Joshua A Weiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4000868/publications.pdf

Version: 2024-02-01

126907 144013 5,967 65 33 57 citations h-index g-index papers 100 100 100 5749 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	p53-mediated neurodegeneration in the absence of the nuclear protein Akirin2. IScience, 2022, 25, 103814.	4.1	3
2	The \hat{I}^3 -Protocadherins Interact Physically and Functionally with Neuroligin-2 to Negatively Regulate Inhibitory Synapse Density and Are Required for Normal Social Interaction. Molecular Neurobiology, 2021, 58, 2574-2589.	4.0	21
3	Akirin proteins in development and disease: critical roles and mechanisms of action. Cellular and Molecular Life Sciences, 2020, 77, 4237-4254.	5.4	16
4	The Role of Synaptic Cell Adhesion Molecules and Associated Scaffolding Proteins in Social Affiliative Behaviors. Biological Psychiatry, 2020, 88, 442-451.	1.3	27
5	Serotonin signaling by maternal neurons upon stress ensures progeny survival. ELife, 2020, 9, .	6.0	33
6	A critical role for the nuclear protein Akirin2 in the formation of mammalian muscle in vivo. Genesis, 2019, 57, e23286.	1.6	7
7	CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4. PLoS Genetics, 2019, 15, e1008554.	3.5	36
8	Title is missing!. , 2019, 15, e1008554.		O
9	Title is missing!. , 2019, 15, e1008554.		0
10	Title is missing!. , 2019, 15, e1008554.		0
11	An essential role for the nuclear protein Akirin2 in mouse limb interdigital tissue regression. Scientific Reports, 2018, 8, 12240.	3.3	19
12	Regulation of neural circuit formation by protocadherins. Cellular and Molecular Life Sciences, 2017, 74, 4133-4157.	5.4	104
13	\hat{I}^3 -Protocadherins Interact with Neuroligin-1 and Negatively Regulate Dendritic Spine Morphogenesis. Cell Reports, 2017, 18, 2702-2714.	6.4	65
14	Protocadherins and other atypical cadherins. Seminars in Cell and Developmental Biology, 2017, 69, 69.	5.0	1
15	Regulation of Wnt signaling by protocadherins. Seminars in Cell and Developmental Biology, 2017, 69, 158-171.	5.0	24
16	ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the blood–brain barrier. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2894-2909.	4.3	53
17	Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity. Cell Reports, 2016, 15, 1037-1050.	6.4	90
18	The \hat{I}^3 -Protocadherin-C3 isoform inhibits canonical Wnt signalling by binding to and stabilizing Axin1 at the membrane. Scientific Reports, 2016, 6, 31665.	3.3	34

#	Article	IF	CITATIONS
19	Akirin2 is essential for the formation of the cerebral cortex. Neural Development, 2016, 11, 21.	2.4	15
20	Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus. Brain, Behavior, and Immunity, 2016, 55, 49-59.	4.1	30
21	Clustered Protocadherins. , 2016, , 195-221.		3
22	Development of Twitching in Sleeping Infant Mice Depends on Sensory Experience. Current Biology, 2015, 25, 656-662.	3.9	26
23	Protocadherins branch out: Multiple roles in dendrite development. Cell Adhesion and Migration, 2015, 9, 214-226.	2.7	66
24	Protein Kinase C Phosphorylation of a \hat{I}^3 -Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization. Journal of Biological Chemistry, 2015, 290, 20674-20686.	3.4	42
25	Protocadherins, not prototypical: a complex tale of their interactions, expression, and functions. Frontiers in Molecular Neuroscience, 2013, 6, 4.	2.9	54
26	Introduction to mechanisms of neural circuit formation. Frontiers in Molecular Neuroscience, 2013, 6, 12.	2.9	7
27	Molecular heterogeneity in the choroid plexus epithelium: the 22â€member γâ€protocadherin family is differentially expressed, apically localized, and implicated in CSF regulation. Journal of Neurochemistry, 2012, 120, 913-927.	3.9	29
28	\hat{I}^3 -Protocadherins Control Cortical Dendrite Arborization by Regulating the Activity of a FAK/PKC/MARCKS Signaling Pathway. Neuron, 2012, 74, 269-276.	8.1	155
29	Distinct retinohypothalamic innervation patterns predict the developmental emergence of speciesâ€typical circadian phase preference in nocturnal Norway rats and diurnal nile grass rats. Journal of Comparative Neurology, 2012, 520, 3277-3292.	1.6	27
30	ALCAM Regulates Motility, Invasiveness, and Adherens Junction Formation in Uveal Melanoma Cells. PLoS ONE, 2012, 7, e39330.	2.5	29
31	Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the \hat{I}^3 -Protocadherins. Frontiers in Molecular Neuroscience, 2011, 4, 54.	2.9	47
32	An abrupt developmental shift in callosal modulation of sleep-related spindle bursts coincides with the emergence of excitatory-inhibitory balance and a reduction of somatosensory cortical plasticity Behavioral Neuroscience, 2010, 124, 600-611.	1.2	36
33	Essential role for ALCAM gene silencing in megakaryocytic differentiation of K562 cells. BMC Molecular Biology, 2010, 11, 91.	3.0	17
34	Combinatorial homophilic interaction between \hat{I}^3 -protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14893-14898.	7.1	218
35	ALCAM Regulates Mediolateral Retinotopic Mapping in the Superior Colliculus. Journal of Neuroscience, 2009, 29, 15630-15641.	3.6	46
36	Control of CNS Synapse Development by γ-Protocadherin-Mediated Astrocyte–Neuron Contact. Journal of Neuroscience, 2009, 29, 11723-11731.	3.6	177

