
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3999475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precision COVID-19 Vaccine with Companion Diagnostics. Precision Nanomedicine, 2020, 3, .	0.8	3
2	Vaccination of Mice Using the West Nile Virus E-Protein in a DNA Prime-Protein Boost Strategy Stimulates Cell-Mediated Immunity and Protects Mice against a Lethal Challenge. PLoS ONE, 2014, 9, e87837.	2.5	32
3	DNA nanoparticles with core–shell morphology. Soft Matter, 2014, 10, 7653-7660.	2.7	5
4	Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes. Gene Therapy, 2014, 21, 566-574.	4.5	19
5	Vaccine-Induced Protection of Rhesus Macaques against Plasma Viremia after Intradermal Infection with a European Lineage 1 Strain of West Nile Virus. PLoS ONE, 2014, 9, e112568.	2.5	13
6	Nanomedicine and HIV/AIDS. , 2014, , 175-194.		0
7	DermAll nanomedicine for allergen-specific immunotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1245-1254.	3.3	10
8	Nanomedicine applications towards the cure of HIV. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 28-38.	3.3	43
9	HIV vaccine to induce cytotoxic T cells recognizing conserved HIV-1/2-epitopes derived from the most frequent HLA types of the human population. Immunotherapy, 2013, 5, 825-828.	2.0	Ο
10	Safety, Tolerability, and Immunogenicity of Repeated Doses of DermaVir, a Candidate Therapeutic HIV Vaccine, in HIV-Infected Patients Receiving Combination Antiretroviral Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2013, 64, 351-359.	2.1	52
11	HIV-specific immunotherapy with DermaVir, the first pDNA/PEIm pathogen-like nanomedicine. European Journal of Nanomedicine, 2012, 4, .	0.6	1
12	Single DermaVir Immunization: Dose-Dependent Expansion of Precursor/Memory T Cells against All HIV Antigens in HIV-1 Infected Individuals. PLoS ONE, 2012, 7, e35416.	2.5	62
13	Structure and biological activity of pathogen-like synthetic nanomedicines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 497-506.	3.3	26
14	Rational Design of Formulated DNA Vaccines: The DermaVir Approach. , 2012, , 127-143.		2
15	A plasmid DNA immunogen expressing fifteen protein antigens and complex virus-like particles (VLP+) mimicking naturally occurring HIV. Vaccine, 2011, 29, 744-753.	3.8	21
16	Rational development of a stable liquid formulation for nanomedicine products. International Journal of Pharmaceutics, 2010, 392, 261-267.	5.2	37
17	Nanophysiology: The Janus Face of Immune Stimulation by Nanomedicines: Examples for the Good and the Bad. European Journal of Nanomedicine, 2010, 3, .	0.6	4
18	Preventive Nanomedicine: Nanomedicine for dendritic cell-targeted immunotherapy. European Journal of Nanomedicine. 2010. 3	0.6	1

#	Article	IF	CITATIONS
19	Unsung Hero Robert C. Gallo. Science, 2009, 323, 206-207.	12.6	2
20	IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine. Vaccine, 2008, 26, 5188-5195.	3.8	40
21	HIV-1-Specific T Cell Precursors with High Proliferative Capacity Correlate with Low Viremia and High CD4 Counts in Untreated Individuals. Journal of Immunology, 2008, 180, 5907-5915.	0.8	45
22	Combining antiretroviral drugs and immune therapies: an approach to achieve clinical benefit after treatment interruption. Current Opinion in HIV and AIDS, 2008, 3, 104-111.	3.8	0
23	The potential of topical DNA vaccines adjuvanted by cytokines. Expert Opinion on Biological Therapy, 2007, 7, 1563-1574.	3.1	14
24	Nanochemistry-Based Immunotherapy for HIV-1. Current Medicinal Chemistry, 2007, 14, 1911-1919.	2.4	40
25	Virostatics: A New Class of Anti-HIV Drugs. Current Medicinal Chemistry, 2007, 14, 233-241.	2.4	12
26	A Checkpoint in the Cell Cycle Progression as a Therapeutic Target to Inhibit HIV Replication. Journal of Infectious Diseases, 2007, 196, 1409-1415.	4.0	8
27	Stopping HAART temporarily in the absence of virus rebound: exploring new HIV treatment options. Current Opinion in HIV and AIDS, 2007, 2, 14-20.	3.8	5
28	Induction of HIV-specific memory T-cell responses by topical DermaVir vaccine. Vaccine, 2007, 25, 3070-3074.	3.8	12
29	HIV-1 prophylactic vaccine comprised of topical DermaVir prime and protein boost elicits cellular immune responses and controls pathogenic R5 SHIV162P3. Virology, 2007, 366, 197-211.	2.4	41
