Risto J Ilmoniemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3995105/publications.pdf

Version: 2024-02-01

284 papers 31,713 citations

7568 77 h-index 4885 168 g-index

310 all docs

310 docs citations

times ranked

310

17099 citing authors

#	Article	IF	CITATIONS
1	Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 2009, 120, 2008-2039.	1.5	4,364
2	Magnetoencephalographyâ€"theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 1993, 65, 413-497.	45.6	3,939
3	Interpreting magnetic fields of the brain: minimum norm estimates. Medical and Biological Engineering and Computing, 1994, 32, 35-42.	2.8	1,692
4	Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 1997, 385, 432-434.	27.8	1,091
5	Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations. Journal of Neuroscience, 2001, 21, 1370-1377.	3.6	937
6	Signal-space projection method for separating MEG or EEG into components. Medical and Biological Engineering and Computing, 1997, 35, 135-140.	2.8	701
7	Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport, 1997, 8, 3537-3540.	1.2	675
8	Functional links between motor and language systems. European Journal of Neuroscience, 2005, 21, 793-797.	2.6	622
9	Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiology, 2021, 132, 269-306.	1.5	553
10	Separate Time Behaviors of the Temporal and Frontal Mismatch Negativity Sources. NeuroImage, 2000, 12, 14-19.	4.2	445
11	Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man. Neuroscience Letters, 1984, 50, 127-132.	2.1	413
12	Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6809-6814.	7.1	395
13	Brain Signatures of Meaning Access in Action Word Recognition. Journal of Cognitive Neuroscience, 2005, 17, 884-892.	2.3	361
14	Prestimulus Oscillations Enhance Psychophysical Performance in Humans. Journal of Neuroscience, 2004, 24, 10186-10190.	3.6	350
15	Methodology for Combined TMS and EEG. Brain Topography, 2010, 22, 233-248.	1.8	339
16	Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalography and Clinical Neurophysiology, 1995, 95, 189-200.	0.3	324
17	Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalography and Clinical Neurophysiology, 1984, 57, 254-263.	0.3	320
18	Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimulation, 2009, 2, 58-80.	1.6	299

#	Article	IF	CITATIONS
19	Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. Psychophysiology, 1998, 35, 211-224.	2.4	280
20	Memory Traces for Words as Revealed by the Mismatch Negativity. NeuroImage, 2001, 14, 607-616.	4.2	277
21	Clinical utility and prospective of TMS–EEG. Clinical Neurophysiology, 2019, 130, 802-844.	1.5	276
22	The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Human Brain Mapping, 2004, 21, 154-164.	3.6	263
23	Brain responses reveal the learning of foreign language phonemes. Psychophysiology, 1999, 36, 638-642.	2.4	261
24	The role of the coil click in TMS assessed with simultaneous EEG. Clinical Neurophysiology, 1999, 110, 1325-1328.	1.5	247
25	Face-selective processing in human extrastriate cortex around 120 ms after stimulus onset revealed by magneto- and electroencephalography. Neuroscience Letters, 1998, 253, 147-150.	2.1	229
26	Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Medical and Biological Engineering and Computing, 1999, 37, 322-326.	2.8	224
27	Spatiotemporal Activity of a Cortical Network for Processing Visual Motion Revealed by MEG and fMRI. Journal of Neurophysiology, 1999, 82, 2545-2555.	1.8	217
28	SQUID magnetometers for low-frequency applications. Journal of Low Temperature Physics, 1989, 76, 287-386.	1.4	193
29	lpsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clinical Neurophysiology, 2002, 113, 175-184.	1.5	192
30	Superior Formation of Cortical Memory Traces for Melodic Patterns in Musicians. Learning and Memory, 2001, 8, 295-300.	1.3	185
31	Design, construction, and performance of a large-volume magnetic shield. IEEE Transactions on Magnetics, 1982, 18, 260-270.	2.1	183
32	Temporal window of integration of auditory information in the human brain. Psychophysiology, 1998, 35, 615-619.	2.4	168
33	Visual cortex activation in blind humans during sound discrimination. Neuroscience Letters, 1995, 183, 143-146.	2.1	166
34	Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology, 1993, 30, 537-540.	2.4	164
35	Discrimination of Speech and of Complex Nonspeech Sounds of Different Temporal Structure in the Left and Right Cerebral Hemispheres. NeuroImage, 2000, 12, 657-663.	4.2	158
36	Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. European Journal of Neuroscience, 2003, 18, 1206-1212.	2.6	158

