
Jeffrey Robbins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Cardiac Fibrosis. Circulation Research, 2016, 118, 1021-1040.	4.5	1,136
3	Expression of R120G–αB-Crystallin Causes Aberrant Desmin and αB-Crystallin Aggregation and Cardiomyopathy in Mice. Circulation Research, 2001, 89, 84-91.	4.5	282
4	Desmin-related cardiomyopathy in transgenic mice: A cardiac amyloidosis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10132-10136.	7.1	262
5	Enhanced autophagy ameliorates cardiac proteinopathy. Journal of Clinical Investigation, 2013, 123, 5284-5297.	8.2	260
6	Reengineering Inducible Cardiac-Specific Transgenesis With an Attenuated Myosin Heavy Chain Promoter. Circulation Research, 2003, 92, 609-616.	4.5	227
7	Impact of beta-myosin heavy chain expression on cardiac function during stress. Journal of the American College of Cardiology, 2004, 44, 2390-2397.	2.8	215
8	Heart Failure and Protein Quality Control. Circulation Research, 2006, 99, 1315-1328.	4.5	205
9	Cardiac Myosin-Binding Protein-C Phosphorylation and Cardiac Function. Circulation Research, 2005, 97, 1156-1163.	4.5	203
10	Cardiotrophic Effects of Protein Kinase C ε. Circulation Research, 2000, 86, 1173-1179.	4.5	199
11	Cardiac myosin binding protein c phosphorylation is cardioprotective. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16918-16923.	7.1	189
12	Mouse Model of Desmin-Related Cardiomyopathy. Circulation, 2001, 103, 2402-2407.	1.6	184
13	Mitochondrial Dysfunction and Apoptosis Underlie the Pathogenic Process in α-B-Crystallin Desmin-Related Cardiomyopathy. Circulation, 2005, 112, 3451-3461.	1.6	174
14	Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. Journal of Clinical Investigation, 2011, 121, 3689-3700.	8.2	169
15	Atg7 Induces Basal Autophagy and Rescues Autophagic Deficiency in CryAB ^{R120G} Cardiomyocytes. Circulation Research, 2011, 109, 151-160.	4.5	162
16	Transgenic Modeling of a Cardiac Troponin I Mutation Linked to Familial Hypertrophic Cardiomyopathy. Circulation Research, 2000, 87, 805-811.	4.5	141
17	Cardiomyocyte Expression of a Polyglutamine Preamyloid Oligomer Causes Heart Failure. Circulation, 2008, 117, 2743-2751.	1.6	126
18	Desmin-related cardiomyopathy: an unfolding story. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1220-H1228.	3.2	118

#	Article	IF	CITATIONS
19	αB-Crystallin Modulates Protein Aggregation of Abnormal Desmin. Circulation Research, 2003, 93, 998-1005.	4.5	114
20	A Critical Function for Ser-282 in Cardiac Myosin Binding Protein-C Phosphorylation and Cardiac Function. Circulation Research, 2011, 109, 141-150.	4.5	113
21	Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13592-13597.	7.1	100
22	Molecular mechanics of mouse cardiac myosin isoforms. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1446-H1454.	3.2	97
23	With great power comes great responsibility: Using mouse genetics to study cardiac hypertrophy and failure. Journal of Molecular and Cellular Cardiology, 2009, 46, 130-136.	1.9	96
24	Distinct Sarcomeric Substrates Are Responsible for Protein Kinase D-mediated Regulation of Cardiac Myofilament Ca2+ Sensitivity and Cross-bridge Cycling. Journal of Biological Chemistry, 2010, 285, 5674-5682.	3.4	96
25	Inducible Expression of Active Protein Phosphatase-1 Inhibitor-1 Enhances Basal Cardiac Function and Protects Against Ischemia/Reperfusion Injury. Circulation Research, 2009, 104, 1012-1020.	4.5	95
26	In Vivo Modeling of Myosin Binding Protein C Familial Hypertrophic Cardiomyopathy. Circulation Research, 1999, 85, 841-847.	4.5	93
