Yair Y Reisner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4002034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment of High-Risk Acute Leukemia with T-Cell–Depleted Stem Cells from Related Donors with One Fully Mismatched HLA Haplotype. New England Journal of Medicine, 1998, 339, 1186-1193.	27.0	1,141
2	Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood, 2011, 117, 3921-3928.	1.4	940
3	Full Haplotype-Mismatched Hematopoietic Stem-Cell Transplantation: A Phase II Study in Patients With Acute Leukemia at High Risk of Relapse. Journal of Clinical Oncology, 2005, 23, 3447-3454.	1.6	677
4	Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cellular Immunology, 1976, 25, 129-134.	3.0	513
5	Human Embryonic Stem Cells and Their Differentiated Derivatives Are Less Susceptible to Immune Rejection Than Adult Cells. Stem Cells, 2006, 24, 221-229.	3.2	378
6	HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood, 2014, 124, 638-644.	1.4	358
7	Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nature Medicine, 1995, 1, 1268-1273.	30.7	325
8	Human and porcine early kidney precursors as a new source for transplantation. Nature Medicine, 2003, 9, 53-60.	30.7	267
9	Direct Imaging of Immune Rejection and Memory Induction by Allogeneic Mesenchymal Stromal Cells. Stem Cells, 2009, 27, 2865-2874.	3.2	230
10	Isolation and Characterization of Nontubular Sca-1+Linâ^' Multipotent Stem/Progenitor Cells from Adult Mouse Kidney. Journal of the American Society of Nephrology: JASN, 2006, 17, 3300-3314.	6.1	173
11	TOLERANCE INDUCTION BY "MEGADOSE" HEMATOPOIETIC TRANSPLANTS. Transplantation, 1998, 65, 1386-1393.	1.0	172
12	Bone marrow transplantation across HLA barriers by increasing the number of transplanted cells. Trends in Immunology, 1995, 16, 437-440.	7.5	171
13	Haploidentical hematopoietic transplantation: current status and future perspectives. Blood, 2011, 118, 6006-6017.	1.4	155
14	Bone Marrow Transplantation after the Chernobyl Nuclear Accident. New England Journal of Medicine, 1989, 321, 205-212.	27.0	141
15	Multiple Imprinted and Stemness Genes Provide a Link between Normal and Tumor Progenitor Cells of the Developing Human Kidney. Cancer Research, 2006, 66, 6040-6049.	0.9	127
16	Use of soybean agglutinin for the separation of mouse B and T lymphocytes. Biochemical and Biophysical Research Communications, 1976, 72, 1585-1591.	2.1	126
17	Interaction of peanut agglutinin, a lectin specific for nonreducing terminal d-galactosyl residues, with embryonal carcinoma cells. Developmental Biology, 1977, 61, 20-27.	2.0	120
18	GRAFT REJECTION AND GRAFT-VERSUS-HOST DISEASE: MIRROR IMAGES. Lancet, The, 1986, 327, 1468-1470.	13.7	112

#	Article	IF	CITATIONS
19	ALLOGENEIC BONE MARROW TRANSPLANTATION USING STEM CELLS FRACTIONATED BY LECTINS: VI, IN VITRO ANALYSIS OF HUMAN AND MONKEY BONE MARROW CELLS FRACTIONATED BY SHEEP RED BLOOD CELLS AND SOYBEAN AGGLUTININ. Lancet, The, 1980, 316, 1320-1324.	13.7	103
20	The hepatitis B virus-trimera mouse: A model for human HBV infection and evaluation of anti-HBV therapeutic agents. Hepatology, 1999, 29, 553-562.	7.3	97
21	Tolerance induction by megadose hematopoietic progenitor cells: expansion of veto cells by short-term culture of purified human CD34+ cells. Blood, 2002, 99, 4174-4181.	1.4	93
