Prem Ponka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/399689/publications.pdf Version: 2024-02-01

DDEM DONKA

#	Article	IF	CITATIONS
1	The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. BBA - Biomembranes, 1997, 1331, 1-40.	8.0	609
2	Tissue-Specific Regulation of Iron Metabolism and Heme Synthesis: Distinct Control Mechanisms in Erythroid Cells. Blood, 1997, 89, 1-25.	1.4	491
3	Direct interorganellar transfer of iron from endosome to mitochondrion. Blood, 2007, 110, 125-132.	1.4	231
4	The long history of iron in the Universe and in health and disease. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 161-187.	2.4	166
5	Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mkmice. Blood, 2001, 98, 3823-3830.	1.4	136
6	Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5960-5965.	7.1	136
7	Evaluation of the iron chelation potential of hydrazones of pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde using the hepatocyte in culture. Hepatology, 1992, 15, 492-501.	7.3	122
8	Intracellular kinetics of iron in reticulocytes: evidence for endosome involvement in iron targeting to mitochondria. Blood, 2005, 105, 368-375.	1.4	113
9	Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run―mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2859-2867.	4.1	89
10	Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nature Metabolism, 2019, 1, 519-531.	11.9	88
11	Hereditary Causes of Disturbed Iron Homeostasis in the Central Nervous System. Annals of the New York Academy of Sciences, 2004, 1012, 267-281.	3.8	85
12	Regulation of transferrin receptor mRNA expression. Distinct regulatory features in erythroid cells. FEBS Journal, 1994, 220, 683-692.	0.2	74
13	Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood, 2019, 133, 344-355.	1.4	71
14	Do Mammalian Cells Really Need to Export and Import Heme?. Trends in Biochemical Sciences, 2017, 42, 395-406.	7.5	57
15	Identification of an Erythroid Active Element in the Transferrin Receptor Gene. Journal of Biological Chemistry, 2000, 275, 24185-24190.	3.4	54
16	Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice. Blood, 2017, 129, 1514-1526.	1.4	52
17	Control of heme synthesis during Friend cell differentiation: Role of iron and transferrin. Journal of Cellular Physiology, 1986, 129, 185-192.	4.1	48
18	Rare causes of hereditary iron overload. Seminars in Hematology, 2002, 39, 249-262.	3.4	47

Prem Ponka

#	Article	IF	CITATIONS
19	Ferric-salicylaldehyde isonicotinoyl hydrazone, a synthetic iron chelate, alleviates defective iron utilization by reticulocytes of the belgrade rat. Journal of Cellular Physiology, 1991, 146, 460-465.	4.1	46
20	Mice are poor heme absorbers and do not require intestinal Hmox1 for dietary heme iron assimilation. Haematologica, 2015, 100, e334-e337.	3.5	38
21	Heme oxygenase 1 is expressed in murine erythroid cells where it controls the level of regulatory heme. Blood, 2014, 123, 2269-2277.	1.4	31
22	Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a β-thalassemia mouse model. Blood, 2018, 131, 236-246.	1.4	30
23	Regulation of heme biosynthesis: Distinct regulatory features in erythroid cells. Stem Cells, 1993, 11, 24-35.	3.2	27
24	Can Ferritin Provide Iron for Hemoglobin Synthesis?. Blood, 1997, 89, 2611-2612.	1.4	24
25	Iron metabolism: Physiology and pathophysiology. Journal of Trace Elements in Experimental Medicine, 2000, 13, 73-83.	0.8	22
26	Consequences of DMT1 Mutation on Proliferation and Hemoglobinization of Erythroid Progenitors In Vitro Blood, 2004, 104, 3190-3190.	1.4	20
27	Extracellular glycine is necessary for optimal hemoglobinization of erythroid cells. Haematologica, 2017, 102, 1314-1323.	3.5	19
28	Recent advances in cellular iron metabolism. Journal of Trace Elements in Experimental Medicine, 2003, 16, 201-217.	0.8	14
29	The Role of Heme Oxygenase 1 in Erythroid Differentiation Blood, 2008, 112, 3847-3847.	1.4	11
30	Nitric Oxide Upregulates Ferritin Synthesis Independently of Iron Regulatory Protein-Iron Responsive Element Binding Activity Blood, 2005, 106, 3594-3594.	1.4	8
31	The mouse Char10 locus regulates severity of pyruvate kinase deficiency and susceptibility to malaria. PLoS ONE, 2017, 12, e0177818.	2.5	7
32	Thioredoxin-interacting protein regulates the differentiation of murine erythroid precursors. Experimental Hematology, 2015, 43, 393-403.e2.	0.4	6
33	Erythropoiesis, Hemoglobin Synthesis, and Erythroid Mitochondrial Iron Homeostasis. Handbook of Porphyrin Science, 2013, , 41-84.	0.8	4
34	Calcein and the Labile Iron Pool Blood, 2006, 108, 1546-1546.	1.4	2
35	Heme Oxygenase 1 Inhibition Reverses Anemia in β-Thalassemia Mice. Blood, 2016, 128, 2462-2462.	1.4	2
36	Low Cytosolic Non-Heme Iron Levels in Erythroid Cells Prevent IRP2-Mediated Ferritin Upregulation during Differentiation Blood, 2007, 110, 705-705.	1.4	1