#	Article	IF	Citations
37	Frequency change detection in human auditory cortex. Journal of Computational Neuroscience, 1999, 6, 99-120.	1.0	157
38	Electrophysiological evidence for cross-modal plasticity in humans with early- and late-onset blindness. Psychophysiology, 1997, 34, 213-216.	2.4	155
39	Background acoustic noise and the hemispheric lateralization of speech processing in the human brain: magnetic mismatch negativity study. Neuroscience Letters, 1998, 251, 141-144.	2.1	141
40	Functional Specialization of the Human Auditory Cortex in Processing Phonetic and Musical Sounds: A Magnetoencephalographic (MEG) Study. NeuroImage, 1999, 9, 330-336.	4.2	141
41	Test–retest reliability of mismatch negativity for duration, frequency and intensity changes. Clinical Neurophysiology, 1999, 110, 1388-1393.	1.5	138
42	Significance of the second somatosensory cortex in sensorimotor integration. NeuroReport, 1996, 7, 1009-1012.	1.2	137
43	Face-specific responses from the human inferior occipito-temporal cortex. Neuroscience, 1997, 77, 49-55.	2.3	137
44	Combined mapping of human auditory EEG and MEG responses. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1998, 108, 370-379.	2.0	132
45	Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. Neurolmage, 2005, 24, 955-960.	4.2	132
46	Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses. Psychophysiology, 1996, 33, 369-375.	2.4	129
47	Activation of multiple cortical areas in response to somatosensory stimulation: Combined magnetoencephalographic and functional magnetic resonance imaging., 1999, 8, 13-27.		129
48	A novel mechanism for evoked responses in the human brain. European Journal of Neuroscience, 2007, 25, 3146-3154.	2.6	123
49	Stimulus-induced change in long-range temporal correlations and scaling behaviour of sensorimotor oscillations. European Journal of Neuroscience, 2004, 19, 203-218.	2.6	121
50	Sensorimotor Cortex Localization: Comparison of Magnetoencephalography, Functional MR Imaging, and Intraoperative Cortical Mapping. Radiology, 2006, 241, 213-222.	7.3	120
51	The Effect of Stimulus Parameters on TMS–EEG Muscle Artifacts. Brain Stimulation, 2013, 6, 371-376.	1.6	118
52	Hemispheric lateralization in preattentive processing of speech sounds. Neuroscience Letters, 1998, 258, 9-12.	2.1	114
53	Dopamine modulates involuntary attention shifting and reorienting: an electromagnetic study. Clinical Neurophysiology, 2002, 113, 1894-1902.	1.5	112
54	EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations. Clinical Neurophysiology, 2010, 121, 492-501.	1.5	112

#	Article	IF	CITATIONS
55	Spatiotemporal dynamics of neural language processing: an MEG study using minimum-norm current estimates. Neurolmage, 2003, 20, 1020-1025.	4.2	111
56	Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study. NeuroReport, 2002, 13, 1813-1816.	1.2	110
57	Functional differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetic recordings. Human Brain Mapping, 1993, 1, 48-56.	3.6	107
58	Grammar Processing Outside the Focus of Attention: an MEG Study. Journal of Cognitive Neuroscience, 2003, 15, 1195-1206.	2.3	107
59	Hybrid ultraâ€lowâ€field MRI and magnetoencephalography system based on a commercial wholeâ€head neuromagnetometer. Magnetic Resonance in Medicine, 2013, 69, 1795-1804.	3.0	106
60	Reproducibility in TMS–EEG studies: A call for data sharing, standard procedures and effective experimental control. Brain Stimulation, 2019, 12, 787-790.	1.6	106
61	Seeing faces activates three separate areas outside the occipital visual cortex in man. Neuroscience, 1991, 43, 287-290.	2.3	104
62	Removal of large muscle artifacts from transcranial magnetic stimulation-evoked EEG by independent component analysis. Medical and Biological Engineering and Computing, 2011, 49, 397-407.	2.8	104
63	Sampling theory for neuromagnetic detector arrays. IEEE Transactions on Biomedical Engineering, 1993, 40, 859-869.	4.2	101
64	Distinct differences in cortical reactivity of motor and prefrontal cortices to magnetic stimulation. Clinical Neurophysiology, 2004, 115, 583-588.	1.5	101
65	Dynamic Neuroimaging of Brain Function. Journal of Clinical Neurophysiology, 1995, 12, 432-449.	1.7	98
66	Alcohol Reduces Prefrontal Cortical Excitability in Humans: A Combined TMS and EEG Study. Neuropsychopharmacology, 2003, 28, 747-754.	5.4	96
67	The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation. Neuroscience Letters, 2010, 478, 24-28.	2.1	95
68	Automatic and robust noise suppression in EEG and MEG: The SOUND algorithm. NeuroImage, 2018, 166, 135-151.	4.2	92
69	Tryptophan Depletion Effects on EEG and MEG Responses Suggest Serotonergic Modulation of Auditory Involuntary Attention in Humans. NeuroImage, 2002, 16, 1052-1061.	4.2	91
70	Selective localization of alpha brain activity with neuromagnetic measurements. Electroencephalography and Clinical Neurophysiology, 1984, 58, 569-572.	0.3	90
71	Distinct Gamma-Band Evoked Responses to Speech and Non-Speech Sounds in Humans. Journal of Neuroscience, 2002, 22, RC211-RC211.	3.6	89
72	Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation. Clinical Neurophysiology, 1999, 110, 982-985.	1.5	88

