Charan Ranganath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/399914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Narratives bridge the divide between distant events in episodic memory. Memory and Cognition, 2022, 50, 478-494.	0.9	17
2	Event boundaries shape temporal organization of memory by resetting temporal context. Nature Communications, 2022, 13, 622.	5.8	19
3	The hippocampus supports highâ€precision binding in visual working memory. Hippocampus, 2022, 32, 217-230.	0.9	32
4	The Structure of Systematicity in the Brain. Current Directions in Psychological Science, 2022, 31, 124-130.	2.8	11
5	Memory Based Prediction Deficits and Dorsolateral Prefrontal Dysfunction in Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, , .	1.1	1
6	Individual differences in behavioral and electrophysiological signatures of familiarity- and recollection-based recognition memory. Neuropsychologia, 2022, 173, 108287.	0.7	5
7	Temporal proximity to the elicitation of curiosity is key for enhancing memory for incidental information. Learning and Memory, 2021, 28, 34-39.	0.5	13
8	Disrupted Modulation of Alpha and Low Beta Oscillations Mediates Temporal Sequence Memory Deficits in People With Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 1157-1164.	1.1	1
9	Resurrected memories: Sleep-dependent memory consolidation saves memories from competition induced by retrieval practice. Psychonomic Bulletin and Review, 2021, 28, 2035-2044.	1.4	7
10	Transcranial Direct Current Stimulation Modulates Connectivity of Left Dorsolateral Prefrontal Cortex with Distributed Cortical Networks. Journal of Cognitive Neuroscience, 2021, 33, 1381-1395.	1.1	11
11	Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the human brain. PLoS Biology, 2021, 19, e3001275.	2.6	59
12	Intensity-Dependent Changes in Quantified Resting Cerebral Perfusion With Multiple Sessions of Transcranial DC Stimulation. Frontiers in Human Neuroscience, 2021, 15, 679977.	1.0	2
13	The hippocampus constructs narrative memories across distant events. Current Biology, 2021, 31, 4935-4945.e7.	1.8	42
14	Effects of retrieval practice on tested and untested information: Cortico-hippocampal interactions and error-driven learning. Psychology of Learning and Motivation - Advances in Research and Theory, 2021, , 125-155.	0.5	4
15	The hippocampus and orbitofrontal cortex jointly represent task structure during memory-guided decision making. Cell Reports, 2021, 37, 110065.	2.9	21
16	Map Making: Constructing, Combining, and Inferring on Abstract Cognitive Maps. Neuron, 2020, 107, 1226-1238.e8.	3.8	115
17	Aging alters neural activity at event boundaries in the hippocampus and Posterior Medial network. Nature Communications, 2020, 11, 3980.	5.8	61
18	Retrieval practice facilitation of family psychoeducation in people with early psychosis. Schizophrenia Research, 2020, 223, 186-191.	1.1	1

#	Article	IF	CITATIONS
19	Temporal Sequence Learning in People With Schizophrenia. Biological Psychiatry, 2020, 87, S446-S447.	0.7	1
20	Low Frequency Neural Oscillations Associated With Deficits in Sequence Learning in People With Schizophrenia. Biological Psychiatry, 2020, 87, S410.	0.7	0
21	Neural repetition suppression effects in the human hippocampus. Neurobiology of Learning and Memory, 2020, 173, 107269.	1.0	11
22	Task-specific Disruptions in Theta Oscillations during Working Memory for Temporal Order in People with Schizophrenia. Journal of Cognitive Neuroscience, 2020, 32, 2117-2130.	1.1	10
23	Using prefrontal transcranial direct current stimulation (tDCS) to enhance proactive cognitive control in schizophrenia. Neuropsychopharmacology, 2020, 45, 1877-1883.	2.8	19
24	Contextual Codes in the Hippocampus. Trends in Neurosciences, 2020, 43, 357-359.	4.2	1
25	Structured Event Memory: A neuro-symbolic model of event cognition Psychological Review, 2020, 127, 327-361.	2.7	98
26	Time, memory, and the legacy of Howard Eichenbaum. Hippocampus, 2019, 29, 146-161.	0.9	15