27	Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proceedings of the United States of America, 2014, 111, E5178-86.	7.1	92
28	In Vivo and in Vitro Analysis of Cardiac Troponin I Phosphorylation. Journal of Biological Chemistry, 2005, 280, 703-714.	3.4	84
29	PKC-βll sensitizes cardiac myofilaments to Ca2+ by phosphorylating troponin I on threonine-144. Journal of Molecular and Cellular Cardiology, 2006, 41, 823-833.	1.9	84
30	Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3239-3244.	7.1	84
31	Cardiac Myosin Binding Protein-C Phosphorylation in a β-Myosin Heavy Chain Background. Circulation, 2009, 119, 1253-1262.	1.6	81
32	Proteotoxicity and Cardiac Dysfunction. Circulation Research, 2015, 116, 1863-1882.	4.5	80
33	Ischemic Protection and Myofibrillar Cardiomyopathy. Circulation Research, 2002, 91, 741-748.	4.5	78
34	Unique single molecule binding of cardiac myosin binding protein-C to actin and phosphorylation-dependent inhibition of actomyosin motility requires 17 amino acids of the motif domain. Journal of Molecular and Cellular Cardiology, 2012, 52, 219-227.	1.9	77
35	Exercise reverses preamyloid oligomer and prolongs survival in ÂB-crystallin-based desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5995-6000.	7.1	76
36	Forced Expression of α-Myosin Heavy Chain in the Rabbit Ventricle Results in Cardioprotection Under Cardiomyopathic Conditions. Circulation, 2005, 111, 2339-2346.	1.6	73

#	Article	IF	CITATIONS
37	Control of In Vivo Contraction/Relaxation Kinetics by Myosin Binding Protein C. Circulation, 2007, 116, 2399-2408.	1.6	73
38	Transgenic Rabbit Model for Human Troponin l–Based Hypertrophic Cardiomyopathy. Circulation, 2005, 111, 2330-2338.	1.6	72
39	RAF1 mutations in childhood-onset dilated cardiomyopathy. Nature Genetics, 2014, 46, 635-639.	21.4	69
40	Myosin-binding protein C corrects an intrinsic inhomogeneity in cardiac excitation-contraction coupling. Science Advances, 2015, 1, .	10.3	69
41	Electron Microscopy and 3D Reconstruction of F-Actin Decorated with Cardiac Myosin-Binding Protein C (cMyBP-C). Journal of Molecular Biology, 2011, 410, 214-225.	4.2	67
42	Desensitization of Myofilaments to Ca ²⁺ as a Therapeutic Target for Hypertrophic Cardiomyopathy With Mutations in Thin Filament Proteins. Circulation: Cardiovascular Genetics, 2014, 7, 132-143.	5.1	61
43	Manipulation of Death Pathways in Desmin-Related Cardiomyopathy. Circulation Research, 2010, 106, 1524-1532.	4.5	60
44	Sumo E2 Enzyme UBC9 Is Required for Efficient Protein Quality Control in Cardiomyocytes. Circulation Research, 2014, 115, 721-729.	4.5	59
45	UBC9-Mediated Sumoylation Favorably Impacts Cardiac Function in Compromised Hearts. Circulation Research, 2016, 118, 1894-1905.	4.5	57
46	Proteotoxicity: An underappreciated pathology in cardiac disease. Journal of Molecular and Cellular Cardiology, 2014, 71, 3-10.	1.9	55
47	Cardiac Dysfunction in the Sigma 1 Receptor Knockout Mouse Associated With Impaired Mitochondrial Dynamics and Bioenergetics. Journal of the American Heart Association, 2018, 7, e009775.	3.7	54
48	Activation of Autophagy Ameliorates Cardiomyopathy in <i>Mybpc3</i> -Targeted Knockin Mice. Circulation: Heart Failure, 2017, 10, .	3.9	53
49	Biochemical and Mechanical Dysfunction in a Mouse Model of Desmin-Related Myopathy. Circulation Research, 2009, 104, 1021-1028.	4.5	48
50	Desmin filaments and cardiac disease: Establishing causality. Journal of Cardiac Failure, 2002, 8, S287-S292.	1.7	44
51	Remodeling the Cardiac Sarcomere Using Transgenesis. Annual Review of Physiology, 2000, 62, 261-287.	13.1	42
