Nicola T Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3998639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nature Communications, 2014, 5, 4763.	12.8	269
2	Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature, 2018, 556, 381-385.	27.8	178
3	Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Nature Chemical Biology, 2016, 12, 324-331.	8.0	90
4	The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms. Science Signaling, 2018, 11, .	3.6	88
5	The Calcium Rhythms of Different Cell Types Oscillate with Different Circadian Phases. Plant Physiology, 2001, 125, 787-796.	4.8	67
6	HOILâ€l ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. EMBO Journal, 2022, 41, e109700.	7.8	51
7	Deubiquitinating enzyme amino acid profiling reveals a class of ubiquitin esterases. Proceedings of the United States of America, 2021, 118, .	7.1	50
8	The characterization of differential calcium signalling in tobacco guard cells. Plant Journal, 2000, 24, 335-344.	5.7	46
9	Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Nature Chemical Biology, 2020, 16, 1227-1236.	8.0	46
10	<scp>FAM</scp> 83D directs protein kinase <scp>CK</scp> 1α to the mitotic spindle for proper spindle positioning. EMBO Reports, 2019, 20, e47495.	4.5	28
11	<scp>PAWS</scp> 1 controls Wnt signalling through association with casein kinase 1α. EMBO Reports, 2018, 19, .	4.5	27
12	FAM83G/PAWS1 controls cytoskeletal dynamics and cell migration through association with the SH3 adaptor CD2AP. Journal of Cell Science, 2018, 131, .	2.0	26
13	Characterisation of the mammalian family of DCN-type NEDD8 E3 ligases. Journal of Cell Science, 2016, 129, 1441-54.	2.0	23
14	Nodulation by numbers: the role of ethylene in symbiotic nitrogen fixation. Trends in Plant Science, 2001, 6, 501-502.	8.8	22
15	14â€3â€3 Binding to Pimâ€phosphorylated Ser166 and Ser186 of human Mdm2 – Potential interplay with the PKB/Akt pathway and p14 ^{ARF} . FEBS Letters, 2009, 583, 615-620.	2.8	21
16	Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling. Journal of Biological Chemistry, 2019, 294, 2651-5314.	3.4	13
17	Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling Wellcome Open Research, 0, 4, 133.	1.8	9
18	Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling Wellcome Open Research, 2019, 4, 133.	1.8	6

NICOLA T WOOD

#	Article	IF	CITATIONS
19	Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H. Cellular Signalling, 2020, 72, 109632.	3.6	5
20	Synthetic promoters illuminate roles of cis-acting elements in plant defence. Trends in Plant Science, 2002, 7, 288.	8.8	1
21	Profiling modified metabolomes. Trends in Plant Science, 2001, 6, 191.	8.8	0
22	Virus movement crosses the Kingdom barrier. Trends in Plant Science, 2001, 6, 241-242.	8.8	0
23	PIN-pointing the molecular basis of tropism in plants. Trends in Plant Science, 2002, 7, 149.	8.8	0
24	Unravelling the molecular basis of viral suppression of PTGS. Trends in Plant Science, 2002, 7, 384-385.	8.8	0
25	First plant circadian phase mutant identified. Trends in Plant Science, 2002, 7, 482.	8.8	0
26	Phloem transport of vitamin C – an alternative route to raising antioxidant levels?. Trends in Plant Science, 2002, 7, 524-525.	8.8	0