27	How Curiosity Enhances Hippocampus-Dependent Memory: The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework. Trends in Cognitive Sciences, 2019, 23, 1014-1025.	4.0	124
28	The lateral prefrontal cortex and human long-term memory. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 221-235.	1.0	4
29	Reply to â€~Active and effective replay: systems consolidation reconsidered again'. Nature Reviews Neuroscience, 2019, 20, 507-508.	4.9	3
30	A contextual binding theory of episodic memory: systems consolidation reconsidered. Nature Reviews Neuroscience, 2019, 20, 364-375.	4.9	246
31	Stress and the medial temporal lobe at rest: Functional connectivity is associated with both memory and cortisol. Psychoneuroendocrinology, 2019, 106, 138-146.	1.3	20
32	Curiosity and Learning. , 2019, , 397-417.		20
33	Dissociable medial temporal pathways for encoding emotional item and context information. Neuropsychologia, 2019, 124, 66-78.	0.7	29
34	Prefrontal transcranial direct current stimulation (tDCS) enhances behavioral and EEG markers of proactive control. Cognitive Neuroscience, 2019, 10, 57-65.	0.6	36
35	Adaptive task difficulty influences neural plasticity and transfer of training. NeuroImage, 2019, 188, 111-121.	2.1	31
36	The Hippocampus Generalizes across Memories that Share Item and Context Information. Journal of Cognitive Neuroscience, 2019, 31, 24-35.	1.1	29

#	Article	IF	CITATIONS
37	What does the functional organization of cortico-hippocampal networks tell us about the functional organization of memory?. Neuroscience Letters, 2018, 680, 69-76.	1.0	56
38	CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nature Communications, 2018, 9, 294.	5.8	140
39	Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil― Information. Journal of Cognitive Neuroscience, 2018, 30, 667-679.	1.1	11
40	Neural oscillations during conditional associative learning. NeuroImage, 2018, 174, 485-493.	2.1	27
41	Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus, 2018, 28, 680-687.	0.9	145
42	Brain activity related to working memory for temporal order and object information. Behavioural Brain Research, 2018, 354, 55-63.	1.2	31
43	Dynamic integration of conceptual information during learning. PLoS ONE, 2018, 13, e0207357.	1.1	3
44	Neural reactivation in parietal cortex enhances memory for episodically linked information. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11084-11089.	3.3	62
45	Representational Similarity Analyses. Handbook of Behavioral Neuroscience, 2018, , 509-525.	0.7	54
46	Entrainment enhances theta oscillations and improves episodic memory. Cognitive Neuroscience, 2018, 9, 181-193.	0.6	51
47	New perspectives on the hippocampus and memory. Neuroscience Letters, 2018, 680, 1-3.	1.0	5
48	Theta Phase Synchronization between the Human Hippocampus and Prefrontal Cortex Increases during Encoding of Unexpected Information: A Case Study. Journal of Cognitive Neuroscience, 2018, 30, 1646-1656.	1.1	37
49	Impact of oscillatory tDCS targeting left prefrontal cortex on source memory retrieval. Cognitive Neuroscience, 2018, 9, 194-207.	0.6	10
50	Curiosity-driven memory enhancement persists over time but does not benefit from post-learning sleep. Cognitive Neuroscience, 2018, 9, 100-115.	0.6	29
51	Theta oscillations promote temporal sequence learning. Neurobiology of Learning and Memory, 2018, 153, 92-103.	1.0	37
52	Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nature Neuroscience, 2017, 20, 1434-1447.	7.1	430
53	Time regained: how the human brain constructs memory for time. Current Opinion in Behavioral Sciences, 2017, 17, 169-177.	2.0	20
54	Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress. Hippocampus, 2017, 27, 77-88.	0.9	23

#	Article	IF	CITATIONS
55	Prefrontal Cortex and Human Memory: An Integrated Account From the Cognitive Neuroscience of Working and Long-Term Memory â~†. , 2017, , 275-293.		0
56	Dynamic Cortico-hippocampal Networks Underlying Memory and Cognition: The PMAT Framework. , 2017, , 559-589.		14