#	Article	IF	Citations
37	Phr1 regulates retinogeniculate targeting independent of activity and ephrin-A signalling. Molecular and Cellular Neurosciences, 2009, 41, 304-312.	2.2	23
38	The Cadherin Superfamily in Synapse Formation and Function., 2009, , 159-183.		3
39	A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin- \hat{l}^3 gene cluster. Development (Cambridge), 2008, 135, 4153-4164.	2.5	105
40	Labeled lines in the retinotectal system: Markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them. Molecular and Cellular Neurosciences, 2006, 33, 296-310.	2.2	61
41	Protocadherins and Synapse Development. , 2006, , 137-150.		4
42	Gamma protocadherins are required for synaptic development in the spinal cord. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8-14.	7.1	204
43	Molecular Control of Spinal Accessory Motor Neuron/Axon Development in the Mouse Spinal Cord. Journal of Neuroscience, 2005, 25, 10119-10130.	3.6	55
44	Cell Adhesion Molecules in Synapse Formation. Journal of Neuroscience, 2004, 24, 9244-9249.	3.6	164
45	A putative ariadne-like E3 ubiquitin ligase (PAUL) that interacts with the muscle-specific kinase (MuSK). Gene Expression Patterns, 2004, 4, 77-84.	0.8	14
46	Axon fasciculation defects and retinal dysplasias in mice lacking the immunoglobulin superfamily adhesion molecule BEN/ALCAM/SC1. Molecular and Cellular Neurosciences, 2004, 27, 59-69.	2.2	100
47	Synaptic adhesion molecules. Current Opinion in Cell Biology, 2003, 15, 621-632.	5.4	323
48	Lysophosphatidic Acid Influences the Morphology and Motility of Young, Postmitotic Cortical Neurons. Molecular and Cellular Neurosciences, 2002, 20, 271-282.	2.2	134
49	Sidekicks. Cell, 2002, 110, 649-660.	28.9	313
50	Gamma Protocadherins Are Required for Survival of Spinal Interneurons. Neuron, 2002, 36, 843-854.	8.1	251
51	Regulation of Schwann Cell Morphology and Adhesion by Receptor-Mediated Lysophosphatidic Acid Signaling. Journal of Neuroscience, 2001, 21, 7069-7078.	3.6	155
52	LYSOPHOSPHOLIPIDRECEPTORS. Annual Review of Pharmacology and Toxicology, 2001, 41, 507-534.	9.4	347
53	Requirement for the <i>lp</i> _{A1} lysophosphatidic acid receptor gene in normal suckling behavior. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13384-13389.	7.1	458
54	Lysophosphatidic Acid (LPA) Is a Novel Extracellular Regulator of Cortical Neuroblast Morphology. Developmental Biology, 2000, 228, 6-18.	2.0	157

#	Article	IF	CITATIONS
55	Neurobiology of Receptorâ€Mediated Lysophospholipid Signaling: From the First Lysophospholipid Receptor to Roles in Nervous System Function and Development. Annals of the New York Academy of Sciences, 2000, 905, 110-117.	3.8	43
56	Lysophosphatidic Acid Stimulates Neurotransmitter-Like Conductance Changes that Precede GABA and I-Glutamate in Early, Presumptive Cortical Neuroblasts. Journal of Neuroscience, 1999, 19, 1371-1381.	3.6	75
57	Novel Dendritic Kinesin Sorting Identified by Different Process Targeting of Two Related Kinesins: KIF21A and KIF21B. Journal of Cell Biology, 1999, 145, 469-479.	5.2	150
58	Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5233-5238.	7.1	232
59	Comparative analysis of three murine G-protein coupled receptors activated by sphingosine-1-phosphate. Gene, 1999, 227, 89-99.	2.2	135
60	Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system., 1998, 396, 39-50.		215
61	Lysophosphatidic acid receptor genevzg-1/lpA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. Journal of Comparative Neurology, 1998, 398, 587-598.	1.6	172
62	Lysophosphatidic acid receptor gene vzg1lpA1edg2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. Journal of Comparative Neurology, 1998, 398, 587-598.	1.6	3
63	Identification of a Novel Protein Kinase A Anchoring Protein That Binds Both Type I and Type II Regulatory Subunits. Journal of Biological Chemistry, 1997, 272, 8057-8064.	3.4	256
64	D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11184-11189.	7.1	212
65	Png-1, a nervous system-specific zinc finger gene, identifies regions containing postmitotic neurons during mammalian embryonic development., 1997, 381, 130-142.		43