
Jean-Claude Grégoire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3998028/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Chemical Ecology of Defense in Arthropods. Annual Review of Entomology, 1983, 28, 263-289.	11.8	287
2	Invasive alien predator causes rapid declines of native European ladybirds. Diversity and Distributions, 2012, 18, 717-725.	4.1	226
3	Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography, 2017, 40, 1426-1435.	4.5	209
4	Guidance on quantitative pest risk assessment. EFSA Journal, 2018, 16, e05350.	1.8	195
5	Bark Beetle Population Dynamics in the Anthropocene: Challenges and Solutions. Trends in Ecology and Evolution, 2019, 34, 914-924.	8.7	159
6	Long-distance dispersal and human population density allow the prediction of invasive patterns in the horse chestnut leafminer Cameraria ohridella. Journal of Animal Ecology, 2004, 73, 459-468.	2.8	156
7	Population dynamics in changing environments: the case of an eruptive forest pest species. Biological Reviews, 2012, 87, 34-51.	10.4	127
8	Natural History and Ecology of Bark Beetles. , 2015, , 1-40.		105
9	Rapid increase in dispersal during range expansion in the invasive ladybird <i>Harmonia axyridis</i> . Journal of Evolutionary Biology, 2014, 27, 508-517.	1.7	99
10	Harmonia + and Pandora +: risk screening tools for potentially invasive plants, animals and their pathogens. Biological Invasions, 2015, 17, 1869-1883.	2.4	73
11	Forecasting Cameraria ohridella invasion dynamics in recently invaded countries: from validation to prediction. Journal of Applied Ecology, 2005, 42, 805-813.	4.0	70
12	Kinetics of larval gregarious behavior in the bark beetleDendroctonus micans (Coleoptera:) Tj ETQq0 0 0 rgBT /Ov	verlock 10 0.7	Tf 50 302 Tc
13	The Greater European Spruce Beetle. , 1988, , 455-478.		64
14	Selective predation on chemically defended chrysomelid larvae. Journal of Chemical Ecology, 1984, 10, 1693-1700.	1.8	59
15	Title is missing!. Integrated Pest Management Reviews, 2001, 6, 237-242.	0.1	57
16	Alkaloids provide evidence of intraguild predation on native coccinellids by Harmonia axyridis in the field. Biological Invasions, 2011, 13, 1805-1814.	2.4	56

17Large-scale risk mapping of an eruptive bark beetle – Importance of forest susceptibility and beetle
pressure. Forest Ecology and Management, 2014, 318, 158-166.3.247

Volatile compounds in the larval frass ofDendroctonus valens andDendroctonus micans (Coleoptera: Scolytidae) in relation to oviposition by the predator,Rhizophagus grandis (Coleoptera:) Tj ETQq0 0 0 **ug**8T /Ove**rla**ck 10 Tf

#	Article	IF	CITATIONS
19	Ecosystem services of mixed species forest stands and monocultures: comparing practitioners' and scientists' perceptions with formal scientific knowledge. Forestry, 2014, 87, 639-653.	2.3	44
20	Economics and Politics of Bark Beetles. , 2015, , 585-613.		43
21	Mass trapping of the spruce bark beetle Ips typographus L.: traps or trap trees?. Forest Ecology and Management, 1995, 78, 191-205.	3.2	42
22	Phytosanitary inspection of woody plants for planting at European Union entry points: a practical enquiry. Biological Invasions, 2015, 17, 2403-2413.	2.4	42
23	A risk categorisation and analysis of the geographic and temporal dynamics of the European import of plants for planting. Biological Invasions, 2017, 19, 3243-3257.	2.4	42
24	Post-storm surveys reveal large-scale spatial patterns and influences of site factors, forest structure and diversity in endemic bark-beetle populations. Landscape Ecology, 2005, 20, 35-49.	4.2	41
25	Intraguild predation by Harmonia axyridis on coccinellids revealed by exogenous alkaloid sequestration. Chemoecology, 2008, 18, 191-196.	1.1	41
26	Turbulence, trees and semiochemicals: windâ€ŧunnel orientation of the predator, Rhizophagus grandis, to its barkbeetle prey, Dendroctonus micans. Physiological Entomology, 1993, 18, 204-210.	1.5	39
27	Coniferous round wood imports from Russia and Baltic countries to Belgium. A pathway analysis for assessing risks of exotic pest insect introductions. Diversity and Distributions, 2008, 14, 318-328.	4.1	38
28	Frost increases beech susceptibility to scolytine ambrosia beetles. Agricultural and Forest Entomology, 2013, 15, 157-167.	1.3	38
29	Assessment of the functional role of tree diversity: the multi-site FORBIO experiment. Plant Ecology and Evolution, 2013, 146, 26-35.	0.7	38
30	Overview of development of an anti-attractant based technology for spruce protection against Ips typographus: From past failures to future success. Journal of Pest Science, 2003, 76, 89-99.	0.3	37
31	Bacterial and fungal symbionts of parasitic <i>Dendroctonus</i> bark beetles. FEMS Microbiology Ecology, 2016, 92, fiw129.	2.7	36
32	Receptor cells inIps typographus andDendroctonus micans specific to pheromones of the reciprocal genus. Journal of Chemical Ecology, 1984, 10, 759-769.	1.8	34
33	Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation. Molecular Ecology, 2015, 24, 1292-1310.	3.9	34
34	Visual, semi-quantitative assessments allow accurate estimates of leafminer population densities: an example comparing image processing and visual evaluation of damage by the horse chestnut leafminer Cameraria ohridella (Lep., Gracillariidae). Journal of Applied Entomology, 2003, 127, 354-359.	1.8	32
35	Trees Wanted—Dead or Alive! Host Selection and Population Dynamics in Tree-Killing Bark Beetles. PLoS ONE, 2011, 6, e18274.	2.5	30
36	The Toxicity of Norway Spruce Monoterpenes to Two Bark Beetle Species and Their Associates. , 1988, , 335-344.		30

