Muhammad Riaz Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4002179/publications.pdf Version: 2024-02-01

#	ARTICLE utions for mixed convection flow of SiO <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
1	altimg="si15.svg"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub><mml:msub><mml:mo>â^`</mml:mo></mml:msub></mml:mrow> <mml:mo>â^`</mml:mo> <mml:mo>â^`</mml:mo> xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e2586"	m ath >Al <i< td=""><td>mndamath</td></i<>	mndamath
2	Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface. Case Studies in Thermal Engineering, 2021, 26, 100975.	5.7	99
3	Oblique Stagnation Point Flow of Nanofluids over Stretching/Shrinking Sheet with Cattaneo–Christov Heat Flux Model: Existence of Dual Solution. Symmetry, 2019, 11, 1070.	2.2	86
4	MHD stagnation point flow of viscous nanofluid over a curved surface. Physica Scripta, 2019, 94, 115207.	2.5	84
5	MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions. Physica Scripta, 2019, 94, 075204.	2.5	81
6	MHD stagnation point flow of nanofluid over a curved stretching/shrinking surface subject to the influence of Joule heating and convective condition. Case Studies in Thermal Engineering, 2021, 26, 101184.	5.7	80
7	Comparative study on heat transfer in CNTs-water nanofluid over a curved surface. International Communications in Heat and Mass Transfer, 2020, 116, 104707.	5.6	77
8	The p53â€inducible long noncoding <scp>RNA TRINGS</scp> protects cancer cells from necrosis under glucoseÂstarvation. EMBO Journal, 2017, 36, 3483-3500.	7.8	66
9	Unsteady radiative slip flow of MHD Casson fluid over a permeable stretched surface subject to a non-uniform heat source. Case Studies in Thermal Engineering, 2021, 26, 101141.	5.7	53
10	Numerical analysis of oblique stagnation point flow of nanofluid over a curved stretching/shrinking surface. Physica Scripta, 2020, 95, 105704.	2.5	51
11	Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer. Thermal Science and Engineering Progress, 2021, 22, 100801.	2.7	50
12	A computational model for hybrid nanofluid flow on a rotating surface in the existence of convective condition. Case Studies in Thermal Engineering, 2021, 26, 101089.	5.7	45
13	Numerical analysis of heat transfer and friction drag relating to the effect of Joule heating, viscous dissipation and heat generation/absorption in aligned MHD slip flow of a nanofluid. International Communications in Heat and Mass Transfer, 2022, 131, 105843.	5.6	44
14	The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface. International Communications in Heat and Mass Transfer, 2022, 130, 105832.	5.6	38
15	Numerical simulation of Marangoni Maxwell nanofluid flow with Arrhenius activation energy and entropy anatomization over a rotating disk. Waves in Random and Complex Media, 0, , 1-19.	2.7	35
16	Transport properties of a hydromagnetic radiative stagnation point flow of a nanofluid across a stretching surface. Case Studies in Thermal Engineering, 2022, 31, 101839.	5.7	34
17	Exploring the Alternative Splicing of Long Noncoding RNAs. Trends in Genetics, 2021, 37, 695-698.	6.7	33
18	Unsteady Convective MHD Flow and Heat Transfer of a Viscous Nanofluid across a Porous Stretching/Shrinking Surface: Existence of Multiple Solutions. Crystals, 2021, 11, 1359.	2.2	28