#	Article	IF	Citations
73	Ethanol Modulates Cortical Activity: Direct Evidence with Combined TMS and EEG. NeuroImage, 2001, 14, 322-328.	4.2	88
74	Inherited Auditory-Cortical Dysfunction in Twin Pairs Discordant for Schizophrenia. Biological Psychiatry, 2006, 60, 612-620.	1.3	88
75	Experimental Characterization of the Electric Field Distribution Induced by TMS Devices. Brain Stimulation, 2015, 8, 582-589.	1.6	87
76	Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation. Clinical Neurophysiology, 2013, 124, 1995-2007.	1.5	86
77	Focusing and targeting of magnetic brain stimulation using multiple coils. Medical and Biological Engineering and Computing, 1998, 36, 297-301.	2.8	85
78	Interhemispheric phase synchrony and amplitude correlation of spontaneous beta oscillations in human subjects: a magnetoencephalographic study. NeuroReport, 2001, 12, 2487-2491.	1.2	85
79	The Spatial and Temporal Distortion of Magnetic Fields Applied Inside a Magnetically Shielded Room. IEEE Transactions on Magnetics, 2012, 48, 53-61.	2.1	84
80	Multi-locus transcranial magnetic stimulationâ€"theory and implementation. Brain Stimulation, 2018, 11, 849-855.	1.6	84
81	Estimates of visually evoked cortical currents. Electroencephalography and Clinical Neurophysiology, 1992, 82, 225-236.	0.3	82
82	Suppression of transient 40-Hz auditory response by haloperidol suggests modulation of human selective attention by dopamine D2 receptors. Neuroscience Letters, 2000, 292, 29-32.	2.1	82
83	Age-related functional differences between auditory cortices. NeuroReport, 1995, 6, 1803-1806.	1.2	78
84	Tracking speech comprehension in space and time. NeuroImage, 2006, 31, 1297-1305.	4.2	76
85	Activation of ipsilateral primary sensorimotor cortex by median nerve stimulation. NeuroReport, 1995, 6, 2589-2593.	1.2	7 5
86	Dynamics of mu-rhythm suppression caused by median nerve stimulation: a magnetoencephalographic study in human subjects. Neuroscience Letters, 2000, 294, 163-166.	2.1	75
87	Prefrontal TMS produces smaller EEG responses than motor-cortex TMS: implications for rTMS treatment in depression. Psychopharmacology, 2005, 181, 16-20.	3.1	74
88	Brain activity index of distractibility in normal school-age children. Neuroscience Letters, 2001, 314, 147-150.	2.1	73
89	Somatotopic blocking of sensation with navigated transcranial magnetic stimulation of the primary somatosensory cortex. Human Brain Mapping, 2005, 26, 100-109.	3.6	71
90	Models of source currents in the brain. Brain Topography, 1993, 5, 331-336.	1.8	68

#	Article	IF	CITATIONS
91	Magnetoencephalography in studies of human cognitive brain function. Trends in Neurosciences, 1994, 17, 389-395.	8.6	68
92	Bilateral changes in excitability of sensorimotor cortices during unilateral movement: Combined electroencephalographic and transcranial magnetic stimulation study. Neuroscience, 2008, 152, 1119-1129.	2.3	68
93	Accelerometer-based method for correcting signal baseline changes caused by motion artifacts in medical near-infrared spectroscopy. Journal of Biomedical Optics, 2011, 16, 087005.	2.6	68
94	Recovering TMS-evoked EEG responses masked by muscle artifacts. NeuroImage, 2016, 139, 157-166.	4.2	68
95	SQUIDs in biomagnetism: a roadmap towards improved healthcare. Superconductor Science and Technology, 2016, 29, 113001.	3.5	67
96	A four-channel squid magnetometer for brain research. Electroencephalography and Clinical Neurophysiology, 1984, 58, 467-473.	0.3	66
97	Minimum-energy Coils for Transcranial Magnetic Stimulation: Application to Focal Stimulation. Brain Stimulation, 2015, 8, 124-134.	1.6	65
98	Transformation of multichannel magnetocardiographic signals to standard grid form. IEEE Transactions on Biomedical Engineering, 1995, 42, 72-78.	4.2	64
99	Evidence for Dissociation of Spatial and Nonspatial Auditory Information Processing. NeuroImage, 2001, 14, 1268-1277.	4.2	64
100	Noise affects speech-signal processing differently in the cerebral hemispheres. NeuroReport, 1999, 10, 2189-2192.	1.2	63
101	Projecting out muscle artifacts from TMS-evoked EEG. Neurolmage, 2011, 54, 2706-2710.	4.2	60
102	Coil design for real and sham transcranial magnetic stimulation. IEEE Transactions on Biomedical Engineering, 2000, 47, 145-148.	4.2	59
103	Coil optimisation for transcranial magnetic stimulation in realistic head geometry. Brain Stimulation, 2017, 10, 795-805.	1.6	59
104	Replicability of MEG and EEG measures of the auditory N1/N1m-response. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1998, 108, 291-298.	2.0	58
105	Specific changes in somatosensory evoked magnetic fields during recovery from sensorimotor stroke. Annals of Neurology, 2000, 47, 353-360.	5.3	58
106	MEG-compatible multichannel EEG electrode array. Electroencephalography and Clinical Neurophysiology, 1996, 99, 568-570.	0.3	57
107	Electromagnetic responses of the human auditory cortex generated by sensory-memory based processing of tone-frequency changes. Neuroscience Letters, 1999, 276, 169-172.	2.1	57
108	Neurodynamic Studies on Emotional and Inverted Faces in an Oddball Paradigm. Brain Topography, 2003, 16, 265-268.	1.8	57

