## Tetsuro Watabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/400166/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                  | IF            | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 1  | Emerging roles of inflammation-mediated endothelial–mesenchymal transition in health and disease.<br>Inflammation and Regeneration, 2022, 42, 9.                                                                                                                         | 3.7           | 37        |
| 2  | Ras signaling and RREB1 are required for the dissociation of medial edge epithelial cells in murine palatogenesis. DMM Disease Models and Mechanisms, 2022, 15, .                                                                                                        | 2.4           | 5         |
| 3  | Hapten sensitization to vaginal mucosa induces less recruitment of dendritic cells accompanying TGFâ€Î²â€expressing CD206 <sup>+</sup> cells compared with skin. Immunity, Inflammation and Disease, 2022, 10, e605.                                                     | 2.7           | 3         |
| 4  | Vascular System in Tumor Microenvironment and Its Application for in vitro Assay. Membrane, 2022, 47, 161-168.                                                                                                                                                           | 0.0           | 0         |
| 5  | Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors. Angiogenesis, 2021, 24, 159-176.                                                                              | 7.2           | 10        |
| 6  | Activation of β2â€adrenergic receptor signals suppresses mesenchymal phenotypes of oral squamous cell carcinoma cells. Cancer Science, 2021, 112, 155-167.                                                                                                               | 3.9           | 12        |
| 7  | Angiogenic Effects of Secreted Factors from Periodontal Ligament Stem Cells. Dentistry Journal, 2021, 9, 9.                                                                                                                                                              | 2.3           | 11        |
| 8  | ASK1 suppresses NK cellâ€mediated intravascular tumor cell clearance in lung metastasis. Cancer<br>Science, 2021, 112, 1633-1643.                                                                                                                                        | 3.9           | 5         |
| 9  | Isolation and characterisation of lymphatic endothelial cells from lung tissues affected by lymphangioleiomyomatosis. Scientific Reports, 2021, 11, 8406.                                                                                                                | 3.3           | 5         |
| 10 | Progression of melanoma is suppressed by targeting all transforming growth factorâ€Î² isoforms with an Fc chimeric receptor. Oncology Reports, 2021, 46, .                                                                                                               | 2.6           | 12        |
| 11 | Construction of transplantable artificial vascular tissue based on adipose tissue-derived mesenchymal stromal cells by a cell coating and cryopreservation technique. Scientific Reports, 2021, 11, 17989.                                                               | 3.3           | 4         |
| 12 | The ceramide analogue N-(1-hydroxy-3-morpholino-1-phenylpropan-2-yl)decanamide induces large lipid<br>droplet accumulation and highlights the effect of LAMP-2 deficiency on lipid droplet degradation.<br>Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126891. | 2.2           | 5         |
| 13 | TGF-beta and TNF-alpha cooperatively induce mesenchymal transition of lymphatic endothelial cells via activation of Activin signals. PLoS ONE, 2020, 15, e0232356.                                                                                                       | 2.5           | 34        |
| 14 | Mechanoresponsive and lubricating changes of mandibular condylar cartilage associated with mandibular lateral shift and recovery in the growing rat. Clinical Oral Investigations, 2020, 24, 3547-3557.                                                                  | 3.0           | 3         |
| 15 | Targeting all transforming growth factor-β isoforms with an Fc chimeric receptor impairs tumor growth and angiogenesis of oral squamous cell cancer. Journal of Biological Chemistry, 2020, 295, 12559-12572.                                                            | 3.4           | 30        |
| 16 | Intracellular claudinâ€1 at the invasive front of tongue squamous cell carcinoma is associated with<br>lymph node metastasis. Cancer Science, 2020, 111, 700-712.                                                                                                        | 3.9           | 12        |
| 17 | TNFâ€Î± enhances TGFâ€Î²â€induced endothelialâ€toâ€mesenchymal transition via TGFâ€Î² signal augmentation.<br>Science, 2020, 111, 2385-2399.                                                                                                                             | Çancer<br>3.9 | 83        |
| 18 | Peptideâ€2 from mouse myostatin precursor protein alleviates muscle wasting in cancerâ€associated cachexia. Cancer Science, 2020, 111, 2954-2964.                                                                                                                        | 3.9           | 8         |

