
Guillaume Tcherkez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3994960/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The crucial roles of mitochondria in supporting C ₄ photosynthesis. New Phytologist, 2022, 233, 1083-1096.	7.3	11
2	Foraminiferal Distribution in Two Estuarine Intertidal Mudflats of the French Atlantic Coast: Testing the Marine Influence Index. Water (Switzerland), 2022, 14, 645.	2.7	7
3	Experimental evidence for extra proton exchange in ribulose 1,5-bisphosphate carboxylase/oxygenase catalysis. Communicative and Integrative Biology, 2022, 15, 68-74.	1.4	0
4	Compound-Specific 14N/15N Analysis of Amino Acid Trimethylsilylated Derivatives from Plant Seed Proteins. International Journal of Molecular Sciences, 2022, 23, 4893.	4.1	2
5	Overestimated gains in waterâ€use efficiency by global forests. Global Change Biology, 2022, 28, 4923-4934.	9.5	17
6	Grain carbon isotope composition is a marker for allocation and harvest index in wheat. Plant, Cell and Environment, 2022, 45, 2145-2157.	5.7	6
7	Species variation in the hydrogen isotope composition of leaf cellulose is mostly driven by isotopic variation in leaf sucrose. Plant, Cell and Environment, 2022, 45, 2636-2651.	5.7	11
8	Nonâ€ŧargeted 13 C metabolite analysis demonstrates broad reâ€orchestration of leaf metabolism when gas exchange conditions vary. Plant, Cell and Environment, 2021, 44, 445-457.	5.7	12
9	Accounting for mesophyll conductance substantially improves ¹³ Câ€based estimates of intrinsic waterâ€use efficiency. New Phytologist, 2021, 229, 1326-1338.	7.3	52
10	Potassium nutrition in oil palm: The potential of metabolomics as a tool for precision agriculture. Plants People Planet, 2021, 3, 350-354.	3.3	1
11	Plant lowâ€K responses are partly due to Ca prevalence and the lowâ€K biomarker putrescine does not protect from Ca side effects but acts as a metabolic regulator. Plant, Cell and Environment, 2021, 44, 1565-1579.	5.7	5
12	13C Isotope Labelling to Follow the Flux of Photorespiratory Intermediates. Plants, 2021, 10, 427.	3.5	10
13	How atmospheric oxygen is captured by RuBisCo. Nature Reviews Molecular Cell Biology, 2021, 22, 304-304.	37.0	1
14	Origin and Evolution of Photosystems: Lessons from Green Sulfur Bacteria. ChemPhotoChem, 2021, 5, 418-420.	3.0	1
15	Unravelling mechanisms and impacts of day respiration in plant leaves: an introduction to a Virtual Issue. New Phytologist, 2021, 230, 5-10.	7.3	17
16	Stable Isotope Abundance and Fractionation in Human Diseases. Metabolites, 2021, 11, 370.	2.9	13
17	Involvement of salicylic acid in the response to potassium deficiency revealed by metabolomics. Plant Physiology and Biochemistry, 2021, 163, 201-204.	5.8	3
18	Why is phloem sap nitrate kept low?. Plant, Cell and Environment, 2021, 44, 2838-2843.	5.7	2