52	Determination of the critical residues responsible for cardiac myosin binding protein C's interactions. Journal of Molecular and Cellular Cardiology, 2012, 53, 838-847.	1.9	42
53	Anin vivo analysis of transcriptional elements in the mouse α-myosin heavy chain gene promoter. Transgenic Research, 1995, 4, 397-405.	2.4	40
54	Position independent expression and developmental regulation is directed by the β myosin heavy chain gene's 5′ upstream region in transgenic mice. Nucleic Acids Research, 1995, 23, 3301-3309.	14.5	40

#	Article	IF	CITATIONS
55	Disturbance in Z-Disk Mechanosensitive Proteins Induced by a Persistent Mutant Myopalladin Causes Familial Restrictive Cardiomyopathy. Journal of the American College of Cardiology, 2014, 64, 2765-2776.	2.8	39
56	Myofibroblast-Specific TGFβ Receptor II Signaling in the Fibrotic Response to Cardiac Myosin Binding Protein C-Induced Cardiomyopathy. Circulation Research, 2018, 123, 1285-1297.	4.5	39
57	Cardiac Fibrosis in Proteotoxic Cardiac Disease is Dependent Upon Myofibroblast TGFâ€Î² Signaling. Journal of the American Heart Association, 2018, 7, e010013.	3.7	37
58	Signaling and Myosin-binding Protein C. Journal of Biological Chemistry, 2011, 286, 9913-9919.	3.4	36
59	Transgenic over-expression of a motor protein at high levels results in severe cardiac pathology. Transgenic Research, 1999, 8, 9-22.	2.4	35
60	Distribution and Structure-Function Relationship of Myosin Heavy Chain Isoforms in the Adult Mouse Heart. Journal of Biological Chemistry, 2007, 282, 24057-24064.	3.4	34
61	The extent of cardiac myosin binding protein-C phosphorylation modulates actomyosin function in a graded manner. Journal of Muscle Research and Cell Motility, 2012, 33, 449-459.	2.0	34
62	Functional significance of the discordance between transcriptional profile and left ventricular structure/function during reverse remodeling. JCI Insight, 2016, 1, e86038.	5.0	33
63	Phospholamban overexpression in transgenic rabbits. Transgenic Research, 2008, 17, 157-170.	2.4	30
64	The N terminus of myosin-binding protein C extends toward actin filaments in intact cardiac muscle. Journal of General Physiology, 2021, 153, .	1.9	30
65	Aberrant Mitochondrial Fission Is Maladaptive in Desmin Mutation–Induced Cardiac Proteotoxicity. Journal of the American Heart Association, 2018, 7, .	3.7	29
66	An Endogenously Produced Fragment of Cardiac Myosin-Binding Protein C Is Pathogenic and Can Lead to Heart Failure. Circulation Research, 2013, 113, 553-561.	4.5	26
67	In Vivo Definition of a Cardiac Specific Promoter and Its Potential Utility in Remodeling the Heart. Annals of the New York Academy of Sciences, 1995, 752, 492-505.	3.8	24
68	Post-translational control of cardiac hemodynamics through myosin binding protein C. Pflugers Archiv European Journal of Physiology, 2014, 466, 231-236.	2.8	24
69	Role of the acidic N′ region of cardiac troponin I in regulating myocardial function. FASEB Journal, 2008, 22, 1246-1257.	0.5	23
70	Hypertrophic cardiomyopathy R403Q mutation in rabbit β-myosin reduces contractile function at the molecular and myofibrillar levels. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11238-11243.	7.1	23
71	Genetic modification of the heart: exploring necessity and sufficiency in the past 10Byears. Journal of Molecular and Cellular Cardiology, 2004, 36, 643-652.	1.9	22
72	Ube2v1 Positively Regulates Protein Aggregation by Modulating Ubiquitin Proteasome System Performance Partially Through K63 Ubiquitination. Circulation Research, 2020, 126, 907-922.	4.5	22