22	Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nature Medicine, 2015, 21, 869-879.	30.7	93
23	Improved Outcome With T-Cell–Depleted Bone Marrow Transplantation for Acute Leukemia. Journal of Clinical Oncology, 1999, 17, 1545-1545.	1.6	92
24	Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8659-8664.	7.1	89
25	Preclinical Evaluation of Two Human Anti–Hepatitis B Virus(HBV) Monoclonal Antibodies in the HBV-Trimera Mouse Model and in HBV Chronic Carrier Chimpanzees. Hepatology, 2000, 32, 588-596.	7.3	82
26	Engraftment and Differentiation of Human Metanephroi into Functional Mature Nephrons after Transplantation into Mice Is Accompanied by a Profile of Gene Expression Similar to Normal Human Kidney Development. Journal of the American Society of Nephrology: JASN, 2002, 13, 977-990.	6.1	82
27	Tolerance induction by â€~megadose' transplants of CD34+ stem cells: a new option for leukemia patients without an HLA-matched donor. Current Opinion in Immunology, 2000, 12, 536-541.	5.5	71
28	Transplantation of Human Hematopoietic Stem Cells into Ischemic and Growing Kidneys Suggests a Role in Vasculogenesis but Not Tubulogenesis. Stem Cells, 2006, 24, 1185-1193.	3.2	71
29	"Designed―grafts for HLA-haploidentical stem cell transplantation. Blood, 2014, 123, 967-973.	1.4	71
30	ENGRAFTMENT OF HUMAN KIDNEY TISSUE IN RAT RADIATION CHIMERA. Transplantation, 1997, 64, 1550-1558.	1.0	71
31	Induction of Donor-Type Chimerism and Transplantation Tolerance Across Major Histocompatibility Barriers in Sublethally Irradiated Mice by Sca-1+Linâ^' Bone Marrow Progenitor Cells: Synergism With Non-Alloreactive (Host × Donor)F1 T Cells. Blood, 1999, 94, 3212-3221.	1.4	68
32	Transplants across human leukocyte antigen barriers. Seminars in Hematology, 2002, 39, 48-56.	3.4	66
33	Nanoscale Increases in CD2-CD48-mediated Intermembrane Spacing Decrease Adhesion and Reorganize the Immunological Synapse. Journal of Biological Chemistry, 2008, 283, 34414-34422.	3.4	66
34	Stem cell escalation enables HLA-disparate haematopoietic transplants in leukaemia patients. Trends in Immunology, 1999, 20, 343-347.	7.5	60
35	Immune regulatory activity of CD34+ progenitor cells: evidence for a deletion-based mechanism mediated by TNF-1±. Blood, 2005, 105, 2585-2593.	1.4	60
36	Embryonic Pig Pancreatic Tissue Transplantation for the Treatment of Diabetes. PLoS Medicine, 2006, 3, e215.	8.4	59

#	Article	IF	CITATIONS
37	Thrombin induces ischemic LTP (iLTP): implications for synaptic plasticity in the acute phase of ischemic stroke. Scientific Reports, 2015, 5, 7912.	3.3	57
38	Intranasal administration of peptide vaccine protects human/mouse radiation chimera from influenza infection. International Immunology, 1999, 11, 1043-1051.	4.0	56
39	Embryonic pig liver, pancreas, and lung as a source for transplantation: Optimal organogenesis without teratoma depends on distinct time windows. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2928-2933.	7.1	56
40	Perforin-Positive Dendritic Cells Exhibit an Immuno-regulatory Role in Metabolic Syndrome and Autoimmunity. Immunity, 2015, 43, 776-787.	14.3	55
41	The haploidentical option for high-risk haematological malignancies. Blood Cells, Molecules, and Diseases, 2008, 40, 8-12.	1.4	53
42	IN VIVO MODULATION OF THE ALLOGENEIC IMMUNE RESPONSE BY HUMAN FETAL KIDNEYS. Transplantation, 2000, 69, 1470-1478.	1.0	50