#	Article	IF	CITATIONS
19	Non-singular fractional computations for the radiative heat and mass transfer phenomenon subject to mixed convection and slip boundary effects. Chaos, Solitons and Fractals, 2022, 155, 111708.	5.1	27
20	Thermal features and heat transfer enhancement of a Casson fluid across a porous stretching/shrinking sheet: Analysis of dual solutions. Case Studies in Thermal Engineering, 2021, 28, 101594.	5.7	26
21	Application of PEST and PEHF in magneto-Williamson nanofluid depending on the suction/injection. Case Studies in Thermal Engineering, 2021, 27, 101329.	5.7	24
22	Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation. Scientific Reports, 2021, 11, 3691.	3.3	22
23	Thermal analysis of a radiative slip flow of an unsteady casson nanofluid toward a stretching surface subject to the convective condition. Journal of Materials Research and Technology, 2021, 15, 468-476.	5.8	21
24	Influential study of novel microorganism and nanoparticles during heat and mass transport in Homann flow of visco-elastic materials. International Communications in Heat and Mass Transfer, 2022, 131, 105871.	5.6	17
25	Numerical simulations for optimised flow of second-grade nanofluid due to rotating disk with nonlinear thermal radiation: Chebyshev spectral collocation method analysis. Pramana - Journal of Physics, 2022, 96, 1.	1.5	14
26	lncRNA TRMP-S directs dual mechanisms to regulate p27-mediated cellular senescence. Molecular Therapy - Nucleic Acids, 2021, 24, 971-985.	5.1	13
27	Whole Exome Sequencing Identifies a Novel Mutation in the Gene, Causing Autosomal Dominant Congenital Cataracts in a Chinese Family. Annals of Clinical and Laboratory Science, 2017, 47, 92-95.	0.2	12
28	<scp>PINTology</scp> : A short history of the <scp>lncRNA LINCâ€PINT</scp> in different diseases. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1705.	6.4	11
29	Analysis of Maxwell bioconvective nanofluids with surface suction and slip conditions in the presence of solar radiations. Journal of Physics Communications, 2021, 5, 115014.	1.2	10
30	Investigation of hydromagnetic bioconvection flow of Oldroyd-B nanofluid past a porous stretching surface. Biomass Conversion and Biorefinery, 2023, 13, 4331-4342.	4.6	9
31	Numerical study of heat transfer and friction drag in MHD viscous flow of a nanofluid subject to the curved surface. Waves in Random and Complex Media, 0, , 1-16.	2.7	8
32	Transport properties of mixed convective nano-material flow considering the generalized fourier law and a vertical surface: Concept of caputo-time fractional derivative. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236, 974-984.	1.4	8
33	TP53LNC-DB, the database of IncRNAs in the p53 signalling network. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	7
34	COVID-19 Delta Variant-of-Concern: A Real Concern for Pregnant Women With Gestational Diabetes Mellitus. Frontiers in Endocrinology, 2021, 12, 778911.	3.5	7
35	Thermal radiation and chemically reactive aspects of mixed convection flow using water base nanofluids: Tiwari and Das model. Waves in Random and Complex Media, 0, , 1-31.	2.7	7
36	Identification of minor chromosomal defects causing abnormal foetus and spontaneous abortions. British Journal of Biomedical Science, 2016, 73, 67-73.	1.3	6

Muhammad Riaz Khan

#	Article	IF	CITATIONS
37	Numerical analysis of a time-dependent aligned MHD boundary layer flow of a hybrid nanofluid over a porous radiated stretching/shrinking surface. Waves in Random and Complex Media, 0, , 1-17.	2.7	6
38	Dynamics of mixed convection and Hall current in radiative power-law velocity slip flow of non-Newtonian fluid. Waves in Random and Complex Media, 0, , 1-18.	2.7	5
39	On the evaluation of Poisson equation with dual interpolation boundary face method. European Journal of Mechanics, A/Solids, 2021, 88, 104248.	3.7	4
40	Tumor-suppressive or tumor-supportive: For p53, that is the question. Molecular and Cellular Oncology, 2018, 5, e1408537.	0.7	3
41	A Novel Sex Chromosome Mosaicism 45,X/45,Y/46,XY/46,YY/47,XYY Causing Ambiguous Genitalia. Annals of Clinical and Laboratory Science, 2017, 47, 761-764.	0.2	2
42	Designing of \$\$hbox {TiO}_{2}\$\$–rGO nanocomposite-based photoanode to enhance the performance of dye-sensitized solar cells. European Physical Journal: Special Topics, 2022, 231, 2919-2926.	2.6	2
43	Transportation of Darcy–Forchheimer entropy optimized nonlinear flow toward a stretchable sheet with Ohmic heating and heat generation/absorption. Waves in Random and Complex Media, 0, , 1-19.	2.7	2
44	Numerical solution of magnetohydrodynamics radiative flow of Oldroydâ€B nanofluid toward a porous stretched surface containing gyrotactic microorganisms. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, .	1.6	2