Jeffrey L Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997899/publications.pdf

Version: 2024-02-01

66911 57758 8,941 79 44 78 citations h-index g-index papers 81 81 81 6284 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology, 2015, 85, 177-189.	1.1	3,275
2	Intrathecal pathogenic anti–aquaporinâ€4 antibodies in early neuromyelitis optica. Annals of Neurology, 2009, 66, 617-629.	5.3	516
3	Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet, The, 2019, 394, 1352-1363.	13.7	433
4	Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurology, The, 2020, 19, 402-412.	10.2	278
5	Anti–Aquaporinâ€4 monoclonal antibody blocker therapy for neuromyelitis optica. Annals of Neurology, 2012, 71, 314-322.	5.3	232
6	Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nature Reviews Neurology, 2014, 10, 493-506.	10.1	220
7	Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurology, The, 2020, 19, 391-401.	10.2	183
8	Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Annals of Neurology, 2009, 65, 639-649.	5. 3	176
9	Binding Affinity and Specificity of Neuromyelitis Optica Autoantibodies to Aquaporin-4 M1/M23 Isoforms and Orthogonal Arrays. Journal of Biological Chemistry, 2011, 286, 16516-16524.	3.4	161
10	Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology, 2015, 84, 1948-1955.	1.1	156
11	Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Annals of Neurology, 2011, 70, 943-954.	5.3	142
12	Steroid-sparing maintenance immunotherapy for MOG-IgG associated disorder. Neurology, 2020, 95, e111-e120.	1.1	140
13	B lymphocytes in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e104.	6.0	132
14	Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	112
15	Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica. Science Translational Medicine, 2017, 9, .	12.4	110
16	Treatment of MOG-IgG-associated disorder with rituximab: An international study of 121 patients. Multiple Sclerosis and Related Disorders, 2020, 44, 102251.	2.0	110
17	Evaluation of aquaporinâ€4 antibody assays. Clinical and Experimental Neuroimmunology, 2014, 5, 290-303.	1.0	106
18	Update on biomarkers in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e134.	6.0	104

#	Article	IF	CITATIONS
19	Analysis of Varicella-Zoster Virus in Temporal Arteries Biopsy Positive and Negative for Giant Cell Arteritis. JAMA Neurology, 2015, 72, 1281.	9.0	101
20	Involvement of antibody-dependent cell-mediated cytotoxicity in inflammatory demyelination in a mouse model of neuromyelitis optica. Acta Neuropathologica, 2013, 126, 699-709.	7.7	95
21	Neuromyelitis Optica IgG Causes Placental Inflammation and Fetal Death. Journal of Immunology, 2013, 191, 2999-3005.	0.8	90
22	Update on Inflammation, Neurodegeneration, and Immunoregulation in Multiple Sclerosis. Clinical Neuropharmacology, 2009, 32, 121-132.	0.7	82
23	Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. Journal of Clinical Investigation, 2019, 129, 2000-2013.	8.2	81
24	Live Cell Analysis of Aquaporin-4 M1/M23 Interactions and Regulated Orthogonal Array Assembly in Glial Cells. Journal of Biological Chemistry, 2009, 284, 35850-35860.	3.4	77
25	Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants. Acta Neuropathologica, 2015, 130, 765-781.	7.7	76
26	Intravenous Neuromyelitis Optica Autoantibody in Mice Targets Aquaporin-4 in Peripheral Organs and Area Postrema. PLoS ONE, 2011, 6, e27412.	2.5	73
27	Serum Glial Fibrillary Acidic Protein: A Neuromyelitis Optica Spectrum Disorder Biomarker. Annals of Neurology, 2021, 89, 895-910.	5.3	72
28	ATON: Results from a Phase II randomized trial of the B-cell-targeting agent atacicept in patients with optic neuritis. Journal of the Neurological Sciences, 2015, 351, 174-178.	0.6	71
29	VH4 Gene Segments Dominate the Intrathecal Humoral Immune Response in Multiple Sclerosis. Journal of Immunology, 2007, 179, 6343-6351.	0.8	68
30	Placebo-controlled study in neuromyelitis opticaâ€"Ethical and design considerations. Multiple Sclerosis Journal, 2016, 22, 862-872.	3.0	63
31	Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain, 2019, 142, 1598-1615.	7.6	62
32	Viruses and Multiple Sclerosis. Neuroscientist, 2011, 17, 659-676.	3.5	60
33	Evidence against Cellular Internalization in Vivo of NMO-lgG, Aquaporin-4, and Excitatory Amino Acid Transporter 2 in Neuromyelitis Optica. Journal of Biological Chemistry, 2011, 286, 45156-45164.	3.4	60
34	Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder. JAMA Neurology, 2015, 72, 815.	9.0	59
35	The intrinsic pathogenic role of autoantibodies to aquaporin 4 mediating spinal cord disease in a rat passive-transfer model. Experimental Neurology, 2015, 265, 8-21.	4.1	59
36	Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14781-14786.	7.1	59