43	The evolution of Tâ€cell depletion in haploidentical stemâ€cell transplantation. British Journal of Haematology, 2016, 172, 667-684.	2.5	49
44	Anti–third-party veto CTLs overcome rejection of hematopoietic allografts: synergism with rapamycin and BM cell dose. Blood, 2003, 102, 1943-1950.	1.4	48
45	Induction of strong hepatitis B virus (HBV) specific T helper cell and cytotoxic T lymphocyte responses by therapeutic vaccination in the trimera mouse model of chronic HBV infection. European Journal of Immunology, 2001, 31, 2071-2079.	2.9	45
46	Tolerance induction by third-party "off-the-shelf―CD4+CD25+ Treg cells. Experimental Hematology, 2006, 34, 66-71.	0.4	45
47	Reconstruction of Cell Lineage Trees in Mice. PLoS ONE, 2008, 3, e1939.	2.5	43
48	The Trimera mouse: generating human monoclonal antibodies and an animal model for human diseases. Trends in Biotechnology, 1998, 16, 242-246.	9.3	41
49	CTLs respond with activation and granule secretion when serving as targets for T-cell recognition. Blood, 2011, 117, 1042-1052.	1.4	41
50	Immunoselection and clinical use of T regulatory cells in HLA-haploidentical stem cell transplantation. Best Practice and Research in Clinical Haematology, 2011, 24, 459-466.	1.7	40
51	Bone marrow transplantation—An expanding approach to treatment of many diseases. Cellular Immunology, 1983, 82, 36-54.	3.0	38
52	A novel role for factor VIII and thrombin/PAR1 in regulating hematopoiesis and its interplay with the bone structure. Blood, 2013, 122, 2562-2571.	1.4	38
53	Tolerance Induction by Veto CTLs in the TCR Transgenic 2C Mouse Model. II. Deletion of Effector Cells by Fas-Fas Ligand Apoptosis. Journal of Immunology, 2004, 173, 6660-6666.	0.8	37
54	A Model for Human B-Chronic Lymphocytic Leukemia in Human/Mouse Radiation Chimera: Evidence for Tumor-Mediated Suppression of Antibody Production in Low-Stage Disease. Blood, 1997, 89, 2210-2218.	1.4	35

#	Article	IF	CITATIONS
55	Estimating Cell Depth from Somatic Mutations. PLoS Computational Biology, 2008, 4, e1000058.	3.2	35
56	Human Interleukin-6 Facilitates Hepatitis B Virus Infection in Vitro and in Vivo. Virology, 2000, 270, 299-309.	2.4	33
57	Pig Embryonic Pancreatic Tissue as a Source for Transplantation in Diabetes. Diabetes, 2009, 58, 1585-1594.	0.6	33
58	Deletion of cognate CD8 T cells by immature dendritic cells: a novel role for perforin, granzyme A, TREM-1, and TLR7. Blood, 2012, 120, 1647-1657.	1.4	33
59	Reduced hepatitis B virus surface antigen-specific Th1 helper cell frequency of chronic HBV carriers is associated with a failure to produce antigen-specific antibodies in the Trimera mouse. Hepatology, 2000, 31, 480-487.	7.3	31
60	Correction of hemophilia as a proof of concept for treatment of monogenic diseases by fetal spleen transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19075-19080.	7.1	31
61	ENGRAFTMENT OF HUMAN KIDNEY TISSUE IN RAT RADIATION CHIMERA. Transplantation, 1997, 64, 1541-1550.	1.0	31
62	Characterization of embryonic liver suppressor cells by peanut agglutinin. Cellular Immunology, 1979, 47, 347-355.	3.0	30
63	The Role of Megadose CD34+ Progenitor Cells in the Treatment of Leukemia Patients without a Matched Donor and in Tolerance Induction for Organ Transplantation. Annals of the New York Academy of Sciences, 1999, 872, 336-350.	3.8	30