#	Article	IF	CITATIONS
37	Recapture of Ips typographus L. (Col., Scolytidae) with attractants of low release rates: localized dispersion and environmental influences. Agricultural and Forest Entomology, 2000, 2, 259-270.	1.3	29
38	Risk to plant health of Flavescence dor $ ilde{A}$ ©e for the EU territory. EFSA Journal, 2016, 14, e04603.	1.8	29
39	Orientation ofRhizophagus grandis (Coleoptera: Rhizophagidae) to oxygenated monoterpenes in a species-specific predator-prey relationship. Chemoecology, 1992, 3, 14-18.	1.1	27
40	Spatial pattern of invading Dendroctonus micans (Coleoptera: Scolytidae) populations in the United Kingdom. Canadian Journal of Forest Research, 2003, 33, 712-725.	1.7	27
41	Effectiveness of the High Dose/Refuge Strategy for Managing Pest Resistance to Bacillus thuringiensis (Bt) Plants Expressing One or Two Toxins. Toxins, 2012, 4, 810-835.	3.4	27
42	Pest categorisation of Spodoptera frugiperda. EFSA Journal, 2017, 15, e04927.	1.8	27
43	Past attacks influence host selection by the solitary bark beetle Dendroctonus micans. Ecological Entomology, 2001, 26, 133-142.	2.2	25
44	Site condition and predation influence a bark beetle's success: a spatially realistic approach. Agricultural and Forest Entomology, 2003, 5, 87-96.	1.3	24
45	Kairomone traps: a tool for monitoring the invasive spruce bark beetle <i>Dendroctonus micans</i> (Coleoptera: Scolytinae) and its specific predator, <i>Rhizophagus grandis</i> (Coleoptera:) Tj ETQq1 1 0.78431	4 ¤gðT /Oʻ	verzeck 10 Tf
46	Dispersal potential of native and exotic predatory ladybirds as measured by a computer-monitored flight mill. BioControl, 2014, 59, 415-425.	2.0	24
47	The influence of acclimation, endosymbionts and diet on the supercooling capacity of the predatory bug Macrolophus pygmaeus. BioControl, 2012, 57, 643-651.	2.0	22
48	Dose-dependent response and preliminary observations on attraction range of lps typographus to pheromones at low release rates. Journal of Chemical Ecology, 2001, 27, 2425-2435.	1.8	20
49	Occurrence of <i>lps typographus</i> (Col., Scolytidae) along an urbanization gradient in Brussels, Belgium. Agricultural and Forest Entomology, 2005, 7, 161-167.	1.3	20
50	Predator/prey ratios: a measure of bark-beetle population status influenced by stand composition in different French stands after the 1999 storms. Annals of Forest Science, 2006, 63, 301-308.	2.0	20
51	Flight behaviour of Ips typographus L. (Col., Scolytidae) in an environment without pheromones. Annales Des Sciences Forestières, 1999, 56, 591-598.	1.2	19
52	A semi-artificial rearing system for the specialist predatory ladybird Cryptolaemus montrouzieri. BioControl, 2014, 59, 557-564.	2.0	19
53	Colonization of weakened trees by mass-attacking bark beetles: no penalty for pioneers, scattered initial distributions and final regular patterns. Royal Society Open Science, 2018, 5, 170454.	2.4	18
54	Pest risk assessment of SpodopteraÂfrugiperda for the European Union. EFSA Journal, 2018, 16, e05351.	1.8	17