57	The hippocampus: a special place for time. Annals of the New York Academy of Sciences, 2016, 1369, 93-110.	1.8	84
58	Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil― information. Neuropsychologia, 2016, 89, 356-363.	0.7	9
59	Distinct neural mechanisms for remembering when an event occurred. Hippocampus, 2016, 26, 554-559.	0.9	72
60	Electrophysiological Evidence for Impaired Control of Motor Output in Schizophrenia. Cerebral Cortex, 2016, 26, 1891-1899.	1.6	19
61	Functional connectivity based parcellation of the human medial temporal lobe. Neurobiology of Learning and Memory, 2016, 134, 123-134.	1.0	58
62	Post-learning Hippocampal Dynamics Promote Preferential Retention of Rewarding Events. Neuron, 2016, 89, 1110-1120.	3.8	157
63	Learning Warps Object Representations in the Ventral Temporal Cortex. Journal of Cognitive Neuroscience, 2016, 28, 1010-1023.	1.1	25
64	Impaired recollection of visual scene details in adults with autism spectrum conditions Journal of Abnormal Psychology, 2015, 124, 565-575.	2.0	21
65	Cognitive Control of Episodic Memory in Schizophrenia: Differential Role of Dorsolateral and Ventrolateral Prefrontal Cortex. Frontiers in Human Neuroscience, 2015, 9, 604.	1.0	20
66	Cortico-hippocampal systems involved in memory and cognition. Progress in Brain Research, 2015, 219, 45-64.	0.9	195
67	Algal toxin impairs sea lion memory and hippocampal connectivity, with implications for strandings. Science, 2015, 350, 1545-1547.	6.0	78
68	Functional subregions of the human entorhinal cortex. ELife, 2015, 4, .	2.8	190
69	Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. NeuroImage, 2015, 111, 526-541.	2.1	284
70	Cortical and subcortical contributions to sequence retrieval: Schematic coding of temporal context in the neocortical recollection network. NeuroImage, 2015, 121, 78-90.	2.1	61
71	Functional and Neuroanatomic Specificity of Episodic Memory Dysfunction in Schizophrenia. JAMA Psychiatry, 2015, 72, 909.	6.0	104
72	Differential effects of stress-induced cortisol responses on recollection and familiarity-based recognition memory. Neurobiology of Learning and Memory, 2015, 123, 1-10.	1.0	40

#	Article	IF	CITATIONS
73	Significance of objects in the perirhinal cortex. Trends in Cognitive Sciences, 2015, 19, 302-303.	4.0	16
74	Navigating the human hippocampus without a <scp>GPS</scp> . Hippocampus, 2015, 25, 697-703.	0.9	7
75	Memory and Space: Towards an Understanding of the Cognitive Map. Journal of Neuroscience, 2015, 35, 13904-13911.	1.7	247
76	Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. ELife, 2015, 4, .	2.8	117
77	Complementary Roles of Human Hippocampal Subregions during Retrieval of Spatiotemporal Context. Journal of Neuroscience, 2014, 34, 6834-6842.	1.7	83
78	Functional Connectivity Relationships Predict Similarities in Task Activation and Pattern Information during Associative Memory Encoding. Journal of Cognitive Neuroscience, 2014, 26, 1085-1099.	1.1	54
79	Brain Mechanisms of Successful Recognition through Retrieval of Semantic Context. Journal of Cognitive Neuroscience, 2014, 26, 1694-1704.	1.1	14
80	Temporal Stability and Moderating Effects of Age and Sex on CNTRaCS Task Performance. Schizophrenia Bulletin, 2014, 40, 835-844.	2.3	31
81	Neural Correlates of State- and Strength-based Perception. Journal of Cognitive Neuroscience, 2014, 26, 792-809.	1.1	11
82	Hippocampal Activity Patterns Carry Information about Objects in Temporal Context. Neuron, 2014, 81, 1165-1178.	3.8	307
83	Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 2014, 85, 721-729.	2.1	384
84	Medial Temporal Lobe Coding of Item and Spatial Information during Relational Binding in Working Memory. Journal of Neuroscience, 2014, 34, 14233-14242.	1.7	116
85	States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit. Neuron, 2014, 84, 486-496.	3.8	411
86	Activity reductions in perirhinal cortex predict conceptual priming and familiarity-based recognition. Neuropsychologia, 2014, 52, 19-26.	0.7	57