64	Cell fractionation by lectins. Trends in Biochemical Sciences, 1980, 5, 29-31.	7.5	29
65	Overcoming T cell–mediated rejection of bone marrow allografts by T-regulatory cells: Synergism with veto cells and rapamycin. Experimental Hematology, 2006, 34, 802-808.	0.4	28
66	Inhibition or acceleration of tumor growth by subpopulations of thymus cells separable by a peanut lectin. Cellular Immunology, 1978, 37, 134-141.	3.0	25
67	[171 Fractionation of subpopulations of mouse and human lymphocytes by peanut agglutinin or soybean agglutinin. Methods in Enzymology, 1984, 108, 168-179.	1.0	24
68	Use of stem cells from mismatched related donors. Current Opinion in Hematology, 1997, 4, 419-422.	2.5	24
69	Hematopoietic Stem Cell Transplantation across Major Genetic Barriers: Tolerance Induction by Megadose CD34 Cells and Other Veto Cells. Annals of the New York Academy of Sciences, 2005, 1044, 70-83.	3.8	24
70	Induction of tolerance to bone marrow allografts by donor-derived host nonreactive ex vivo–induced central memory CD8 T cells. Blood, 2010, 115, 2095-2104.	1.4	24
71	Murine anti–third-party central-memory CD8+ T cells promote hematopoietic chimerism under mild conditioning: lymph-node sequestration and deletion of anti-donor T cells. Blood, 2013, 121, 1220-1228.	1.4	24
72	Hematopoietic Stem Cell Transplantation across Major Genetic Barriers. Annals of the New York Academy of Sciences, 2003, 996, 72-79.	3.8	23

#	Article	IF	CITATIONS
73	Tolerance Induction by Veto CTLs in the TCR Transgenic 2C Mouse Model. I. Relative Reactivity of Different Veto Cells. Journal of Immunology, 2004, 173, 6654-6659.	0.8	20
74	Multi-lineage Lung Regeneration by Stem Cell Transplantation across Major Genetic Barriers. Cell Reports, 2020, 30, 807-819.e4.	6.4	20
75	Changes in sialyltransferase activity during murine T cell differentiation. Cellular Immunology, 1986, 100, 10-19.	3.0	18
76	Embryonic committed stem cells as a solution to kidney donor shortage. Expert Opinion on Biological Therapy, 2004, 4, 443-454.	3.1	17
77	Hematopoietic stem cell transplantation from alternative sources in adults with high-risk acute leukemia. Blood Cells, Molecules, and Diseases, 2004, 33, 294-302.	1.4	17
78	ENGRAFTED HUMAN T AND B LYMPHOCYTES FORM MIXED FOLLICLES IN LYMPHOID ORGANS OF HUMAN/MOUSE AND HUMAN/RAT RADIATION CHIMERA1. Transplantation, 1997, 63, 1166-1171.	1.0	17
79	CONVERSION OF NORMAL RATS INTO SCID-LIKE ANIMALS BY MEANS OF BONE MARROW TRANSPLANTATION FROM SCID DONORS ALLOWS ENGRAFTMENT OF HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS. Transplantation, 1995, 60, 740-747.	1.0	16
80	Antigenâ€specific B and T cells in human/mouse radiation chimera following immunizationin vivo. Immunology, 1999, 96, 634-641.	4.4	16
81	Eradication of B-CLL by autologous and allogeneic host nonreactive anti–third-party CTLs. Blood, 2005, 105, 3365-3371.	1.4	16
82	Tolerance Induction in Presensitized Bone Marrow Recipients by Veto CTLs: Effective Deletion of Host Anti-Donor Memory Effector Cells. Journal of Immunology, 2007, 179, 6389-6394.	0.8	16
83	Immune tolerance induction by nonmyeloablative haploidentical HSCT combining T-cell depletion and posttransplant cyclophosphamide. Blood Advances, 2017, 1, 2166-2175.	5.2	16
84	THE ROLE OF BONE-MARROW TRANSPLANTS AFTER NUCLEAR ACCIDENTS. Lancet, The, 1988, 331, 923-926.	13.7	15