#	Article	IF	Citations
37	Epstein-barr virus-associated acute autonomic neuropathy. Annals of Neurology, 1996, 40, 453-455.	5.3	55
38	The Ins and Outs of B Cells in Multiple Sclerosis. Frontiers in Immunology, 2015, 6, 565.	4.8	54
39	Experimental mouse model of optic neuritis with inflammatory demyelination produced by passive transfer of neuromyelitis optica-immunoglobulin G. Journal of Neuroinflammation, 2014, 11, 16.	7.2	53
40	CNS Aquaporinâ€4â€specific B cells connect with multiple Bâ€cell compartments in neuromyelitis optica spectrum disorder. Annals of Clinical and Translational Neurology, 2017, 4, 369-380.	3.7	53
41	Concentration-dependent effects of CSF1R inhibitors on oligodendrocyte progenitor cells ex vivo and in vivo. Experimental Neurology, 2019, 318, 32-41.	4.1	53
42	The cerebrospinal fluid immunoglobulin transcriptome and proteome in neuromyelitis optica reveals central nervous system-specific B cell populations. Journal of Neuroinflammation, 2015, 12, 19.	7.2	48
43	Neuromyelitis optica IgG does not alter aquaporinâ€4 water permeability, plasma membrane M1/M23 isoform content, or supramolecular assembly. Glia, 2012, 60, 2027-2039.	4.9	47
44	Autoantibody to MOG suggests two distinct clinical subtypes of NMOSD. Science China Life Sciences, 2016, 59, 1270-1281.	4.9	47
45	Novel clinical features of glycine receptor antibody syndrome. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e592.	6.0	43
46	Dural sinus stenting for idiopathic intracranial hypertension: factors associated with hemodynamic failure and management with extended stenting. Journal of NeuroInterventional Surgery, 2017, 9, 867-874.	3.3	41
47	Association of Maintenance Intravenous Immunoglobulin With Prevention of Relapse in Adult Myelin Oligodendrocyte Glycoprotein Antibody–Associated Disease. JAMA Neurology, 2022, 79, 518.	9.0	39
48	Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions. Acta Neuropathologica, 2014, 127, 523-538.	7.7	38
49	Mutagenesis of the Aquaporin 4 Extracellular Domains Defines Restricted Binding Patterns of Pathogenic Neuromyelitis Optica IgG. Journal of Biological Chemistry, 2015, 290, 12123-12134.	3.4	33
50	CSF IgG heavy-chain bias in patients at the time of a clinically isolated syndrome. Journal of Neuroimmunology, 2008, 199, 126-132.	2.3	32
51	Affinity-matured †aquaporumab' anti-aquaporin-4 antibody for therapy of seropositive neuromyelitis optica spectrum disorders. Neuropharmacology, 2020, 162, 107827.	4.1	32
52	Re-evaluating the treatment of acute optic neuritis. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 799-808.	1.9	29
53	The changing landscape of optic neuritis: a narrative review. Journal of Neurology, 2022, 269, 111-124.	3.6	28
54	Natalizumab and progressive multifocal leukoencephalopathy: migrating towards safe adhesion molecule therapy in multiple sclerosis. Neurological Research, 2006, 28, 291-298.	1.3	27

