Guillaume Bossis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3999664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of SUMOylation by Reversible Oxidation of SUMO Conjugating Enzymes. Molecular Cell, 2006, 21, 349-357.	9.7	323
2	E4F1 Is an Atypical Ubiquitin Ligase that Modulates p53 Effector Functions Independently of Degradation. Cell, 2006, 127, 775-788.	28.9	214
3	Sumoylation inhibits α-synuclein aggregation and toxicity. Journal of Cell Biology, 2011, 194, 49-60.	5.2	210
4	Down-Regulation of c-Fos/c-Jun AP-1 Dimer Activity by Sumoylation. Molecular and Cellular Biology, 2005, 25, 6964-6979.	2.3	172
5	SUMO under stress. Biochemical Society Transactions, 2008, 36, 874-878.	3.4	154
6	SUMO: regulating the regulator. Cell Division, 2006, 1, 13.	2.4	130
7	SUMO Safeguards Somatic and Pluripotent Cell Identities by Enforcing Distinct Chromatin States. Cell Stem Cell, 2018, 23, 742-757.e8.	11.1	105
8	SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1. Journal of Cell Biology, 2004, 165, 767-773.	5.2	89
9	The ROS/SUMO Axis Contributes to the Response of Acute Myeloid Leukemia Cells to Chemotherapeutic Drugs. Cell Reports, 2014, 7, 1815-1823.	6.4	86
10	Particulate matter-induced senescence of skin keratinocytes involves oxidative stress-dependent epigenetic modifications. Experimental and Molecular Medicine, 2019, 51, 1-14.	7.7	71
11	SUMOylation Regulates the Transcriptional Activity of JunB in T Lymphocytes. Journal of Immunology, 2008, 180, 5983-5990.	0.8	52
12	SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies. Molecules, 2021, 26, 828.	3.8	46
13	Targeting the SUMO Pathway Primes All- <i>trans</i> Retinoic Acid–Induced Differentiation of Nonpromyelocytic Acute Myeloid Leukemias. Cancer Research, 2018, 78, 2601-2613.	0.9	45
14	Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia. Cancer Research, 2019, 79, 5191-5203.	0.9	45
15	A Fluorescence Resonance Energy Transferâ€Based Assay to Study SUMO Modification in Solution. Methods in Enzymology, 2005, 398, 20-32.	1.0	40
16	The SUMO Pathway in Hematomalignancies and Their Response to Therapies. International Journal of Molecular Sciences, 2019, 20, 3895.	4.1	29
17	Detection of Protein–Protein Interactions and Posttranslational Modifications Using the Proximity Ligation Assay: Application to the Study of the SUMO Pathway. Methods in Molecular Biology, 2016, 1449, 279-290.	0.9	27
18	Deciphering the Role of Oncogenic MITFE318K in Senescence Delay and Melanoma Progression. Journal of the National Cancer Institute, 2017, 109, .	6.3	27

GUILLAUME BOSSIS

#	Article	IF	CITATIONS
19	Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
20	SUMOylation of SAMHD1 at Lysine 595 is required for HIV-1 restriction in non-cycling cells. Nature Communications, 2021, 12, 4582.	12.8	17
21	1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-Î ² -lactamase inhibitors with re-sensitization activity. European Journal of Medicinal Chemistry, 2021, 226, 113873.	5.5	16
22	Ubiquitin and SUMO conjugation as biomarkers of acute myeloid leukemias response to chemotherapies. Life Science Alliance, 2020, 3, e201900577.	2.8	13
23	The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias. Haematologica, 2022, 107, 2562-2575.	3.5	13
24	Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. Advances in Experimental Medicine and Biology, 2020, 1233, 29-54.	1.6	11
25	Regulation of Viral Restriction by Post-Translational Modifications. Viruses, 2021, 13, 2197.	3.3	8
26	Staphylococcus aureus Decreases SUMOylation Host Response to Promote Intramacrophage Survival. International Journal of Molecular Sciences, 2021, 22, 8108.	4.1	7
27	Production and Purification of Recombinant SUMOylated Proteins Using Engineered Bacteria. Methods in Molecular Biology, 2016, 1475, 55-65.	0.9	5
28	Trim39 regulates neuronal apoptosis by acting as a SUMO-targeted E3 ubiquitin-ligase for the transcription factor NFATc3. Cell Death and Differentiation, 2022, 29, 2107-2122.	11.2	4
29	DNA Repair Expression Profiling to Identify High-Risk Cytogenetically Normal Acute Myeloid Leukemia and Define New Therapeutic Targets. Cancers, 2020, 12, 2874.	3.7	3