85	Acute cellular rejection of human renal tissue by adoptive transfer of allogeneic human peripheral blood mononuclear cells into chimeric rats: sequential gene expression of cytokines, chemokines and cytolytic effector molecules, and their regulation by CTLA-4–lg. International Immunology, 1999, 11, 1673-1683.	4.0	15
86	Lupus manifestations in severe combined immunodeficient (SCID) mice and in human/mouse radiation chimeras. Journal of Clinical Immunology, 2003, 23, 91-99.	3.8	15
87	Engraftment of human early kidney precursors. Transplant Immunology, 2004, 12, 241-247.	1.2	15
88	From â€~megadose' haploidentical hematopoietic stem cell transplants in acute leukemia to tolerance induction in organ transplantation. Blood Cells, Molecules, and Diseases, 2008, 40, 1-7.	1.4	15
89	Lung Injury Repair by Transplantation of Adult Lung Cells Following Preconditioning of Recipient Mice. Stem Cells Translational Medicine, 2018, 7, 68-77.	3.3	15
90	Embryonic Porcine Liver as a Source for Transplantation: Advantage of Intact Liver Implants over Isolated Hepatoblasts in Overcoming Homeostatic Inhibition by the Quiescent Host Liver. Stem Cells, 2008, 26, 1347-1355.	3.2	14

#	Article	IF	CITATIONS
91	Adoptive Immunotherapy with Tregs Prevents GvHD and Favours Immune Reconstitution After HLA Haploidentical Transplants for Hematological Malignancies Blood, 2009, 114, 4-4.	1.4	14
92	Hematopoietic stem cell transplantation for cancer therapy. Current Opinion in Immunology, 1995, 7, 687-693.	5.5	12
93	Human → mouse radiation chimera do not develop Epstein-Barr virus lymphoma. Immunology Letters, 1996, 49, 155-161.	2.5	12
94	Safe and Efficacious Allogeneic Bone Marrow Transplantation for Nonmalignant Disorders Using Partial T Cell Depletion and No Posttransplantation Graft-Versus-Host-Disease Prophylaxis. Biology of Blood and Marrow Transplantation, 2007, 13, 329-338.	2.0	12
95	Natural and cryptic peptides dominate the immunopeptidome of atypical teratoid rhabdoid tumors. , 2021, 9, e003404.		11
96	Selective expression of murine lymphocyte alloantigens controlled by the X-chromosome. Immunogenetics, 1979, 9, 119-124.	2.4	10
97	A novel small animal model for HIV $\hat{a} \in \mathbf{I}$ infection. FASEB Journal, 2005, 19, 1149-1151.	0.5	10
98	Large-Scale Preparation of Human Anti—Third-Party Veto Cytotoxic T Lymphocytes Depleted of Graft-Versus-Host Reactivity: A New Source for Graft Facilitating Cells in Bone Marrow Transplantation. Human Immunology, 2005, 66, 644-652.	2.4	10
99	Megadose stem cell administration as a route to mixed chimerism. Current Opinion in Organ Transplantation, 2014, 19, 334-341.	1.6	10
100	Assessing remyelination - metabolic labeling of myelin in an animal model of multiple sclerosis. Journal of Neuroimmunology, 2016, 301, 7-11.	2.3	10
101	Deletion of Alloreactive T Cells by Veto Cytotoxic T Lymphocytes Is Mediated Through Extracellular Signal-Regulated Kinase Phosphorylation. Transplantation, 2010, 90, 380-386.	1.0	9
102	The use of donor-derived veto cells in hematopoietic stem cell transplantation. Frontiers in Immunology, 2012, 3, 93.	4.8	9
103	Lethally irradiated normal strains of mice radioprotected with SCID bone marrow develop sensitivity to low doses of staphylococcal enterotoxin B. Immunology Letters, 1995, 46, 9-14.	2.5	8