#	Article	IF	CITATIONS
109	Predicting Alzheimer's disease severity by means of TMS–EEG coregistration. Neurobiology of Aging, 2019, 80, 38-45.	3.1	56
110	Effects of voluntary hyperventilation on cortical sensory responses. Experimental Brain Research, 1999, 125, 248-254.	1.5	55
111	Activation in the anterior left auditory cortex associated with phonological analysis of speech input: localization of the phonological mismatch negativity response with MEG. Cognitive Brain Research, 2004, 21, 106-113.	3.0	53
112	Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1996, 100, 479-487.	2.0	52
113	Memory-related processing of complex sound patterns in human auditory cortex. NeuroReport, 1993, 4, 391-394.	1.2	51
114	Interaction between representations of different features of auditory sensory memory. NeuroReport, 1993, 4, 1279.	1.2	50
115	Temporary and longer term retention of acoustic information. Psychophysiology, 2002, 39, 530-534.	2.4	49
116	Uncovering neural independent components from highly artifactual TMS-evoked EEG data. Journal of Neuroscience Methods, 2012, 209, 144-157.	2.5	49
117	Somatosensory evoked magnetic fields to median nerve stimulation: interhemispheric differences in a normal population. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1997, 104, 480-487.	2.0	48
118	Resersal of cerebral asymmetry in schizophrenia measured with magnetoencephalography. Schizophrenia Research, 1998, 30, 209-219.	2.0	48
119	Local and remote functional connectivity of neocortex under the inhibition influence. NeuroImage, 2004, 22, 1390-1406.	4.2	48
120	Enhancement of GABA-related signalling is associated with increase of functional connectivity in human cortex. Human Brain Mapping, 2004, 22, 27-39.	3.6	47
121	EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1. Clinical Neurophysiology, 2004, 115, 534-542.	1.5	46
122	The rt-TEP tool: real-time visualization of TMS-Evoked Potentials to maximize cortical activation and minimize artifacts. Journal of Neuroscience Methods, 2022, 370, 109486.	2.5	46
123	EEG responses to combined somatosensory and transcranial magnetic stimulation. Clinical Neurophysiology, 2001, 112, 19-24.	1.5	45
124	Avoiding eddy-current problems in ultra-low-field MRI with self-shielded polarizing coils. Journal of Magnetic Resonance, 2011, 212, 154-60.	2.1	44
125	Human somatosensory cortical activation strengths: comparison between males and females and age-related changes. Brain Research, 1999, 818, 196-203.	2.2	43
126	Impaired preconscious auditory processing and cognitive functions in Alzheimer's disease. Clinical Neurophysiology, 1999, 110, 1942-1947.	1.5	41

#	Article	IF	CITATIONS
127	The interplay of lorazepam-induced brain oscillations: microstructural electromagnetic study. Clinical Neurophysiology, 2004, 115, 674-690.	1.5	41
128	Minimum-norm estimation in a boundary-element torso model. Medical and Biological Engineering and Computing, 1994, 32, 43-48.	2.8	40
129	Sustained fields of tones and glides reflect tonotopy of the auditory cortex. NeuroReport, 1995, 6, 841-844.	1.2	40
130	Parallel input makes the brain run faster. NeuroImage, 2008, 40, 1792-1797.	4.2	40
131	The impact of improved MEG–MRI co-registration on MEG connectivity analysis. NeuroImage, 2019, 197, 354-367.	4.2	40
132	Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback. Brain Stimulation, 2022, 15, 523-531.	1.6	40
133	Automated search of stimulation targets with closed-loop transcranial magnetic stimulation. NeuroImage, 2020, 220, 117082.	4.2	38
134	Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation. Brain Stimulation, 2022, 15, 116-124.	1.6	38
135	Transcutaneous Vagus Nerve Stimulation Modulates Tinnitus-Related Beta- and Gamma-Band Activity. Ear and Hearing, 2015, 36, e76-e85.	2.1	37
136	A consensus statement on relative merits of EEG and MEG. Electroencephalography and Clinical Neurophysiology, 1992, 82, 317-319.	0.3	36
137	Theory of multichannel magnetic stimulation: toward functional neuromuscular rehabilitation. IEEE Transactions on Biomedical Engineering, 1999, 46, 646-651.	4.2	36
138	Transcranial magnetic stimulation as a tool for cognitive studies. Scandinavian Journal of Psychology, 2001, 42, 297-306.	1.5	36
139	From objective to subjective. NeuroReport, 1995, 6, 2317-2320.	1.2	35
140	Alzheimer \hat{E}^{1} 4s disease affects parallel processing between the auditory cortices. NeuroReport, 1996, 7, 1365-1368.	1.2	35
141	Coil optimization for magnetic brain stimulation. Annals of Biomedical Engineering, 1997, 25, 840-849.	2.5	35
142	Auditory cortex evoked magnetic fields and lateralization of speech processing. NeuroReport, 2000, 11, 2893-2896.	1.2	35
143	Source-based artifact-rejection techniques available in TESA, an open-source TMS–EEG toolbox. Brain Stimulation, 2020, 13, 1349-1351.	1.6	35
144	Combining rTMS With Intensive Language-Action Therapy in Chronic Aphasia: A Randomized Controlled Trial. Frontiers in Neuroscience, 2018, 12, 1036.	2.8	34