TETSURO WATABE

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Roles of Transcription Factors and Signaling Networks in the Regulation of Lymphatic Endothelial<br>Cell Function. The Journal of Japanese College of Angiology, 2020, 60, 193-196.                             | 0.0  | Ο         |
| 20 | Fibroblast growth factor signals regulate transforming growth factorâ€Î²â€induced<br>endothelialâ€toâ€myofibroblast transition of tumor endothelial cells via Elk1. Molecular Oncology, 2019,<br>13, 1706-1724. | 4.6  | 36        |
| 21 | Spontaneous differentiation of periodontal ligament stem cells into myofibroblast during ex vivo expansion. Journal of Cellular Physiology, 2019, 234, 20377-20391.                                             | 4.1  | 11        |
| 22 | Interleukin-13 receptor α2 is a novel marker and potential therapeutic target for human melanoma.<br>Scientific Reports, 2019, 9, 1281.                                                                         | 3.3  | 33        |
| 23 | Changes in characteristics of periodontal ligament stem cells in spheroid culture. Journal of<br>Periodontal Research, 2019, 54, 364-373.                                                                       | 2.7  | 18        |
| 24 | The Fate of Transplanted Periodontal Ligament Stem Cells in Surgically Created Periodontal Defects in<br>Rats. International Journal of Molecular Sciences, 2019, 20, 192.                                      | 4.1  | 34        |
| 25 | Unilateral nasal obstruction alters sweet taste preference and sweet taste receptors in rat circumvallate papillae. Acta Histochemica, 2019, 121, 135-142.                                                      | 1.8  | 6         |
| 26 | Vasohibinâ€2 is required for epithelial–mesenchymal transition of ovarian cancer cells by modulating transforming growth factorâ€i² signaling. Cancer Science, 2017, 108, 419-426.                              | 3.9  | 28        |
| 27 | Dual targeting of vascular endothelial growth factor and bone morphogenetic proteinâ€9/10 impairs<br>tumor growth through inhibition of angiogenesis. Cancer Science, 2017, 108, 151-155.                       | 3.9  | 6         |
| 28 | PDMP, a ceramide analogue, acts as an inhibitor of mTORC1 by inducing its translocation from lysosome to endoplasmic reticulum. Experimental Cell Research, 2017, 350, 103-114.                                 | 2.6  | 14        |
| 29 | A novel immunotoxin reveals a new role for CD321 in endothelial cells. PLoS ONE, 2017, 12, e0181502.                                                                                                            | 2.5  | 8         |
| 30 | Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes.<br>Biochemical and Biophysical Research Communications, 2016, 479, 489-495.                                     | 2.1  | 55        |
| 31 | Bone Morphogenetic Proteins. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021899.                                                                                                                      | 5.5  | 356       |
| 32 | Novel Hybrid Compound of a Plinabulin Prodrug with an IgG Binding Peptide for Generating a Tumor<br>Selective Noncovalent-Type Antibody–Drug Conjugate. Bioconjugate Chemistry, 2016, 27, 1606-1613.            | 3.6  | 22        |
| 33 | BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Krüppel-like<br>Factors. Stem Cell Reports, 2016, 6, 64-73.                                                               | 4.8  | 61        |
| 34 | Excess Lymphangiogenesis Cooperatively Induced by Macrophages and CD4+ T Cells Drives the Pathogenesis of Lymphedema. Journal of Investigative Dermatology, 2016, 136, 706-714.                                 | 0.7  | 79        |
| 35 | Micro <scp>RNA</scp> â€31 is a positive modulator of endothelial–mesenchymal transition and associated secretory phenotype induced by <scp>TGF</scp> â€Î². Genes To Cells, 2016, 21, 99-116.                    | 1.2  | 46        |
| 36 | Roles of signaling and transcriptional networks in pathological lymphangiogenesis. Advanced Drug<br>Delivery Reviews, 2016, 99, 161-171.                                                                        | 13.7 | 31        |