104	Human/BALB radiation chimera engrafted with splenocytes from patients with idiopathic thrombocytopenic purpura produce human platelet antibodies. Immunology, 1998, 94, 410-416.	4.4	8
105	Induction of tolerance in organ recipients by hematopoietic stem cell transplantation. International Immunopharmacology, 2009, 9, 694-700.	3.8	8
106	ALLOGRAFT AND XENOGRAFT REJECTION IN C3H/SCID MICE. Transplantation, 1996, 61, 777-783.	1.0	8
107	Embryonic Porcine Skin Precursors Can Successfully Develop into Integrated Skin without Teratoma Formation Posttransplantation in Nude Mouse Model. PLoS ONE, 2010, 5, e8717.	2.5	8
108	Embryonic Pig Pancreatic Tissue for the Treatment of Diabetes: Potential Role of Immune Suppression With "Off-the-Shelf―Third-Party Regulatory T Cells. Transplantation, 2011, 91, 398-405.	1.0	8

#	Article	IF	CITATIONS
109	The role of veto cells in bone marrow transplantation. Current Opinion in Organ Transplantation, 2006, 11, 366-372.	1.6	7
110	Haploidentical Bone Marrow Transplantation in Primary Immune Deficiency: Stem Cell Selection and Manipulation. Immunology and Allergy Clinics of North America, 2010, 30, 45-62.	1.9	7
111	Novel immunoregulatory role of perforin-positive dendritic cells. Seminars in Immunopathology, 2017, 39, 121-133.	6.1	7
112	Stem Cell Transplantation across Major Genetic Barriers. Annals of the New York Academy of Sciences, 2001, 938, 322-327.	3.8	6
113	Allogeneic stem cell transplantation for patients with chronic myeloid leukemia: Risk stratified approach with a longâ€ŧerm followâ€up. American Journal of Hematology, 2012, 87, 875-879.	4.1	6
114	Binding of peanut agglutinin to normal human lymphocytes and to leukemic cells. Leukemia Research, 1982, 6, 123-125.	0.8	5
115	Growing organs for transplantation from embryonic precursor tissues. Immunologic Research, 2007, 38, 261-273.	2.9	5
116	TCR-Independent Killing of B Cell Malignancies by Anti–Third-Party CTLs: The Critical Role of MHC–CD8 Engagement. Journal of Immunology, 2011, 187, 2006-2014.	0.8	5
117	Veto cells for safer nonmyeloablative haploidentical HSCT and CAR T cell therapy. Seminars in Hematology, 2019, 56, 173-182.	3.4	5
118	Engraftment of T-cell-depleted bone marrow in murine models for allogeneic bone marrow transplantation. Cancer Treatment and Research, 1990, 50, 9-25.	0.5	5
119	INDUCTION OF PROLONGED TOLERANCE TO THIRD-PARTY SKIN GRAFTS FOLLOWING FULLY ALLOGENEIC BONE MARROW TRANSPLANTATION IN MICE. Transplantation, 1993, 55, 633-638.	1.0	4
120	Haploidentical Bone Marrow Transplantation in Primary Immune Deficiency: Stem Cell Selection and Manipulation. Hematology/Oncology Clinics of North America, 2011, 25, 45-62.	2.2	4
121	Exercising â€~veto' power to make haploidentical hematopoietic stem cell transplantation a safe modality for induction of immune tolerance. Regenerative Medicine, 2015, 10, 239-242.	1.7	4
122	Next-generation CD8 memory veto T cells directed against memory antigens. Leukemia, 2019, 33, 2737-2741.	7.2	4
123	DONOR-TYPE CHIMERISM DETERMINATION BY COMPETITIVE POLYMERASE CHAIN REACTION (PCR) IN A PRIMATE MODEL FOR BONE MARROW TRANSPLANTATION1. Transplantation, 1999, 68, 1573-1577.	1.0	4
124	Tolerance Induction by Immature Dendritic Cells Is Mediated by Distinct MHC Dependent and Independent Mechanisms: A Novel Role for Perforin, Granzyme A and Toll Like Receptor 7 Blood, 2009, 114, 65-65.	1.4	4