87	Dissociable neural correlates of item and context retrieval in the medial temporal lobes. Behavioural Brain Research, 2013, 254, 102-107.	1.2	22
88	Spared and Impaired Spoken Discourse Processing in Schizophrenia: Effects of Local and Global Language Context. Journal of Neuroscience, 2013, 33, 15578-15587.	1.7	17
89	Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia, 2013, 51, 349-357.	0.7	114
90	Medial temporal lobe contributions to cued retrieval of items and contexts. Neuropsychologia, 2013, 51, 2322-2332.	0.7	50

#	Article	IF	CITATIONS
91	Recollection and Familiarity in Schizophrenia: A Quantitative Review. Biological Psychiatry, 2013, 73, 944-950.	0.7	54
92	Detecting Changes in Scenes: The Hippocampus Is Critical for Strength-Based Perception. Neuron, 2013, 78, 1127-1137.	3.8	111
93	Expected reward modulates encoding-related theta activity before an event. NeuroImage, 2013, 64, 68-74.	2.1	85
94	Parahippocampal cortex activation during context reinstatement predicts item recollection Journal of Experimental Psychology: General, 2013, 142, 1287-1297.	1.5	36
95	CNTRICS Imaging Biomarkers Final Task Selection: Long-Term Memory and Reinforcement Learning. Schizophrenia Bulletin, 2012, 38, 62-72.	2.3	21
96	Differential Connectivity of Perirhinal and Parahippocampal Cortices within Human Hippocampal Subregions Revealed by High-Resolution Functional Imaging. Journal of Neuroscience, 2012, 32, 6550-6560.	1.7	276
97	Clinical, Functional, and Intertask Correlations of Measures Developed by the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia Consortium. Schizophrenia Bulletin, 2012, 38, 144-152.	2.3	83
98	Relational and Item-Specific Encoding (RISE): Task Development and Psychometric Characteristics. Schizophrenia Bulletin, 2012, 38, 114-124.	2.3	65
99	Adaptation to cognitive context and item information in the medial temporal lobes. Neuropsychologia, 2012, 50, 3062-3069.	0.7	46
100	Neurophysiological evidence for a recollection impairment in amnesia patients that leaves familiarity intact. Neuropsychologia, 2012, 50, 3004-3014.	0.7	46
101	Distinguishing highly confident accurate and inaccurate memory: Insights about relevant and irrelevant influences on memory confidence. Memory, 2012, 20, 48-62.	0.9	37
102	Two cortical systems for memory-guided behaviour. Nature Reviews Neuroscience, 2012, 13, 713-726.	4.9	1,058
103	Neural correlates of relational and item-specific encoding during working and long-term memory in schizophrenia. Neurolmage, 2012, 59, 1719-1726.	2.1	58
104	Examining ERP correlates of recognition memory: Evidence of accurate source recognition without recollection. NeuroImage, 2012, 62, 439-450.	2.1	109
105	Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Frontiers in Human Neuroscience, 2012, 6, 56.	1.0	100
106	Neural Oscillations Associated with Item and Temporal Order Maintenance in Working Memory. Journal of Neuroscience, 2011, 31, 10803-10810.	1.7	187
107	Putting the Pieces Together: The Role of Dorsolateral Prefrontal Cortex in Relational Memory Encoding. Journal of Cognitive Neuroscience, 2011, 23, 257-265.	1.1	169
108	Recollection, familiarity and memory strength: confusion about confounds. Trends in Cognitive Sciences, 2011, 15, 337-338.	4.0	16

#	Article	IF	CITATIONS
109	Can Cognitive Training Improve Episodic Memory?. Neuron, 2011, 72, 688-691.	3.8	32
110	ERP correlates of source memory: Unitized source information increases familiarity-based retrieval. Brain Research, 2011, 1367, 278-286.	1.1	88
111	Prestimulus theta activity predicts correct source memory retrieval. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10702-10707.	3.3	160
112	Electrophysiological Correlates of Episodic Memory Processes. , 2011, , .		19
113	A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus, 2010, 20, 1263-1290.	0.9	309