Tetsuro Watabe

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Expression of plateletâ€derived growth factor receptor β is maintained by Prox1 in lymphatic endothelial cells and is required for tumor lymphangiogenesis. Cancer Science, 2014, 105, 1116-1123.                                                             | 3.9  | 44        |
| 38 | Roles of TGF-Î <sup>2</sup> family signals in the fate determination of pluripotent stem cells. Seminars in Cell and Developmental Biology, 2014, 32, 98-106.                                                                                                 | 5.0  | 69        |
| 39 | Widespread inference of weighted microRNA-mediated gene regulation in cancer transcriptome analysis. Nucleic Acids Research, 2013, 41, e62-e62.                                                                                                               | 14.5 | 16        |
| 40 | Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1<br>during development and cancer progression. Proceedings of the National Academy of Sciences of the<br>United States of America, 2013, 110, 18940-18945. | 7.1  | 95        |
| 41 | TGF-β-induced mesenchymal transition of MS-1 endothelial cells requires Smad-dependent cooperative activation of Rho signals and MRTF-A. Journal of Biochemistry, 2012, 151, 145-156.                                                                         | 1.7  | 95        |
| 42 | Roles of Dppa2 in the regulation of the present status and future of pluripotent stem cells. Journal of Biochemistry, 2012, 152, 1-3.                                                                                                                         | 1.7  | 6         |
| 43 | Roles of transcriptional network during the formation of lymphatic vessels. Journal of Biochemistry, 2012, 152, 213-220.                                                                                                                                      | 1.7  | 9         |
| 44 | TGF-β-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by<br>pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. Journal of Biochemistry, 2012,<br>151, 205-216.                                       | 1.7  | 117       |
| 45 | Roles of TGF- <i>β</i> Signals in Endothelial-Mesenchymal Transition during Cardiac Fibrosis.<br>International Journal of Inflammation, 2011, 2011, 1-8.                                                                                                      | 1.5  | 102       |
| 46 | PROX1 suppresses vitamin K-induced transcriptional activity of steroid and xenobiotic receptor. Genes To Cells, 2011, 16, 1063-1070.                                                                                                                          | 1.2  | 8         |
| 47 | Ets family members induce lymphangiogenesis through physical and functional interaction with Prox1. Journal of Cell Science, 2011, 124, 2753-2762.                                                                                                            | 2.0  | 46        |
| 48 | Noncanonical Wnt signaling mediates androgen-dependent tumor growth in a mouse model of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4938-4943.                                               | 7.1  | 45        |
| 49 | Roles of old players in the suppression of a new player: networks for the transcriptional control of angiogenesis. Journal of Biochemistry, 2011, 149, 117-119.                                                                                               | 1.7  | 7         |
| 50 | BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. Journal of Cell<br>Science, 2010, 123, 1684-1692.                                                                                                                    | 2.0  | 156       |
| 51 | VEGFR2-PLCÎ <sup>3</sup> 1 axis is essential for endothelial specification of VEGFR2+ vascular progenitor cells.<br>Journal of Cell Science, 2009, 122, 3303-3311.                                                                                            | 2.0  | 39        |
| 52 | Thyroid Transcription Factor-1 Inhibits Transforming Growth Factor-β–Mediated<br>Epithelial-to-Mesenchymal Transition in Lung Adenocarcinoma Cells. Cancer Research, 2009, 69,<br>2783-2791.                                                                  | 0.9  | 123       |
| 53 | Identification of targets of Prox1 during in vitro vascular differentiation from embryonic stem cells:<br>functional roles of HoxD8 in lymphangiogenesis. Journal of Cell Science, 2009, 122, 3923-3930.                                                      | 2.0  | 33        |
| 54 | COUPâ€TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction.<br>Genes To Cells, 2009, 14, 425-434.                                                                                                                  | 1.2  | 107       |