125	Ex Vivo Generated Donor Central Memory CD8 T Cells, Previously Shown to Enhance Engraftment of Allogeneic Bone Marrow, Also Exhibit Significant GVL Activity without Causing Gvhd In An In Vivo b Cell Lymphoma Model. Blood, 2010, 116, 424-424.	1.4	4
126	T-cell neoplasm induced by subcutaneous transplantation of a plasmacytoma: Characterization of tumor cells. Cellular Immunology, 1977, 34, 180-186.	3.0	3

#	Article	IF	CITATIONS
127	Studies on the Interaction of Lectins with Saccharides on Lymphocyte Cell Surfaces. ACS Symposium Series, 1979, , 1-11.	0.5	3
128	T cell control of staphylococcal enterotoxin B (SEB) lethal sensitivity in mice: CD4+ CD45RBbright / CD4+ CD45RBdim balance defines susceptibility to SEB toxicity. European Journal of Immunology, 1999, 29, 1375-1382.	2.9	3
129	Human Colon Adenocarcinoma in the SCID/CB6 Radiation Chimera Is Susceptible to Adoptive Transfer of Allogeneic Human Peripheral Blood Mononuclear Cells. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 883-893.	1.8	3
130	Crossing the HLA barriers. Blood Cells, Molecules, and Diseases, 2004, 33, 206-210.	1.4	3
131	Hematopoietic stem cell transplantation across major genetic barriers. Immunologic Research, 2007, 38, 174-190.	2.9	3
132	A new approach for eradication of residual lymphoma cells by host nonreactive anti–third-party central memory CD8 T cells. Blood, 2013, 121, 3033-3040.	1.4	3
133	Toward safer haploidnetical hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2019, 54, 733-737.	2.4	3
134	Applying Human Cells to Organogenesis and Transplantation. , 0, , 353-373.		3
135	T cells from newborn humans are fully capable of developing into cytotoxic T lymphocyte effector cells in adoptive hosts. Transplantation, 2002, 73, 803-810.	1.0	3
136	Next Generation Veto Cells for Non-Myeloablative Haploidentical HSCT: Combining Anti-Viral and Graft Facilitating Activity. Blood, 2016, 128, 3345-3345.	1.4	3
137	Induction of Donor-Type Chimerism and Transplantation Tolerance Across Major Histocompatibility Barriers in Sublethally Irradiated Mice by Sca-1+Linâ~' Bone Marrow Progenitor Cells: Synergism With Non-Alloreactive (Host × Donor)F1 T Cells. Blood, 1999, 94, 3212-3221.	1.4	3
138	Induction of transplantation tolerance in haploidenical transplantation under reduced intensity conditioning: The role of ex-vivo generated donor CD8+ T cells with central memory phenotype. Best Practice and Research in Clinical Haematology, 2011, 24, 393-401.	1.7	2
139	Fetal Pancreas as a Source for Islet Transplantation. Diabetes, 2013, 62, 1382-1383.	0.6	2
140	Correction of murine sickle cell disease by allogeneic haematopoietic cell transplantation with anti-3rd party veto cells. Bone Marrow Transplantation, 2021, 56, 1818-1827.	2.4	2
141	Effective Deletion of Anti-Donor Host Memory Effector Cells by Anti-3rd Party Veto CTLs: Implications to Tolerance Induction in Presensitized Bone Marrow Recipients Blood, 2004, 104, 44-44.	1.4	2
142	Eradication of B Cell Malignancies by Anti-3rd Party CTLs: A Novel Role for MHC Class I Blood, 2007, 110, 2759-2759.	1.4	2
143	Purification in large amounts of β-d-galactoside-binding lectins from a murine thymic epithelial cell line. Carbohydrate Research, 1991, 213, 345-352.	2.3	1