#	Article	IF	CITATIONS
73	Autophagy and proteotoxicity in cardiomyocytes. Autophagy, 2011, 7, 1259-1260.	9.1	20
74	In vivo definition of cardiac myosin-binding protein C's critical interactions with myosin. Pflugers Archiv European Journal of Physiology, 2016, 468, 1685-1695.	2.8	20
75	Functional dissection of myosin binding protein C phosphorylation. Journal of Molecular and Cellular Cardiology, 2013, 64, 39-50.	1.9	19
76	Desmin and Cardiac Disease. Circulation Research, 2018, 122, 1324-1326.	4.5	18
77	CYLD exaggerates pressure overload-induced cardiomyopathy via suppressing autolysosome efflux in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2020, 145, 59-73.	1.9	18
78	Alterations in Multiâ€Scale Cardiac Architecture in Association With Phosphorylation of Myosin Binding Proteinâ€C. Journal of the American Heart Association, 2016, 5, e002836.	3.7	17
79	Making the connections: Autophagy and post-translational modifications in cardiomyocytes. Autophagy, 2016, 12, 2252-2253.	9.1	16
80	Overexpression of phospholamban in slowâ€ŧwitch skeletal muscle is associated with depressed contractile function and muscle remodeling. FASEB Journal, 2004, 18, 974-976.	0.5	15
81	Autophagy in desmin-related cardiomyopathy: Thoughts at the halfway point. Autophagy, 2010, 6, 665-666.	9.1	15
82	Inhibition of Mutant αB Crystallinâ€Induced Protein Aggregation by a Molecular Tweezer. Journal of the American Heart Association, 2017, 6, .	3.7	15
83	MMlâ€0100 Inhibits Cardiac Fibrosis in a Mouse Model Overexpressing Cardiac Myosin Binding Protein C. Journal of the American Heart Association, 2017, 6, .	3.7	13
84	An Unbiased High-Throughput Screen to Identify Novel Effectors That Impact on Cardiomyocyte Aggregate Levels. Circulation Research, 2017, 121, 604-616.	4.5	13
85	A high-throughput screening identifies ZNF418 as a novel regulator of the ubiquitin-proteasome system and autophagy-lysosomal pathway. Autophagy, 2021, 17, 3124-3139.	9.1	12
86	Phospholamban overexpression in rabbit ventricular myocytes does not alter sarcoplasmic reticulum Ca transport. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H698-H703.	3.2	9
87	In Vivo Remodeling of an Extracellular Matrix Cardiac Patch in an Ovine Model. ASAIO Journal, 2019, 65, 744-752.	1.6	7
88	Twenty Years of Gene Targeting. Circulation Research, 2011, 109, 722-723.	4.5	6
89	Cardiac myosin binding protein-C phosphorylation accelerates β-cardiac myosin detachment rate in mouse myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1822-H1835.	3.2	6
90	Giving credence to controls: Avoiding the false phenotype. Journal of Molecular and Cellular Cardiology, 2015, 86, 136-137.	1.9	3

#	Article	IF	CITATIONS
91	Healing a Heart Through Genetic Intervention. Circulation Research, 2016, 118, 920-922.	4.5	3
92	Increased susceptibility to structural acute kidney injury in a mouse model of presymptomatic cardiomyopathy. American Journal of Physiology - Renal Physiology, 2017, 313, F699-F705.	2.7	3
93	Overexpressed Cardiac Gs alpha Protects Against Myocardial Ischemic Injury in Conscious Rabbits. FASEB Journal, 2008, 22, 51-51.	0.5	1
94	Bringing It All Together. Circulation Research, 2015, 117, 987-989.	4.5	0
95	Inducible expression of active Inhibitorâ€1 enhances cardiac function and improves contractility after an ischemic insult. FASEB Journal, 2008, 22, 970.15.	0.5	0
96	The absence of MuRF1 protects against Calpain1â€induced systolic dysfunction in vivo. FASEB Journal, 2015, 29, 46.1.	0.5	0