#	Article	IF	Citations
145	Pitch change of a continuous tone activates two distinct processes in human auditory cortex: a study with whole-head magnetometer. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1995, 96, 93-96.	2.0	33
146	Somatosensory evoked magnetic fields: relation to pre-stimulus mu rhythm. Clinical Neurophysiology, 2000, 111, 1227-1233.	1.5	33
147	Early cortical responses are sensitive to changes in face stimuli. Brain Research, 2010, 1346, 155-164.	2.2	33
148	Solving the problem of concomitant gradients in ultra-low-field MRI. Journal of Magnetic Resonance, 2010, 207, 213-219.	2.1	33
149	The impact of artifact removal approaches on TMS–EEG signal. NeuroImage, 2021, 239, 118272.	4.2	33
150	Spontaneous Hemodynamic Oscillations during Human Sleep and Sleep Stage Transitions Characterized with Near-Infrared Spectroscopy. PLoS ONE, 2011, 6, e25415.	2.5	32
151	Transcranial Magnetic Stimulation: Applications for Neuropsychopharmacology. Journal of Psychopharmacology, 2004, 18, 257-261.	4.0	31
152	Brain responses reveal the learning of foreign language phonemes. Psychophysiology, 1999, 36, 638-642.	2.4	31
153	Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization. NeuroImage, 2018, 167, 73-83.	4.2	30
154	Multi-trial evoked EEG and independent component analysis. Journal of Neuroscience Methods, 2014, 228, 15-26.	2.5	29
155	Auditory selective attention modulated by tryptophan depletion in humans. Neuroscience Letters, 2003, 340, 181-184.	2.1	28
156	Dealing with artifacts in TMS-evoked EEG. , 2015, 2015, 230-3.		28
157	Short-interval intracortical inhibition in human primary motor cortex: A multi-locus transcranial magnetic stimulation study. Neurolmage, 2019, 203, 116194.	4.2	28
158	Somatosensory evoked magnetic fields from the primary somatosensory cortex (SI) in acute stroke. Clinical Neurophysiology, 1999, 110, 916-923.	1.5	27
159	Magnetoencephalographic (MEG) localization of the auditory N400m: effects of stimulus duration. NeuroReport, 2001, 12, 249-253.	1.2	27
160	Plastic cortical changes induced by learning to communicate with non-speech sounds. NeuroReport, 2003, 14, 1683-1687.	1.2	27
161	Test–retest stability of the magnetic mismatch response (MMNm). Clinical Neurophysiology, 2005, 116, 1897-1905.	1.5	27
162	All-planar SQUIDs and pickup coils for combined MEG and MRI. Superconductor Science and Technology, 2011, 24, 075020.	3.5	27

#	Article	IF	Citations
163	Biopotential amplifier for simultaneous operation with biomagnetic instruments. Medical and Biological Engineering and Computing, 1997, 35, 402-408.	2.8	26
164	Context modulates processing of speech sounds in the right auditory cortex of human subjects. Neuroscience Letters, 2002, 331, 91-94.	2.1	26
165	Magnetic-field modeling with surface currents. Part I. Physical and computational principles of bfieldtools. Journal of Applied Physics, 2020, 128, .	2.5	26
166	Serotonin Modulates Early Cortical Auditory Processing in Healthy Subjects. Evidence from MEG with Acute Tryptophan Depletion. Neuropsychopharmacology, 2002, 27, 862-868.	5.4	25
167	Magnetometer Position Indicator for Multichannel MEG. , 1989, , 693-696.		24
168	MEG versus EEG localization test. Annals of Neurology, 1991, 30, 222-223.	5. 3	24
169	Somatosensory Evoked Magnetic Fields From Primary Sensorimotor Cortex in Juvenile Neuronal Ceroid Lipofuscinosis. Journal of Child Neurology, 1997, 12, 355-360.	1.4	24
170	Magnetic field modeling with surface currents. Part II. Implementation and usage of bfieldtools. Journal of Applied Physics, 2020, 128, .	2.5	24
171	Estimates of Neuronal Current Distributions. Acta Oto-Laryngologica, 1991, 111, 80-87.	0.9	23
172	Noninvasive extraction of microsecondâ€scale dynamics from human motor cortex. Human Brain Mapping, 2018, 39, 2405-2411.	3.6	23
173	TMS with fast and accurate electronic control: Measuring the orientation sensitivity of corticomotor pathways. Brain Stimulation, 2022, 15, 306-315.	1.6	23
174	TMS-evoked changes in brain-state dynamics quantified by using EEG data. Frontiers in Human Neuroscience, 2013, 7, 155.	2.0	22
175	Characterizing the local oscillatory content of spontaneous cortical activity during mental imagery. Cognitive Brain Research, 1995, 2, 243-249.	3.0	21
176	Preserved stimulus deviance detection in Alzheimer's disease. NeuroReport, 2001, 12, 1649-1652.	1.2	21
177	Differences between auditory evoked responses recorded during spatial and nonspatial working memory tasks. Neurolmage, 2003, 20, 1181-1192.	4.2	21
178	Current-density imaging using ultra-low-field MRI with zero-field encoding. Magnetic Resonance Imaging, 2014, 32, 766-770.	1.8	21
179	Spatial sampling of MEG and EEG based on generalized spatial-frequency analysis and optimal design. NeuroImage, 2021, 245, 118747.	4.2	21
180	Temporal span of human echoic memory and mismatch negativity. NeuroReport, 1999, 10, 1305-1308.	1.2	20