144	Growth Enhancement by Embryonic Fibroblasts Upon Cotransplantation of Noncommitted Pig Embryonic Tissues With Fully Committed Organs, Transplantation, 2010, 89, 1198-1207	1.0	1

0

#	Article	IF	CITATIONS
145	Preface. Best Practice and Research in Clinical Haematology, 2011, 24, 323-324.	1.7	1
146	Haploidentical HSCT–going from strength to strength. Bone Marrow Transplantation, 2019, 54, 687-688.	2.4	1
147	The use of pre-conditioning and novel assays in the development of protocols for transplantation of lung progenitors. , 2021, , 232-247.		1
148	The Role of ERK5 Signaling in Tolerance Induction by Veto CTLs Blood, 2005, 106, 3302-3302.	1.4	1
149	Enhancement of Pig Embryonic Implants in Factor VIII KO Mice: A Novel Role for the Coagulation Cascade in Organ Size Control. PLoS ONE, 2009, 4, e8362.	2.5	1
150	Natural antibodies do not inhibit xenogeneic transplantation of human PBL in lethally irradiated mice. Xenotransplantation, 1995, 2, 8-18.	2.8	0
151	Chimerism, Hematopoietic. , 1998, , 544-549.		0
152	Megadose of hematopoietic stem cells for haploidentical transplants. Current Opinion in Organ Transplantation, 2002, 7, 294-298.	1.6	0
153	The Trimera Mouse Model of HBV and HCV Infection. , 2005, 25, 146-160.		0
154	ICOS: a new important player in BMT. Blood, 2005, 105, 3006-3007.	1.4	0
155	Large-scale generation of human allodepleted anti-3rd party lymphocytes. Blood Cells, Molecules, and Diseases, 2008, 40, 106-112.	1.4	0
156	Haploidentical Family Donor Transplantation: At the Crossroads of a Changing Paradigm. Advances in Hematology, 2016, 2016, 1-2.	1.0	0
157	Historical Perspective and Current Trends in Haploidentical Transplantation. , 2018, , 1-11.		0
158	Toward Safer CD34+ Megadose T-Cell-Depleted Transplants Following Reduced Intensity and Nonmyeloablative Conditioning Regimens. , 2018, , 15-28.		0
159	The Role of T Cell Depletion in Bone Marrow Transplantation. , 2003, , 327-342.		0
160	Progenitor Cell Therapy for Kidney Regeneration. , 2006, , 209-223.		0
161	Crossing HLA Barriers by "Megadose―Stem Cell Transplants. , 2010, , 1-27.		0

162 The Haploidentical Option for High-Risk Hematological Malignancies. , 2010, , 29-52.

#	Article	IF	CITATIONS
163	Bone Marrow Transplantation Across Major Genetic Barriers. , 2010, , .		0
164	Nathan Sharon. Advances in Carbohydrate Chemistry and Biochemistry, 2012, 67, 2-18.	0.9	0
165	Growing Organs for Transplantation from Embryonic Precursor Tissues. , 2013, , 365-375.		Ο
166	Towards 'Off-the-Shelf ' Universal Chimeric Antigen Receptor (CAR) T Cells: Mouse Anti-3rd Party Central Memory CD8 Veto Cells Prolong Functional Engraftment of Allogeneic Genetically Modified T Cells. Blood, 2016, 128, 2171-2171.	1.4	0
167	High Levels of Hematopoietic Progenitors in the Fetal Lung Enable Induction of Immune Tolerance and Co-Transplantation of Epithelial Progenitors for Repair of Lung Injury Across MHC Barriers. Blood, 2016, 128, 1477-1477.	1.4	Ο
168	Transplantation of T Cell Depleted Haploidentical HSCT Following Non-Myeloablative (NMA) Conditioning: Combining the Power of Megadose Transplants with Post Transplant Cyclophosphamide (PTCY). Blood, 2016, 128, 5765-5765.	1.4	0
169	OUP accepted manuscript. Stem Cells Translational Medicine, 2022, 11, 178-188.	3.3	0
170	Hematopoietic stem cell transplantation across major genetic barriers. Immunologic Research, 2007, 38, 174-90.	2.9	0