30	Cytokine-adjuvanted HIV-DNA vaccination strategies. Seminars in Immunopathology, 2006, 28, 231-238.	4.0	28
31	Topical DermaVir Vaccine Targeting Dendritic Cells. Current Drug Delivery, 2006, 3, 83-88.	1.6	12
32	Hydroxyurea exerts a cytostatic but not immunosuppressive effect on T lymphocytes. Aids, 2005, 19, 137-144.	2.2	11
33	Control of viral rebound through therapeutic immunization with DermaVir. Aids, 2005, 19, 35-43.	2.2	63
34	DermaVir: A Novel Topical Vaccine for HIV/AIDS. Journal of Investigative Dermatology, 2005, 124, 160-169.	0.7	82
35	Optimal suppression of HIV replication by low-dose hydroxyurea through the combination of antiviral and cytostatic (†virostatic') mechanisms. Aids, 2005, 19, 1173-1181.	2.2	25
36	DermaVir, a novel HIV immunisation technology. Vaccine, 2005, 23, 2030-2034.	3.8	34

#	Article	IF	CITATIONS
37	Immunotherapy of HIV Disease. , 2005, , 505-522.		о
38	T-Cell Receptor Excision Circles (TREC) in SHIV 89.6p and SIVmac251 Models of HIV-1 Infection. DNA and Cell Biology, 2004, 23, 1-13.	1.9	12
39	Safety of hydroxyurea in the treatment of HIV infection. Expert Opinion on Drug Safety, 2004, 3, 279-288.	2.4	17
40	APC-targeted immunization for the treatment of HIV-1. Expert Review of Vaccines, 2004, 3, S189-S198.	4.4	10
41	"Virostatics" as a Potential New Class of HIV Drugs. Current Pharmaceutical Design, 2004, 10, 4103-4120.	1.9	17
42	Strategies to Decrease Viral Load Rebound, and Prevent Loss of Cd4 and Onset of Resistance during Structured Treatment Interruptions. Antiviral Therapy, 2004, 9, 123-132.	1.0	15
43	Gamma/delta T cells. Clinical and Applied Immunology Reviews, 2003, 3, 235-245.	0.4	2
44	Vaccinia assay for the rapid detection of functional HIV-specific CD8+ cytotoxic T lymphocytes. Journal of Immunological Methods, 2003, 276, 45-57.	1.4	13
45	Hydroxyurea in the Treatment of HIV Infection. Drug Safety, 2003, 26, 605-624.	3.2	44
46	Therapeutic vaccination for future management of HIV/AIDS. Vaccine, 2003, 21, 620-623.	3.8	22
47	Short Communication: Methods of Using Interleukin 2 to Enhance HIV-Specific Immune Responses. AIDS Research and Human Retroviruses, 2002, 18, 289-293.	1.1	5
48	Control of HIV during a structured treatment interruption in chronically infected individuals with vigorous T cell responses. HIV Clinical Trials, 2002, 3, 115-124.	2.0	30
49	Quantification of HIV-specific CD8 T cells by in vitro stimulation with inactivated viral particles. Aids, 2002, 16, 1849-1857.	2.2	6
50	Complementary Antiviral Efficacy of Hydroxyurea and Protease Inhibitors in Human Immunodeficiency Virus-Infected Dendritic Cells and Lymphocytes. Journal of Virology, 2002, 76, 2274-2278.	3.4	22
51	Structured treatment interruptions as a potential alternative therapeutic regimen for HIV-infected patients: a review of recent clinical data and future prospects. Journal of Antimicrobial Chemotherapy, 2002, 50, 155-160.	3.0	23
52	Gene Therapy Approaches to HIV Infection. Molecular Diagnosis and Therapy, 2002, 2, 245-252.	3.3	10
53	High efficiency lentiviral gene delivery in non-dividing cells by deoxynucleoside treatment. Journal of Gene Medicine, 2002, 4, 161-169.	2.8	10
54	Structured treatment interruptions in HIV/AIDS therapy. Microbes and Infection, 2002, 4, 207-214.	1.9	32

#	Article	IF	CITATIONS
55	Direct analysis of mitochondrial toxicity of antiretroviral drugs. Aids, 2001, 15, 1687-1694.	2.2	68
56	SV40-derived vectors provide effective transgene expression and inhibition of HIV-1 using constitutive, conditional,and pol III promoters. Gene Therapy, 2001, 8, 1033-1042.	4.5	22
57	Structured Treatment Interruptions for the Management of HIV Infection. JAMA - Journal of the American Medical Association, 2001, 286, 2981.	7.4	92
58	Induction of Potent Human Immunodeficiency Virus Type 1-Specific T-Cell-Restricted Immunity by Genetically Modified Dendritic Cells. Journal of Virology, 2001, 75, 7621-7628.	3.4	60
59	Inhibition of HIV-1 replication in chronically infected cell lines and peripheral blood mononuclear cells by retrovirus-mediated antitat gene transfer. Gene Therapy, 2000, 7, 321-328.	4.5	10
60	Combination Gene Therapy: Synergistic Inhibition of Human Immunodeficiency Virus Tat and Rev Functions by a Single RNA Molecule. Human Gene Therapy, 2000, 11, 807-815.	2.7	17