#	Article	IF	Citations
181	Electroencephalogram and repetitive transcranial magnetic stimulation. Depression and Anxiety, 2000, 12, 166-169.	4.1	20
182	Scopolamine reduces the P35m and P60m deflections of the human somatosensory evoked magnetic fields. NeuroReport, 2001, 12, 619-623.	1.2	20
183	Mismatch negativity indexes auditory temporal resolution: evidence from event-related potential (ERP) and event-related field (ERF) recordings. Cognitive Brain Research, 2003, 17, 685-691.	3.0	20
184	Phase shift detection in thalamocortical oscillations using magnetoencephalography in humans. Neuroscience Letters, 2004, 362, 48-52.	2.1	20
185	Cortical generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks. Clinical Neurophysiology, 2005, 116, 1644-1654.	1.5	20
186	Temperature dependence of relaxation times and temperature mapping in ultra-low-field MRI. Journal of Magnetic Resonance, 2013, 235, 50-57.	2.1	20
187	Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents. Journal of Applied Physics, 2014, 115, 103902.	2.5	19
188	Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. Psychophysiology, 1998, 35, 211-224.	2.4	19
189	Current-density imaging using ultra-low-field MRI with adiabatic pulses. Magnetic Resonance Imaging, 2014, 32, 54-59.	1.8	18
190	Blind Source Separation of Event-Related EEG/MEG. IEEE Transactions on Biomedical Engineering, 2017, 64, 2054-2064.	4.2	18
191	Individual Activation Patterns After the Stimulation of Different Motor Areas: A Transcranial Magnetic Stimulation–Electroencephalography Study. Brain Connectivity, 2018, 8, 420-428.	1.7	18
192	Method for locating a small magnetic object in the human body. IEEE Transactions on Biomedical Engineering, 1988, 35, 561-564.	4.2	17
193	Basic Principles of Navigated TMS. , 2017, , 3-29.		17
194	Magnetic-Stimulation-Related Physiological Artifacts in Hemodynamic Near-Infrared Spectroscopy Signals. PLoS ONE, 2011, 6, e24002.	2.5	17
195	Auditory stimuli activate parietal brain regions. NeuroReport, 1994, 6, 182-184.	1.2	16
196	Radial Anisotropy Added to a Spherically Symmetric Conductor Does Not Affect the External Magnetic Field Due to Internal Sources. Europhysics Letters, 1995, 30, 313-316.	2.0	16
197	Human cortical responses evoked by dichotically presented tones of different frequencies. NeuroReport, 1998, 9, 1115-1119.	1.2	16
198	Frequency-related effects in the optimization of coils for the magnetic stimulation of the nervous system. IEEE Transactions on Biomedical Engineering, 2002, 49, 463-471.	4.2	16

#	Article	IF	CITATIONS
199	The functional role of the ventral premotor cortex in a visually paced finger tapping task: A TMS study. Behavioural Brain Research, 2011, 220, 325-330.	2.2	16
200	Dynamical cancellation of pulse-induced transients in a metallic shielded room for ultra-low-field magnetic resonance imaging. Applied Physics Letters, 2015, 106, .	3.3	16
201	Minimum-Norm Estimation of Motor Representations in Navigated TMS Mappings. Brain Topography, 2017, 30, 711-722.	1.8	16
202	EEG Artifact Removal in TMS Studies of Cortical Speech Areas. Brain Topography, 2020, 33, 1-9.	1.8	16
203	Spatial extent of cortical motor hotspot in navigated transcranial magnetic stimulation. Journal of Neuroscience Methods, 2020, 346, 108893.	2.5	16
204	Chapter 5: Multi-Squid Devices and Their Applications. Progress in Low Temperature Physics, 1989, 12, 271-339.	0.2	15
205	Early dissociation of face and object processing: A magnetoencephalographic study. Human Brain Mapping, 2009, 30, 917-927.	3.6	15
206	Trade-off between stimulation focality and the number of coils in multi-locus transcranial magnetic stimulation. Journal of Neural Engineering, 2021, 18, 066003.	3 . 5	15
207	Effect of task-related extracerebral circulation on diffuse optical tomography: experimental data and simulations on the forehead. Biomedical Optics Express, 2013, 4, 412.	2.9	14
208	Preparation and execution of teeth clenching and foot muscle contraction influence on corticospinal hand-muscle excitability. Scientific Reports, 2017, 7, 41249.	3.3	14
209	The effect of experimental pain on short-interval intracortical inhibition with multi-locus transcranial magnetic stimulation. Experimental Brain Research, 2019, 237, 1503-1510.	1.5	13
210	The effect of stimulation rate on the signal-to-noise ratio of evoked responses. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1993, 88, 339-342.	2.0	12
211	Event-Related Potentials to Expectancy Violation in Musical Context. Musicae Scientiae, 2003, 7, 241-261.	2.9	12
212	The C50m response: Conditioned magnetocerebral activity recorded from the human brain. Neurolmage, 2005, 27, 778-788.	4.2	12
213	Polarization encoding as a novel approach to MRI. Journal of Magnetic Resonance, 2010, 202, 211-216.	2.1	12
214	Basic Physics and Design of Transcranial Magnetic Stimulation Devices and Coils., 2005, , 17-30.		11
215	Individual head models for estimating the TMS-induced electric field in rat brain. Scientific Reports, 2020, 10, 17397.	3.3	11
216	Visual deviant stimuli produce mismatch responses in the amplitude dynamics of neuronal oscillations. Neurolmage, 2016, 142, 645-655.	4.2	10

