Douglas A Nitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4001813/publications.pdf

Version: 2024-02-01

25	1,269	15	24
papers	citations	h-index	g-index
30	30	30	1163 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Retrosplenial cortex maps the conjunction of internal and external spaces. Nature Neuroscience, 2015, 18, 1143-1151.	14.8	245
2	Tracking Route Progression in the Posterior Parietal Cortex. Neuron, 2006, 49, 747-756.	8.1	186
3	Spatially Periodic Activation Patterns of Retrosplenial Cortex Encode Route Sub-spaces and Distance Traveled. Current Biology, 2017, 27, 1551-1560.e4.	3.9	113
4	Spaces within spaces: rat parietal cortex neurons register position across three reference frames. Nature Neuroscience, 2012, 15, 1365-1367.	14.8	99
5	Anterior cingulate neurons in the rat map anticipated effort and reward to their associated action sequences. Journal of Neurophysiology, 2012, 107, 2393-2407.	1.8	95
6	Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiology of Learning and Memory, 2009, 91, 179-185.	1.9	73
7	Subiculum neurons map the current axis of travel. Nature Neuroscience, 2017, 20, 170-172.	14.8	69
8	CA1-projecting subiculum neurons facilitate object–place learning. Nature Neuroscience, 2019, 22, 1857-1870.	14.8	66
9	Path shape impacts the extent of CA1 pattern recurrence both within and across environments. Journal of Neurophysiology, 2011, 105, 1815-1824.	1.8	61
10	Adaptation of Prefrontal Cortical Firing Patterns and Their Fidelity to Changes in Action-Reward Contingencies. Journal of Neuroscience, 2007, 27, 3548-3559.	3.6	47
11	Cell Assemblies of the Basal Forebrain. Journal of Neuroscience, 2015, 35, 2992-3000.	3.6	28
12	Multiplexed oscillations and phase rate coding in the basal forebrain. Science Advances, 2018, 4, eaar 3230.	10.3	28
13	Task-phase-specific dynamics of basal forebrain neuronal ensembles. Frontiers in Systems Neuroscience, 2014, 8, 174.	2.5	25
14	Secondary Motor Cortex Transforms Spatial Information into Planned Action during Navigation. Current Biology, 2020, 30, 1845-1854.e4.	3.9	22
15	Noncanonical projections to the hippocampal CA3 regulate spatial learning and memory by modulating the feedforward hippocampal trisynaptic pathway. PLoS Biology, 2021, 19, e3001127.	5.6	20
16	Opposing and Complementary Topographic Connectivity Gradients Revealed by Quantitative Analysis of Canonical and Noncanonical Hippocampal CA1 Inputs. ENeuro, 2018, 5, ENEURO.0322-17.2018.	1.9	17
17	Adaptive integration of self-motion and goals in posterior parietal cortex. Cell Reports, 2022, 38, 110504.	6.4	17
18	Repeating Firing Fields of CA1 Neurons Shift Forward in Response to Increasing Angular Velocity. Journal of Neuroscience, 2014, 34, 232-241.	3.6	13

Douglas A Nitz

#	Article	IF	CITATION
19	Spatial coding defects of hippocampal neural ensemble calcium activities in the triple-transgenic Alzheimer's disease mouse model. Neurobiology of Disease, 2022, 162, 105562.	4.4	12
20	Conjunctive coding in an evolved spiking model of retrosplenial cortex Behavioral Neuroscience, 2018, 132, 430-452.	1.2	9
21	A place for motion in mapping. Nature Neuroscience, 2015, 18, 6-7.	14.8	6
22	Locomotor action sequences impact the scale of representation in hippocampus and posterior parietal cortex. Hippocampus, 2021, 31, 677-689.	1.9	5
23	The Posterior Parietal Cortex: Interface Between Maps of External Spaces and the Generation of Action Sequences., 2014,, 27-54.		4
24	Cognitive Maps: Distortions of the Hippocampal Space Map Define Neighborhoods. Current Biology, 2020, 30, R340-R342.	3.9	2
25	Cortical and hippocampal dynamics under logical fragmentation of environmental space. Neurobiology of Learning and Memory, 2022, 189, 107597.	1.9	2