
Xose Souto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997163/publications.pdf Version: 2024-02-01

XOSE SOUTO

#	Article	IF	CITATIONS
1	Identification of single nucleotide polymorphisms (SNPs) for maize cell wall hydroxycinnamates using a multi-parent advanced generation intercross (MAGIC) population. Phytochemistry, 2022, 193, 113002.	2.9	1
2	Elucidating the multifunctional role of the cell wall components in the maize exploitation. BMC Plant Biology, 2021, 21, 251.	3.6	2
3	Predictive phytotoxic value of water-soluble allelochemicals in plant extracts for choosing a cover crop or mulch for specific weed control. Italian Journal of Agronomy, 2021, 16, .	1.0	6
4	Water-soluble phenolic acids and flavonoids involved in the bioherbicidal potential of Ulex europaeus and Cytisus scoparius. South African Journal of Botany, 2020, 133, 201-211.	2.5	17
5	Methods for Determining Cell Wall-Bound Phenolics in Maize Stem Tissues. Journal of Agricultural and Food Chemistry, 2018, 66, 1279-1284.	5.2	14
6	Chemical Changes during Maize Tissue Aging and Its Relationship with Mediterranean Corn Borer Resistance. Journal of Agricultural and Food Chemistry, 2017, 65, 9180-9185.	5.2	5
7	Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain. International Journal of Food Microbiology, 2014, 177, 63-71.	4.7	59
8	Assessing white maize resistance to fumonisin contamination. European Journal of Plant Pathology, 2014, 138, 283-292.	1.7	18
9	Role of Hydroxycinnamic Acids in the Infection of Maize Silks by Fusarium graminearum Schwabe. Molecular Plant-Microbe Interactions, 2011, 24, 1020-1026.	2.6	15
10	Ecophysiological responses of three native herbs to phytotoxic potential of invasive Acacia melanoxylon R. Br Agroforestry Systems, 2011, 83, 149-166.	2.0	42
11	Putative Role of Pith Cell Wall Phenylpropanoids inSesamia nonagrioides(Lepidoptera:Â Noctuidae) Resistance. Journal of Agricultural and Food Chemistry, 2006, 54, 2274-2279.	5.2	49
12	Diferulate Content of Maize Sheaths Is Associated with Resistance to the Mediterranean Corn Borer Sesamia nonagrioides (Lepidoptera:  Noctuidae). Journal of Agricultural and Food Chemistry, 2006, 54, 9140-9144.	5.2	33
13	Effect of Maize Pith Free Phenols on Larval Growth and Development of Sesamia nonagrioides (Lepidoptera: Noctuidae). Journal of Entomology, 2006, 3, 281-289.	0.2	7
14	Free Phenols in Maize Pith and Their Relationship with Resistance to <i>Sesamia nonagrioides</i> (Lepidoptera: Noctuidae) Attack. Journal of Economic Entomology, 2005, 98, 1349-1356.	1.8	31
15	Relationship Between Maize Stem Structural Characteristics and Resistance to Pink Stem Borer (Lepidoptera: Noctuidae) Attack. Journal of Economic Entomology, 2003, 96, 1563-1570.	1.8	24
16	Relationship Between Maize Stem Structural Characteristics and Resistance to Pink Stem Borer (Lepidoptera: Noctuidae) Attack. Journal of Economic Entomology, 2003, 96, 1563-1570.	1.8	13
17	Feedback mechanism in the chemical ecology of plants: role of soil microorganisms. , 2002, , 89-97.		2
18	Allelopathic Effects of Tree Species on Some Soil Microbial Populations and Herbaceous Plants. Biologia Plantarum, 2001, 44, 269-275.	1.9	53

Xose Souto

#	Article	IF	CITATIONS
19	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2025-2034.	1.8	77
20	Allelopathic Effects of Humus Phenolics on Growth and Respiration of Mycorrhizal Fungi. Journal of Chemical Ecology, 2000, 26, 2015-2023.	1.8	50
21	Allelopathy in forest ecosystems. , 2000, , 183-193.		16
22	Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation, 1999, 28, 83-88.	3.4	152
23	Allelopathy in Northern Temperate and Boreal Semi-Natural Woodland. Critical Reviews in Plant Sciences, 1999, 18, 637-652.	5.7	34
24	Allelopathic Effects of Exotic Tree Species on Microorganisms and Plants in Galicia (Spain). Forestry Sciences, 1998, , 293-300.	0.4	1
25	Allelopathic effects of Acacia melanoxylon R.Br. phyllodes during their decomposition. Forest Ecology and Management, 1995, 77, 53-63.	3.2	60
26	Comparative analysis of allelopathic effects produced by four forestry species during decomposition process in their soils in Galicia (NW Spain). Journal of Chemical Ecology, 1994, 20, 3005-3015.	1.8	57
27	Rye (Secale cereale L.) and squarrose clover (Trifolium squarrosum L.) cover crops can increase their allelopathic potential for weed control when used mixed as dead mulch. Italian Journal of Agronomy, 0, , .	1.0	3