61	Rationale for the Use of Hydroxyurea as an Anti-Human Immunodeficiency Virus Drug. Clinical Infectious Diseases, 2000, 30, S193-S197.	5.8	38
62	Structured treatment interruptions to control HIV-1 infection. Lancet, The, 2000, 355, 287-288.	13.7	72
63	Control of SIV Rebound Through Structured Treatment Interruptions During Early Infection. , 2000, 290, 1591-1593.		166
64	Effects of hydroxyurea on T cell count changes during primary HIV infection. Aids, 2000, 14, 619-622.	2.2	11
65	Control of HIV despite the Discontinuation of Antiretroviral Therapy. New England Journal of Medicine, 1999, 340, 1683-1683.	27.0	305
66	Treatment of Human Immunodeficiency Virus Infection with Hydroxyurea, Didanosine, and a Protease Inhibitor before Seroconversion Is Associated with Normalized Immune Parameters and Limited Viral Reservoir. Journal of Infectious Diseases, 1999, 180, 1827-1832.	4.0	92
67	Immune Restoration by Combination of a Cytostatic Drug (Hydroxyurea) and Anti-HIV Drugs (Didanosine and Indinavir). AIDS Research and Human Retroviruses, 1999, 15, 619-624.	1.1	34
68	Hydroxyurea and Didanosine Long-Term Treatment Prevents HIV Breakthrough and Normalizes Immune Parameters. AIDS Research and Human Retroviruses, 1999, 15, 1333-1338.	1.1	27
69	Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Medicine, 1999, 5, 512-517.	30.7	1,962
70	New Uses for Old Drugs in HIV Infection. Drugs, 1999, 58, 953-963.	10.9	33
71	Analysis of amino insertion mutations in the fingers subdomain of HIV-1 reverse transcriptase 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 286, 995-1008.	4.2	25
72	Expansion of CD57 and CD62L-CD45RA+ CD8 T lymphocytes correlates with reduced viral plasma RNA after primary HIV infection. Aids, 1999, 13, 891-899.	2.2	57

#	Article	IF	CITATIONS
73	HIV-1 suppression by early treatment with hydroxyurea, didanosine, and a protease inhibitor. Lancet, The, 1998, 352, 199-200.	13.7	50
74	Combination of a Drug Targeting the Cell with a Drug Targeting the Virus Controls Human Immunodeficiency Virus Type 1 Resistance. AIDS Research and Human Retroviruses, 1997, 13, 1403-1409.	1.1	93
75	Mutations in thepolGene of Human Immunodeficiency Virus Type 1 in Infected Patients Receiving Didanosine and Hydroxyurea Combination Therapy. Journal of Infectious Diseases, 1997, 176, 899-903.	4.0	99
76	TAR Decoys and Trans-Dominant gag Mutant for HIV-1 Gene Therapy. Antibiotics and Chemotherapy, 1996, 48, 192-197.	0.5	5
77	Block of Tat-Mediated Transactivation of Tumor Necrosis Factor Î ² Gene Expression by Polymeric-TAR Decoys. Virology, 1996, 222, 252-256.	2.4	15
78	Hybrid oligonucleotides: Synthesis, biophysical properties, stability studies, and biological activity. Bioorganic and Medicinal Chemistry, 1996, 4, 1685-1692.	3.0	25
79	Efficacy ofantitatGene Therapy in the Presence of High Multiplicity Infection and Inflammatory Cytokines. Human Gene Therapy, 1996, 7, 2209-2216.	2.7	6
80	Antisense Phosphorothioate Oligodeoxynucleotides Alter HIV Type 1 Replication in Cultured Human Macrophages and Peripheral Blood Mononuclear Cells. AIDS Research and Human Retroviruses, 1995, 11, 863-867.	1.1	25
81	Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science, 1994, 266, 801-805.	12.6	341
82	Study of antisense oligonucleotide phosphorothioates containing segments of oligodeoxynucleotides and 2′-o- methyloligoribonucleotides. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2929-2934.	2.2	59
83	Antisense oligodeoxynucleotide phosphorothioate complementary to Gag mRNA blocks replication of human immunodeficiency virus type 1 in human peripheral blood cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7942-7946.	7.1	119
84	Long-term treatment of human immunodeficiency virus-infected cells with antisense oligonucleotide phosphorothioates Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 3860-3864.	7.1	103
85	Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8000-8004.	7.1	144
86	Calcium Uptake and Protein Phosphorylation in Myenteric Neurons, Like the Release of Vasoactive Intestinal Polypeptide and Acetylcholine, Are Frequency Dependent. Journal of Neurochemistry, 1989, 52, 1637-1640.	3.9	30
87	Cloning and characterization of theSaccharomyces cerevisiaeCDC6 gene. Nucleic Acids Research, 1988, 16, 11507-11520.	14.5	39