TETSURO WATABE

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Research, 2009, 19, 103-115.                                                                                                   | 12.0 | 370       |
| 56 | Deletion of PSCA increases metastasis of TRAMPâ€Induced prostate tumors without altering primary tumor formation. Prostate, 2008, 68, 139-151.                                                                | 2.3  | 34        |
| 57 | Development of stabilin2+ endothelial cells from mouse embryonic stem cells by inhibition of<br>TGFβ/activin signaling. Biochemical and Biophysical Research Communications, 2008, 375, 256-260.              | 2.1  | 16        |
| 58 | BMPs Promote Proliferation and Migration of Endothelial Cells via Stimulation of VEGF-A/VEGFR2 and Angiopoietin-1/Tie2 Signalling. Journal of Biochemistry, 2008, 143, 199-206.                               | 1.7  | 108       |
| 59 | Ras signaling directs endothelial specification of VEGFR2+ vascular progenitor cells. Journal of Cell<br>Biology, 2008, 181, 131-141.                                                                         | 5.2  | 42        |
| 60 | Snail is required for TGFβ-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. Journal of Cell Science, 2008, 121, 3317-3324.                                        | 2.0  | 276       |
| 61 | Inhibition of endogenous TGF-β signaling enhances lymphangiogenesis. Blood, 2008, 111, 4571-4579.                                                                                                             | 1.4  | 207       |
| 62 | Prox1 Induces Lymphatic Endothelial Differentiation via Integrin α9 and Other Signaling Cascades.<br>Molecular Biology of the Cell, 2007, 18, 1421-1429.                                                      | 2.1  | 131       |
| 63 | Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. Journal of Cell<br>Science, 2007, 120, 55-65.                                                                               | 2.0  | 163       |
| 64 | TGF-β Signaling in Embryonic Stem Cell-Derived Endothelial Cells. , 2006, 330, 341-352.                                                                                                                       |      | 7         |
| 65 | Roles of vascular endothelial growth factor receptor 3 signaling in differentiation of mouse<br>embryonic stem cell–derived vascular progenitor cells into endothelial cells. Blood, 2005, 105,<br>2372-2379. | 1.4  | 50        |
| 66 | Effect of Smad7 Expression on Metastasis of Mouse Mammary Carcinoma JygMC(A) Cells. Journal of the<br>National Cancer Institute, 2005, 97, 1734-1746.                                                         | 6.3  | 110       |
| 67 | VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous<br>PDGF-B–PDGFRβ signaling. Journal of Cell Science, 2005, 118, 3759-3768.                                         | 2.0  | 263       |
| 68 | Roles for the MH2 Domain of Smad7 in the Specific Inhibition of Transforming Growth Factor-Î <sup>2</sup><br>Superfamily Signaling. Journal of Biological Chemistry, 2004, 279, 31568-31574.                  | 3.4  | 56        |
| 69 | BMP signals inhibit proliferation and in vivo tumor growth of androgen-insensitive prostate carcinoma cells. Oncogene, 2004, 23, 9326-9335.                                                                   | 5.9  | 95        |
| 70 | USAG-1: a bone morphogenetic protein antagonist abundantly expressed in the kidney. Biochemical and<br>Biophysical Research Communications, 2004, 316, 490-500.                                               | 2.1  | 135       |
| 71 | TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell–derived endothelial cells. Journal of Cell Biology, 2003, 163, 1303-1311.                                                | 5.2  | 172       |
| 72 | Growth, regeneration, and tumorigenesis of the prostate activates the PSCA promoter. Proceedings of the United States of America, 2002, 99, 401-406.                                                          | 7.1  | 56        |

TETSURO WATABE

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Functional Heterogeneity of Bone Morphogenetic Protein Receptor-II Mutants Found in Patients with<br>Primary Pulmonary Hypertension. Molecular Biology of the Cell, 2002, 13, 3055-3063.                                                                    | 2.1 | 121       |
| 74 | Coamplification of prostate stem cell antigen (PSCA) andMYC in locally advanced prostate cancer. ,<br>2000, 27, 95-103.                                                                                                                                     |     | 97        |
| 75 | Xlim-1 and LIM Domain Binding Protein 1 Cooperate with Various Transcription Factors in the Regulation of the goosecoid Promoter. Developmental Biology, 2000, 224, 470-485.                                                                                | 2.0 | 61        |
| 76 | Functional Conservation of the Wnt Signaling Pathway Revealed by Ectopic Expression of Drosophila dishevelled in Xenopus. Developmental Biology, 1995, 170, 717-721.                                                                                        | 2.0 | 54        |
| 77 | Molecular cloning and amino acid sequencing of rat liver class theta glutathione S-transferase<br>Yrs-Yrs inactivating reactive sulfate esters of carcinogenic arylmethanols. Biochemical and<br>Biophysical Research Communications, 1991, 181, 1294-1300. | 2.1 | 59        |