#	Article	IF	Citations
217	Cyclic Alternating Pattern Is Associated with Cerebral Hemodynamic Variation: A Near-Infrared Spectroscopy Study of Sleep in Healthy Humans. PLoS ONE, 2012, 7, e46899.	2.5	10
218	Magnetocardiographic localization of ventricular pre-excitation in a child with a congenital heart defect. Pediatric Cardiology, 1995, 16, 33-35.	1.3	9
219	Effect of stimulus orientation and intensity on short-interval intracortical inhibition (SICI) and facilitation (SICF): A multi-channel transcranial magnetic stimulation study. PLoS ONE, 2021, 16, e0257554.	2.5	9
220	No evidence for dependence of early cortical auditory processing on dopamine D2-receptor modulation: a whole-head magnetoencephalographic study. Psychiatry Research - Neuroimaging, 2001, 107, 117-123.	1.8	8
221	Improved determination of FID signal parameters in low-field NMR. Journal of Magnetic Resonance, 2010, 205, 148-160.	2.1	8
222	Face activated neurodynamic cortical networks. Medical and Biological Engineering and Computing, 2011, 49, 531-543.	2.8	8
223	SQUID-sensor-based ultra-low-field MRI calibration with phantom images: Towards quantitative imaging. Journal of Magnetic Resonance, 2012, 224, 22-31.	2.1	8
224	Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance images. PLoS ONE, 2018, 13, e0193890.	2.5	8
225	Automatic Spatial Calibration of Ultra-Low-Field MRI for High-Accuracy Hybrid MEG–MRI. IEEE Transactions on Medical Imaging, 2019, 38, 1317-1327.	8.9	8
226	Noise amplification in parallel wholeâ€head ultraâ€lowâ€field magnetic resonance imaging using 306 detectors. Magnetic Resonance in Medicine, 2013, 70, 595-600.	3.0	7
227	A seven channel squid magnetometer for brain research. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1981, 107, 29-30.	0.9	6
228	A 24-SQUID gradiometer for magnetoencephalography. Physica B: Condensed Matter, 1990, 165-166, 97-98.	2.7	6
229	Some considerations about the biological appearance of pacing stimuli in visuomotor finger-tapping tasks. Cognitive Processing, 2011, 12, 215-218.	1.4	6
230	Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity. PLoS ONE, 2013, 8, e61652.	2.5	6
231	Efficient concomitant and remanence field artifact reduction in ultraâ€lowâ€field MRI using a frequencyâ€space formulation. Magnetic Resonance in Medicine, 2014, 71, 955-965.	3.0	6
232	Signal-Space Projection Suppresses the tACS Artifact in EEG Recordings. Frontiers in Human Neuroscience, 2020, 14, 536070.	2.0	6
233	Magnetic imaging of conductivity. , 1992, , .		5
234	Use of a computerized brain atlas in magnetoencephalographic activation studies. NeuroReport, 1994, 5, 449-452.	1.2	5

#	Article	IF	CITATIONS
235	The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation. Frontiers in Cellular Neuroscience, 2016, 10, 194.	3.7	5
236	Superconducting receiver arrays for magnetic resonance imaging. Biomedical Physics and Engineering Express, 2020, 6, 015016.	1.2	5
237	Improved Contrast in Ultra-Low-Field MRI with Time-Dependent Bipolar Prepolarizing Fields: Theory and NMR Demonstrations. Metrology and Measurement Systems, 2013, 20, 327-336.	1.4	5
238	Modulation of Auditory Evoked Magnetic Fields by Benzodiazepines. Neuropsychobiology, 1986, 16, 215-218.	1.9	4
239	Visual Attention to Words in Different Languages in Bilinguals: A Magnetoencephalographic Study. Neurolmage, 2002, 17, 1830-1836.	4.2	4
240	Sensory-memory-based change detection in face stimuli. Translational Neuroscience, 2010, 1, .	1.4	4
241	A contemporary research topic: manipulative approaches to human brain dynamics. Frontiers in Human Neuroscience, 2015, 9, 118.	2.0	4
242	Magnetic Source Imaging., 1994,, 49-79.		4
243	Image theory for a point charge inside a layered dielectric sphere. Archiv Fuer Elektrotechnik, 1994, 77, 327-335.	0.1	3
244	Visual attention to words of native versus later acquired languages: a magnetoencephalographic study in humans. Neuroscience Letters, 2001, 310, 33-36.	2.1	3
245	Properties of end-expiratory breath hold responses measured with near-infrared spectroscopy. , 2011 , , .		3
246	Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer. Magnetic Resonance in Medicine, 2013, 69, spcone-spcone.	3.0	3
247	A general method for computing thermal magnetic noise arising from thin conducting objects. Journal of Applied Physics, 2021, 130, 043901.	2.5	3
248	Hybrid MEG-MRI: Geometry and Time Course of Magnetic Fields Inside a Magnetically Shielded Room. IFMBE Proceedings, 2010, , 78-81.	0.3	3
249	Local brain-state dependency of effective connectivity: a pilot TMS–EEG study. Open Research Europe, 0, 2, 45.	2.0	3
250	Visual-cortex activation by sounds in humans with early- and late-onset blindness. International Journal of Psychophysiology, 1997, 25, 40-41.	1.0	2
251	Future prospects for hybrid magnetoencephalography–MRI. Imaging in Medicine, 2013, 5, 1-3.	0.0	2
252	Detecting millisecond-range coupling delays between brainwaves in terms of power correlations by magnetoencephalography. Journal of Neuroscience Methods, 2014, 235, 10-24.	2.5	2