#	Article	IF	CITATIONS
55	Prey range of the predatory ladybird Cryptolaemus montrouzieri. BioControl, 2014, 59, 729-738.	2.0	16
56	Larval performances and life cycle completion of the Siberian moth, Dendrolimus sibiricus (Lepidoptera: Lasiocampidae), on potential host plants in Europe: a laboratory study on potted trees. European Journal of Forest Research, 2011, 130, 1067-1074.	2.5	15
57	Low temperature tolerance and starvation ability of the oak processionary moth: implications in a context of increasing epidemics. Agricultural and Forest Entomology, 2012, 14, 239-250.	1.3	15
58	Cold tolerance of the predatory ladybird Cryptolaemus montrouzieri. BioControl, 2015, 60, 199-207.	2.0	15
59	Take-off capacity as a criterion for quality control in mass-produced predators,Rhizophagus grandis (Col.: Rhizophagidae) for the biocontrol of bark beetles,Dendroctonus micans (Col.: Scolytidae). Entomophaga, 1994, 39, 385-395.	0.2	14
60	New occurrence of Ips duplicatus Sahlberg in Herstal (Liege, Belgium). EPPO Bulletin, 2006, 36, 529-530.	0.8	14
61	Flying the nest: male dispersal and multiple paternity enables extrafamilial matings for the invasive bark beetle Dendroctonus micans. Heredity, 2014, 113, 327-333.	2.6	14
62	Exploiting fugitive resources: How long-lived is "fugitive� Fallen trees are a long-lasting reward for Ips typographus (Coleoptera, Curculionidae, Scolytinae). Forest Ecology and Management, 2014, 331, 129-134.	3.2	14
63	Title is missing!. Integrated Pest Management Reviews, 2001, 6, 163-168.	0.1	13
64	Root disturbance of common ash, Fraxinus excelsior (Oleaceae), leads to reduced foliar toughness and increased feeding by a folivorous weevil, Stereonychus fraxini (Coleoptera, Curculionidae). Ecological Entomology, 1994, 19, 344-348.	2.2	11
65	Chromosome number in <i>Dendroctonus micans</i> and karyological divergence within the genus <i>Dendroctonus</i> (Coleoptera: Scolytidae). Canadian Entomologist, 2002, 134, 503-510.	0.8	10
66	Effects of Two Varieties of Bacillus thuringiensis Maize on the Biology of Plodia interpunctella. Toxins, 2012, 4, 373-389.	3.4	10
67	Cleptoparasitism increases the host finding ability of a polyphagous parasitoid species, Rhopalicus tutela (Hymenoptera: Pteromalidae). Behavioral Ecology and Sociobiology, 2003, 55, 184-189.	1.4	9
68	A North American invasive seed pest, Megastigmus spermotrophus (Wachtl) (Hymenoptera: Torymidae): Its populations and parasitoids in a European introduction zone. Biological Control, 2008, 44, 137-141.	3.0	9
69	Protocol for the evaluation of data concerning the necessity of the application of insecticide†active substances to control a serious danger to plant health which cannot be contained by other available means, including nonâ€chemical methods. EFSA Supporting Publications, 2017, 14, 1201E.	0.7	9
70	Biological differences reflect host preference in two parasitoids attacking the bark beetlelps typographus(Coleoptera: Scolytidae) in Belgium. Bulletin of Entomological Research, 2004, 94, 341-347.	1.0	8
71	Lengthening of Insect Development on Bt Zone Results in Adult Emergence Asynchrony: Does It Influence the Effectiveness of the High Dose/Refuge Zone Strategy?. Toxins, 2012, 4, 1323-1342.	3.4	8
72	Fallen trees' last stand against bark beetles. Forest Ecology and Management, 2016, 359, 44-50.	3.2	8

