Cytokines <i>In Vitro</i> . Journal of Virology, 2012, 86, 7216-7226.	3.4	23
56	Murine immune responses to mucosally delivered Salmonella expressing Lassa fever virus nucleoprotein. Vaccine, 2000, 18, 1543-1554.	3.8	22
57	A Single Dose of Modified Vaccinia Ankara Expressing Lassa Virus-like Particles Protects Mice from Lethal Intra-cerebral Virus Challenge. Pathogens, 2019, 8, 133.	2.8	20
58	The Key Roles of Interferon Lambda in Human Molecular Defense against Respiratory Viral Infections. Pathogens, 2020, 9, 989.	2.8	18
59	Lassa Virus Genome. Current Genomics, 2006, 7, 351-379.	1.6	17
60	Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials. Systematic Biology, 2016, 66, syw096.	5.6	17
61	Improving the Breadth of the Host's Immune Response to Lassa Virus. Pathogens, 2018, 7, 84.	2.8	17
62	Attenuated Disease in SIV-Infected Macaques Treated with a Monoclonal Antibody against FasL. Clinical and Developmental Immunology, 2007, 2007, 1-9.	3.3	16
63	Vaccination protects β2 microglobulin deficient mice from immune mediated mortality but not from persisting viral infection. Vaccine, 1996, 14, 1223-1229.	3.8	13
64	Circulating natural killer and γδT cells decrease soon after infection of rhesus macaques with lymphocytic choriomeningitis virus. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 583-591.	1.6	13
65	Treatment with anti-FasL antibody preserves memory lymphocytes and virus-specific cellular immunity in macaques challenged with simian immunodeficiency virus. Blood, 2009, 114, 1196-1204.	1.4	13
66	Arenavirus Evasion of Host Anti-Viral Responses. Viruses, 2012, 4, 2182-2196.	3.3	13
67	Extracellular HIV Tat and Tat cysteine rich peptide increase CCR5 expression in monocytes. Journal of Zhejiang University Science B, 2005, 6B, 668-672.	0.4	13
68	Novel LCMV-specific H-2k restricted CTL clones recognize internal viral gene products and cause CNS disease. Journal of Neuroimmunology, 1992, 41, 15-20.	2.3	12
69	Immunization with non-replicating E. coli minicells delivering both protein antigen and DNA protects mice from lethal challenge with lymphocytic choriomeningitis virus. Vaccine, 2007, 25, 2279-2287.	3.8	12
70	Genetic Variation <i>In Vitro</i> and <i>In Vivo</i> of an Attenuated Lassa Vaccine Candidate. Journal of Virology, 2014, 88, 3058-3066.	3.4	12
71	Dissemination of Lymphocytic Choriomeningitis Virus from the Gastric Mucosa Requires G Protein-Coupled Signaling. Journal of Virology, 1998, 72, 8613-8619.	3.4	12
72	High Major Histocompatibility Complex-Unrestricted Lysis of Simian Immunodeficiency Virus Envelope-Expressing Cells Predisposes Macaques to Rapid AIDS Progression. Journal of Virology, 1999, 73, 3692-3701.	3.4	12

#	Article	IF	CITATIONS
73	Structural Transformation to Attain Responsible BIOSciences (STARBIOS2): Protocol for a Horizon 2020 Funded European Multicenter Project to Promote Responsible Research and Innovation. JMIR Research Protocols, 2019, 8, e11745.	1.0	11
74	Tracking of dyeâ€labeled lymphocytes in rhesus macaques. Journal of Medical Primatology, 1996, 25, 112-121.	0.6	9
75	Vaccinia Virus Inhibits T Cell Receptor–Dependent Responses by Human γδT Cells. Journal of Infectious Diseases, 2007, 195, 37-45.	4.0	9
76	Genomic profiling of host responses to Lassa virus: therapeutic potential from primate to man. Future Virology, 2015, 10, 233-256.	1.8	8
77	Modulation of SIV and HIV DNA Vaccine Immunity by Fas-FasL Signaling. Viruses, 2015, 7, 1429-1453.	3.3	3
78	Diagnostics for Lassa Fever: Detecting Host Antibody Responses. Methods in Molecular Biology, 2018, 1604, 79-88.	0.9	3
79	In vitro transcription of RU, a middle repetitive element of the rat genome. Nucleic Acids Research, 1986, 14, 899-914.	14.5	2
80	A Primate Model for Viral Hemorrhagic Fever. Methods in Molecular Biology, 2018, 1604, 279-290.	0.9	2
81	Cauliflower Mosaic Virus TAV, a Plant Virus Protein That Functions like Ribonuclease H1 and is Cytotoxic to Glioma Cells. BioMed Research International, 2020, 2020, 1-10.	1.9	2
82	Prolonged AIDS-free Survival for SIV-infected Macaques Treated With Anti-FasL. Retrovirology, 2005, 2, S153.	2.0	0
83	191 Anti-FasL treatment preserves SIV-specific memory and slows progression to AIDS in rhesus macaques. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 51, .	2.1	Ο
84	Gene expression in primates during arenaviral hemorrhagic fever. Clinical Biochemistry, 2011, 44, S29.	1.9	0
85	P-D14 Modulation of SIV and HIV DNA vaccine immunity by Fas-FasL signaling by Jiabin Yan, Juan Carlos Zapata, Charles David Pauza and Maria S. Salvato (presenting). Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 98.	2.1	0
86	Gene Expression Patterns: Human Blood Cells Exposed to Common Fluâ€like Viruses. FASEB Journal, 2006, 20, A1103.	0.5	0