#	Article	IF	Citations
253	Safety of rTMS in patients with intracranial metallic objects. Brain Stimulation, 2020, 13, 928-929.	1.6	2
254	Evaluating the Performance of Ultra-Low-Field MRI for in-vivo 3D Current Density Imaging of the Human Head. Frontiers in Physics, 2020, 8, .	2.1	2
255	Ultra-Low-Field MRI and Its Combination with MEG. , 2014, , 941-972.		2
256	Visual feature processing and nonspatial attention: A combined MEG-EEG analysis. International Journal of Psychophysiology, 1997, 25, 50-51.	1.0	1
257	Early visual processing of illusory and real contours studied with fMRI. International Journal of Psychophysiology, 1997, 25, 52.	1.0	1
258	Event-related magnetic fields in the auditory cortex of man during unilateral movements: a discriminant function analysis. Neuroscience Letters, 1998, 255, 91-94.	2.1	1
259	Hybrid-method analysis of an open magnetic shield. IEEE Transactions on Magnetics, 1999, 35, 1127-1130.	2.1	1
260	Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy. Proceedings of SPIE, $2011,\ldots$	0.8	1
261	Gradient-excitation encoding combined with frequency and phase encodings for three-dimensional ultra-low-field MRI., 2012, 2012, 1093-7.		1
262	INTRODUCTION. International Journal of Neural Systems, 2013, 23, 1203003.	5.2	1
263	Rotary scanning acquisition in ultraâ€lowâ€field MRI. Magnetic Resonance in Medicine, 2016, 75, 2255-2264.	3.0	1
264	Theta-burst stimulation causally affects side perception in the Deutsch's octave illusion. Scientific Reports, 2018, 8, 12844.	3.3	1
265	Transcranial magnetic stimulation-evoked potentials after the stimulation of the right-hemispheric homologue of Broca's area. NeuroReport, 2019, 30, 1110-1114.	1.2	1
266	TMS and electroencephalography: methods and current advances. , 2012, , .		1
267	Minimum-Norm Estimation of TMS-Activated Motor Cortical Sites in Realistic Head and Brain Geometry. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 441-454.	4.9	1
268	Critical Comments on Magnetoencephalographic Studies of Epileptic Patients. International Journal of Neuroscience, 1990, 55, 137-138.	1.6	0
269	Lateralization of language and music: A whole-head meg study. International Journal of Psychophysiology, 1997, 25, 67.	1.0	0
270	Transcranial Magnetic Stimulation—New Modality In Brain Mapping. Biomedizinische Technik, 1999, 44, 48-52.	0.8	0

#	Article	IF	CITATIONS
271	A novel mechanism for evoked responses in the human brain. International Journal of Psychophysiology, 2008, 69, 214.	1.0	O
272	Ultra-low-field magnetic resonance imaging combined with magnetoencephalography. , $2011, , .$		0
273	Combination of MEG and MRI in one setup. Biomedizinische Technik, 2012, 57, .	0.8	0
274	Sequences for current-density and conductivity imaging with ultra-low-field MRI. Biomedizinische Technik, 2012, 57, .	0.8	0
275	Research Highlights: Spatiotemporal dynamics and background neuronal states of the brain: implications for neuroimaging. Imaging in Medicine, 2013, 5, 403-406.	0.0	0
276	TMS–EEG: From basic research to clinical applications. , 2014, , .		0
277	Influence of Co-Registration Errors on the Performance of Anatomical Constraints in MEG Source Connectivity Analysis*. , 2019 , , .		0
278	From Classical to Bayesian Estimators in the Interpretation of MEG and EEG. IFMBE Proceedings, 2010, , 113-116.	0.3	0
279	Method for assessing the contribution of systemic circulation in near-infrared spectroscopy signals. IFMBE Proceedings, 2013, , 1030-1033.	0.3	0
280	Magnetoencephalography at the Helsinki University of Technology. Physica Scripta, 1989, T25, 243-246.	2.5	0
281	Ultra-Low-Field MRI and Its Combination with MEG. , 2019, , 1-33.		0
282	Ultra-Low-Field MRI and Its Combination with MEG. , 2019, , 1261-1293.		0
283	Local brain-state dependency of effective connectivity: a pilot TMS–EEG study. Open Research Europe, 0, 2, 45.	2.0	0
284	A 24-SQUID gradiometer for magnetoencephalography. Physica B: Condensed Matter, 1990, 165-166, 97-98.	2.7	0