#	Article	IF	CITATIONS
73	Modelling collective foraging in endemic bark beetle populations. Ecological Modelling, 2016, 337, 188-199.	2.5	7
74	Pest risk assessment of Diaporthe vaccinii for the EU territory. EFSA Journal, 2017, 15, e04924.	1.8	7
75	Pest risk assessment of Atropellis spp. for the EU territory. EFSA Journal, 2017, 15, e04877.	1.8	7
76	Pest categorisation of DendrolimusÂsibiricus. EFSA Journal, 2018, 16, e05301.	1.8	7
77	A worldwide perspective of the legislation and regulations governing sentinel plants. Biological Invasions, 2020, 22, 353-362.	2.4	7
78	Can sales of infested timber be used to quantify attacks by Ips typographus (Coleoptera, Scolytidae)? A pilot study from Belgium. Annals of Forest Science, 2004, 61, 477-480.	2.0	7
79	Pest risk assessment of EotetranychusÂlewisi for the EU territory. EFSA Journal, 2017, 15, e04878.	1.8	7
80	Native and exotic coniferous species in Europe – possible host plants for the potentially invasive Siberian moth, <i> Dendrolimus sibiricus</i> ¹ Tschtv. (Lepidoptera, Lasiocampidae). EPPO Bulletin, 2008, 38, 259-263.	0.8	6
81	Pest risk assessment of RadopholusÂsimilis for the EU territory. EFSA Journal, 2017, 15, e04879.	1.8	6
82	Spiny Prey, Fortunate Prey. Dorsal Spines Are an Asset in Intraguild Interactions among Lady Beetles. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	6
83	Pest categorisation of Ips sexdentatus. EFSA Journal, 2017, 15, e04999.	1.8	6
84	Marking bark beetle parasitoids within the host plant with rubidium for dispersal studies. Entomologia Experimentalis Et Applicata, 2003, 108, 107-114.	1.4	4
85	Pest categorisation of IpsÂtypographus. EFSA Journal, 2017, 15, e04881.	1.8	4
86	Pest categorisation of Anthonomus signatus. EFSA Journal, 2017, 15, e04882.	1.8	4
87	Pest categorisation of Citrus tristeza virus (nonâ€European isolates). EFSA Journal, 2017, 15, e05031.	1.8	4
88	Impact of poplar water status on leaf-beetle (Chrysomela populi) survival and feeding. Annals of Forest Science, 2010, 67, 209-209.	2.0	3
89	Pest categorisation of Little cherry pathogen (nonâ€EU isolates). EFSA Journal, 2017, 15, e04926.	1.8	3
90	Pest categorisation of Cadang adang viroid. EFSA Journal, 2017, 15, e04928.	1.8	3

#	Article	IF	CITATIONS
91	Pest categorisation of Witches' broom disease of lime (Citrus aurantifolia) phytoplasma. EFSA Journal, 2017, 15, e05027.	1.8	3
92	Is Prey Specificity Constrained by Geography? Semiochemically Mediated Oviposition in Rhizophagus grandis (Coleoptera: Monotomidae) with Its Specific Prey, Dendroctonus micans (Coleoptera:) Tj ETQq0 0 0 rgBT 43, 778-793.	- /Qverlock	2 10 Tf 50 70
93	Pest categorisation of Hishimonus phycitis. EFSA Journal, 2017, 15, e05037.	1.8	2
94	Pest categorisation of Beet curly top virus (nonâ€EU isolates). EFSA Journal, 2017, 15, e04998.	1.8	2
95	Susceptibility ofCitrusspp.,QuercusÂilexandVitisspp. toXylellaÂfastidiosastrain CoDiRO. EFSA Journal, 2016, 14, e04601.	1.8	1
96	Pest categorisation of Dendroctonus micans. EFSA Journal, 2017, 15, e04880.	1.8	1
97	Pest categorisation of Palm lethal yellowing phytoplasmas. EFSA Journal, 2017, 15, e05028.	1.8	1
98	Pest categorisation of ArrhenodesÂminutus. EFSA Journal, 2019, 17, e05617.	1.8	1
99	Susceptibility of <i>PhoenixÂroebelenii</i> to <i>XylellaÂfastidiosa</i> . EFSA Journal, 2016, 14, e04600.	1.8	0
100	CitrusÂjunos as a host of citrus bacterial canker. EFSA Journal, 2017, 15, e04876.	1.8	0
101	Pest categorisation of IpsÂamitinus. EFSA Journal, 2017, 15, e05038.	1.8	0
102	Pest categorisation of EntoleucaÂmammata. EFSA Journal, 2017, 15, e04925.	1.8	0