114	Prefrontal and Medial Temporal Lobe Activity at Encoding Predicts Temporal Context Memory. Journal of Neuroscience, 2010, 30, 15558-15565.	1.7	179
115	Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, not Memory Strength. Journal of Cognitive Neuroscience, 2010, 22, 1808-1818.	1.1	161
116	Use of Eye Movement Monitoring to Examine Item and Relational Memory in Schizophrenia. Biological Psychiatry, 2010, 68, 610-616.	0.7	35
117	Theta and alpha oscillations during working-memory maintenance predict successful long-term memory encoding. Neuroscience Letters, 2010, 468, 339-343.	1.0	151
118	Intracranial EEG Correlates of Expectancy and Memory Formation in the Human Hippocampus and Nucleus Accumbens. Neuron, 2010, 65, 541-549.	3.8	166
119	The Medial Temporal Lobe Supports Conceptual Implicit Memory. Neuron, 2010, 68, 835-842.	3.8	104
120	Binding Items and Contexts. Current Directions in Psychological Science, 2010, 19, 131-137.	2.8	171
121	Prefrontal Activation Deficits During Episodic Memory in Schizophrenia. American Journal of Psychiatry, 2009, 166, 863-874.	4.0	223
122	CNTRICS Final Task Selection: Long-Term Memory. Schizophrenia Bulletin, 2009, 35, 197-212.	2.3	49
123	Category expectation modulates baseline and stimulus-evoked activity in human inferotemporal cortex. Brain Research, 2009, 1301, 89-99.	1.1	95
124	The Eyes Have It: Hippocampal Activity Predicts Expression of Memory in Eye Movements. Neuron, 2009, 63, 592-599.	3.8	287
125	Highâ€resolution multiâ€voxel pattern analysis of category selectivity in the medial temporal lobes. Hippocampus, 2008, 18, 536-541.	0.9	90
126	The Cognitive Neuroscience of Memory Function and Dysfunction in Schizophrenia. Biological Psychiatry, 2008, 64, 18-25.	0.7	233

#	Article	IF	CITATIONS
127	Perirhinal Cortex Supports Encoding and Familiarity-Based Recognition of Novel Associations. Neuron, 2008, 59, 554-560.	3.8	236
128	Medial Temporal Lobe Activity Predicts Successful Relational Memory Binding. Journal of Neuroscience, 2008, 28, 116-124.	1.7	253
129	The effects of unitization on familiarity-based source memory: Testing a behavioral prediction derived from neuroimaging data Journal of Experimental Psychology: Learning Memory and Cognition, 2008, 34, 730-740.	0.7	170
130	The Dorsolateral Prefrontal Cortex Contributes to Successful Relational Memory Encoding. Journal of Neuroscience, 2007, 27, 5515-5522.	1.7	207
131	Topography and Dynamics of Associative Long-term Memory Retrieval in Humans. Journal of Cognitive Neuroscience, 2007, 19, 493-512.	1.1	66
132	Reinforcement Learning Signals Predict Future Decisions. Journal of Neuroscience, 2007, 27, 371-378.	1.7	274
133	Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends in Cognitive Sciences, 2007, 11, 379-386.	4.0	979
134	Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage, 2007, 35, 968-978.	2.1	500
135	Prefrontal Cortex and Long-Term Memory Encoding: An Integrative Review of Findings from Neuropsychology and Neuroimaging. Neuroscientist, 2007, 13, 280-291.	2.6	500
136	Working memory maintenance contributes to long-term memory formation: Evidence from slow event-related brain potentials. Cognitive, Affective and Behavioral Neuroscience, 2007, 7, 212-224.	1.0	37
137	Dissociable correlates of two classes of retrieval processing in prefrontal cortex. NeuroImage, 2007, 35, 1663-1673.	2.1	38
138	Working memory for visual objects: Complementary roles of inferior temporal, medial temporal, and prefrontal cortex. Neuroscience, 2006, 139, 277-289.	1.1	186
139	White Matter Changes Compromise Prefrontal Cortex Function in Healthy Elderly Individuals. Journal of Cognitive Neuroscience, 2006, 18, 418-429.	1.1	195
140	Intact Recollection Memory in High-performing Older Adults: ERP and Behavioral Evidence. Journal of Cognitive Neuroscience, 2006, 18, 33-47.	1.1	115
141	Exploring Human Memory Processes with Event-Related Potentials. Clinical EEG and Neuroscience, 2006, 37, 285-285.	0.9	0
142	Neural Mechanisms of Expert Skills in Visual Working Memory. Journal of Neuroscience, 2006, 26, 11187-11196.	1.7	118