#	Article	IF	CITATIONS
55	Finding NMO: The Evolving Diagnostic Criteria of Neuromyelitis Optica. Journal of Neuro-Ophthalmology, 2016, 36, 238-245.	0.8	23
56	Distinct patterns of glia repair and remyelination in antibodyâ€mediated demyelination models of multiple sclerosis and neuromyelitis optica. Glia, 2018, 66, 2575-2588.	4.9	23
57	Age-dependent favorable visual recovery despite significant retinal atrophy in pediatric MOGAD: how much retina do you really need to see well?. Journal of Neuroinflammation, 2021, 18, 121.	7.2	22
58	Heterogeneity of Acetylcholine Receptor Autoantibody–Mediated Complement Activity in Patients With Myasthenia Gravis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	21
59	Differential Effects of Fingolimod and Natalizumab on B Cell Repertoires in Multiple Sclerosis Patients. Neurotherapeutics, 2021, 18, 364-377.	4.4	20
60	Disability Outcomes in the N-MOmentum Trial of Inebilizumab in Neuromyelitis Optica Spectrum Disorder. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	20
61	Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. Journal of Clinical Investigation, 2021, 131, .	8.2	18
62	Screening Random Peptide Libraries with Subacute Sclerosing PanencephalitisBrain-Derived Recombinant Antibodies Identifies Multiple Epitopes in the C-Terminal Region of the Measles Virus Nucleocapsid Protein. Journal of Virology, 2006, 80, 12121-12130.	3.4	17
63	AQP4-lgG-seronegative patient outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Multiple Sclerosis and Related Disorders, 2022, 57, 103356.	2.0	16
64	Variable sensitivity to complement-dependent cytotoxicity in murine models of neuromyelitis optica. Journal of Neuroinflammation, 2016, 13 , 301 .	7.2	12
65	Developmental Neurogenetics and Neuro-Ophthalmology. Journal of Neuro-Ophthalmology, 2002, 22, 286-296.	0.8	11
66	Sensitivity analysis of the primary endpoint from the N-MOmentum study of inebilizumab in NMOSD. Multiple Sclerosis Journal, 2021, 27, 2052-2061.	3.0	11
67	In utero exposure to maternal anti–aquaporin-4 antibodies alters brain vasculature and neural dynamics in male mouse offspring. Science Translational Medicine, 2022, 14, eabe9726.	12.4	11
68	Efficacy of Polyvalent Human Immunoglobulins in an Animal Model of Neuromyelitis Optica Evoked by Intrathecal Anti-Aquaporin 4 Antibodies. International Journal of Molecular Sciences, 2016, 17, 1407.	4.1	10
69	A new form of axonal pathology in a spinal model of neuromyelitis optica. Brain, 2022, 145, 1726-1742.	7.6	10
70	Varicella Zoster Virus in Ischemic Optic Neuropathy. Ophthalmology, 2015, 122, 2142-2145.	5.2	9
71	Comparative molecular dynamics study of neuromyelitis optica-immunoglobulin G binding to aquaporin-4 extracellular domains. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1326-1334.	2.6	9
72	Evaluation of Plasma Neurofilament Light Chain Levels as a Biomarker of Neuronal Injury in the Active and Chronic Phases of Autoimmune Neurologic Disorders. Frontiers in Neurology, 2022, 13, 689975.	2.4	6

#	Article	IF	CITATIONS
73	Clinical Features and Outcomes of Pediatric Monophasic and Recurrent Idiopathic Optic Neuritis. Journal of Child Neurology, 2020, 35, 77-83.	1.4	5
74	Induction of aquaporin 4-reactive antibodies in Lewis rats immunized with aquaporin 4 mimotopes. Acta Neuropathologica Communications, 2020, 8, 49.	5.2	5
75	Determining the Spatial Relationship ofÂMembrane-Bound Aquaporin-4 Autoantibodies by STED Nanoscopy. Biophysical Journal, 2017, 112, 1692-1702.	0.5	4
76	Mutations of Recombinant Aquaporin-4 Antibody in the Fc Domain Can Impair Complement-Dependent Cellular Cytotoxicity and Transplacental Transport. Frontiers in Immunology, 2018, 9, 1599.	4.8	4
77	A Longitudinal, Observational Analysis of Neuronal Injury Biomarkers in a Case Report of a Patient With Paraneoplastic Anti-CRMP5 Antibody-Associated Transverse Myelitis. Frontiers in Neurology, 2021, 12, 691509.	2.4	4
78	Konsensusprotokoll zur Standardisierung von Entnahme und Biobanking des Liquor cerebrospinalis / A consensus protocol for the standardisation of cerebrospinal fluid collection and biobanking. Laboratoriums Medizin, 2010, 34, 1-12.	0.6	3
79	Sustained long-term efficacy and safety of satralizumab in NMOSD. , 0, , .		0