Prem Ponka

#	Article	IF	CITATIONS
37	Uncovering the Role of Heme Oxygenase 1 in the Pathophysiology of Î ² -Thalassemia. Blood, 2014, 124, 1364-1364.	1.4	1
38	Pathophysiology and Treatment of Beta-Thalassemia: Investigations of Heme Oxygenase 1 and Its Inhibitors. Blood, 2015, 126, 3373-3373.	1.4	1
39	S-Nitrosothiols control breathing and oxygen homeostasis. Redox Report, 2002, 7, 5-7.	4.5	0
40	Response to: Dietary and pharmacological factors affecting iron absorption in mice and man. Haematologica, 2016, 101, e122-e122.	3.5	0
41	Novel Iron Chelators Alleviate Symptoms of Thalassemia Blood, 2004, 104, 3203-3203.	1.4	0
42	Stimulation of Transferrin Receptor Expression by Enhanced Heme Biosynthesis in Murine Erythroleukemia Cells Blood, 2004, 104, 3200-3200.	1.4	0
43	Overexpression of Mitochondrial Ferritin Causes Cytosolic Iron Starvation and Changes Cellular Iron Homeostatis Blood, 2004, 104, 3195-3195.	1.4	0
44	DMT1 Mutation in a Patient with Hypochromic Microcytic Anemia: Functional Consequences and Response to Erythropoietin Blood, 2005, 106, 3587-3587.	1.4	0
45	Direct Interorganellar Transfer of Iron from Endosome to Mitochondrion Blood, 2006, 108, 268-268.	1.4	0
46	Interorganellar association mediates the efficient transfer of iron from endosome to mitochondria. FASEB Journal, 2007, 21, A1348.	0.5	0
47	The Role of Nramp1 in Erythrophagocytosis Blood, 2007, 110, 3851-3851.	1.4	0
48	Modulation of IRP Binding Activity by Oxygen in Primary Erythroid Cells Blood, 2007, 110, 2662-2662.	1.4	0
49	Deciphering Mitochondrial Iron Metabolism Using a Knockout Mouse Blood, 2009, 114, 1995-1995.	1.4	0
50	Exogenous Apo-Transferrin Increases Monoferric Transferrin, Decreasing Cytosolic Iron Uptake and Heme and Globin Synthesis in β-Thalassemic Mice. Blood, 2014, 124, 4037-4037.	1.4	0
51	Transcriptional Induction of Transferrin Receptors By Heme in Erythroid Cells. Blood, 2015, 126, 3352-3352.	1.4	0
52	Endosome-Mitochondria Interface Controls Intracellular Iron Trafficking in Erythroid Cells. Blood, 2016, 128, 75-75.	1.4	0