143	Dorsolateral Prefrontal Cortex Promotes Long-Term Memory Formation through Its Role in Working Memory Organization. Journal of Neuroscience, 2006, 26, 916-925.	1.7	320
144	White matter changes compromise prefrontal cortex function in healthy elderly individuals. Journal of Cognitive Neuroscience, 2006, 18, 418-29.	1.1	108

#	Article	IF	CITATIONS
145	Directing the mind's eye: prefrontal, inferior and medial temporal mechanisms for visual working memory. Current Opinion in Neurobiology, 2005, 15, 175-182.	2.0	208
146	Different mechanisms of episodic memory failure in mild cognitive impairment. Neuropsychologia, 2005, 43, 1688-1697.	0.7	107
147	Lag-sensitive repetition suppression effects in the anterior parahippocampal gyrus. Hippocampus, 2005, 15, 557-561.	0.9	63
148	Functional connectivity with the hippocampus during successful memory formation. Hippocampus, 2005, 15, 997-1005.	0.9	193
149	Working Memory Maintenance Contributes to Long-term Memory Formation: Neural and Behavioral Evidence. Journal of Cognitive Neuroscience, 2005, 17, 994-1010.	1.1	243
150	Effects of Unilateral Prefrontal Lesions on Familiarity, Recollection, and Source Memory. Journal of Neuroscience, 2005, 25, 8333-8337.	1.7	122
151	Content-specific activation during associative long-term memory retrieval. Neurolmage, 2005, 27, 805-816.	2.1	95
152	Doubts about double dissociations between short- and long-term memory. Trends in Cognitive Sciences, 2005, 9, 374-380.	4.0	295
153	Individual differences in extraversion and dopamine genetics predict neural reward responses. Cognitive Brain Research, 2005, 25, 851-861.	3.3	227
154	Inferior Temporal, Prefrontal, and Hippocampal Contributions to Visual Working Memory Maintenance and Associative Memory Retrieval. Journal of Neuroscience, 2004, 24, 3917-3925.	1.7	308
155	The 3-D Prefrontal Cortex: Hemispheric Asymmetries in Prefrontal Activity and Their Relation to Memory Retrieval Processes. Journal of Cognitive Neuroscience, 2004, 16, 903-907.	1.1	21
156	Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 2004, 42, 2-13.	0.7	593
157	Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures. Cognitive Brain Research, 2004, 18, 255-272.	3.3	178
158	Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. Cognitive Brain Research, 2004, 20, 37-45.	3.3	188
159	Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia, 2003, 41, 378-389.	0.7	391
160	Neural mechanisms for detecting and remembering novel events. Nature Reviews Neuroscience, 2003, 4, 193-202.	4.9	667
161	Neural Correlates of Person Recognition. Learning and Memory, 2003, 10, 253-260.	0.5	82
162	Coding of Objects in the Prefrontal Cortex in Monkeys and Humans. Neuroscientist, 2002, 8, 6-11.	2.6	14

#	Article	IF	CITATIONS
163	Medial Temporal Lobe Activity Associated with Active Maintenance of Novel Information. Neuron, 2001, 31, 865-873.	3.8	357
164	Left Anterior Prefrontal Activation Increases with Demands to Recall Specific Perceptual Information. Journal of Neuroscience, 2000, 20, RC108-RC108.	1.7	197
165	Neural correlates of memory retrieval and evaluation. Cognitive Brain Research, 2000, 9, 209-222.	3.3	127
166	Frontal Brain Activity during Episodic and Semantic Retrieval: Insights from Event-Related Potentials. Journal of Cognitive Neuroscience, 1999, 11, 598-609.	1.1	33
167	Frontal Brain Potentials during Recognition Are Modulated by Requirements to Retrieve Perceptual Detail. Neuron, 1999, 22, 605-613.	3.8	126
168	Brain waves following remembered faces index conscious recollection. Cognitive Brain Research, 1999, 7, 519-531.	3.3	60
169	Preliminary evidence that daily changes in frontal alpha asymmetry correlate with changes in affect in therapy sessions. International Journal of Psychophysiology, 1996, 23, 137-141.	0.5	49
170	Human learning and memory. , 0, , 112-130.		0
171	Representation of Task Structure in Human Hippocampus. SSRN Electronic Journal, 0, , .	0.4	1