Guillaume Tcherkez

#	Article	IF	CITATIONS
19	<i>Arabidopsis thaliana</i> 2,3â€bisphosphoglycerateâ€independent phosphoglycerate mutase 2 activity requires serine 82 phosphorylation. Plant Journal, 2021, 107, 1478-1489.	5.7	3
20	Potassium dependency of enzymes in plant primary metabolism. Plant Physiology and Biochemistry, 2021, 166, 522-530.	5.8	40
21	Rubisco catalytic adaptation is mostly driven by photosynthetic conditions – Not by phylogenetic constraints. Journal of Plant Physiology, 2021, 267, 153554.	3.5	9
22	Protein synthesis increases with photosynthesis via the stimulation of translation initiation. Plant Science, 2020, 291, 110352.	3.6	10
23	Metabolic Responses to Waterlogging Differ between Roots and Shoots and Reflect Phloem Transport Alteration in Medicago truncatula. Plants, 2020, 9, 1373.	3.5	31
24	Elevated CO2 has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat. Journal of Experimental Botany, 2020, 71, 5990-6003.	4.8	27
25	Potassium deficiency reconfigures sugar export and induces catecholamine accumulation in oil palm leaves. Plant Science, 2020, 300, 110628.	3.6	13
26	Ribulose 1,5-bisphosphate carboxylase/oxygenase activates O ₂ by electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24234-24242.	7.1	26
27	Seed Germination in Oil Palm (Elaeis guineensis Jacq.): A Review of Metabolic Pathways and Control Mechanisms. International Journal of Molecular Sciences, 2020, 21, 4227.	4.1	9
28	ls the Kok effect a respiratory phenomenon? Metabolic insight using ¹³ C labeling in <i>Helianthus annuus</i> leaves. New Phytologist, 2020, 228, 1243-1255.	7.3	18
29	δ 15 N values in plants are determined by both nitrate assimilation and circulation. New Phytologist, 2020, 226, 1696-1707.	7.3	21
30	Lactic Acidosis Together with GM-CSF and M-CSF Induces Human Macrophages toward an Inflammatory Protumor Phenotype. Cancer Immunology Research, 2020, 8, 383-395.	3.4	48
31	What is the role of putrescine accumulated under potassium deficiency?. Plant, Cell and Environment, 2020, 43, 1331-1347.	5.7	51
32	Metabolic leaf responses to potassium availability in oil palm (Elaeis guineensis Jacq.) trees grown in the field. Environmental and Experimental Botany, 2020, 175, 104062.	4.2	12
33	Effects of Potassium Fertilization on Oil Palm Fruit Metabolism and Mesocarp Lipid Accumulation. Journal of Agricultural and Food Chemistry, 2019, 67, 9432-9440.	5.2	8
34	Seed quality and carbon primary metabolism. Plant, Cell and Environment, 2019, 42, 2776-2788.	5.7	32
35	Metabolic Effects of Elevated CO ₂ on Wheat Grain Development and Composition. Journal of Agricultural and Food Chemistry, 2019, 67, 8441-8451.	5.2	29
36	Plant sulphur metabolism is stimulated by photorespiration. Communications Biology, 2019, 2, 379.	4.4	47

#	Article	IF	CITATIONS
37	The Metabolomic Signature of Opa1 Deficiency in Rat Primary Cortical Neurons Shows Aspartate/Glutamate Depletion and Phospholipids Remodeling. Scientific Reports, 2019, 9, 6107.	3.3	7
38	Net photosynthetic <scp>CO</scp> ₂ assimilation: more than just <scp>CO</scp> ₂ and O ₂ reduction cycles. New Phytologist, 2019, 223, 520-529.	7.3	35
39	Metabolic responses to potassium availability and waterlogging reshape respiration and carbon use efficiency in oil palm. New Phytologist, 2019, 223, 310-322.	7.3	41
40	Mitochondrial complex I dysfunction increases CO ₂ efflux and reconfigures metabolic fluxes of day respiration in tobacco leaves. New Phytologist, 2019, 221, 750-763.	7.3	8
41	Responses to K deficiency and waterlogging interact via respiratory and nitrogen metabolism. Plant, Cell and Environment, 2019, 42, 647-658.	5.7	32
42	<i>In vivo</i> phospho <i>enol</i> pyruvate carboxylase activity is controlled by <scp>CO</scp> ₂ and O ₂ mole fractions and represents a major flux at high photorespiration rates. New Phytologist, 2019, 221, 1843-1852.	7.3	35
43	Determination of leaf respiration in the light: comparison between an isotopic disequilibrium method and the Laisk method. New Phytologist, 2018, 218, 1371-1382.	7.3	26
44	Effects of DDT and permethrin on rat hepatocytes cultivated in microfluidic biochips: Metabolomics and gene expression study. Environmental Toxicology and Pharmacology, 2018, 59, 1-12.	4.0	19
45	Carbon allocation to major metabolites in illuminated leaves is not just proportional to photosynthesis when gaseous conditions (CO ₂ and O ₂) vary. New Phytologist, 2018, 218, 94-106.	7.3	30
46	Rubisco is not really so bad. Plant, Cell and Environment, 2018, 41, 705-716.	5.7	83
47	Obesity-induced metabolic disturbance drives oxidative stress and complement activation in the retinal environment. Molecular Vision, 2018, 24, 201-217.	1.1	16
48	Retinal metabolic events in preconditioning light stress as revealed by wide-spectrum targeted metabolomics. Metabolomics, 2017, 13, 22.	3.0	14
49	Tracking the origins of the Kok effect, 70 years after its discovery. New Phytologist, 2017, 214, 506-510.	7.3	40
50	Evaluation and application of a targeted SPE-LC-MS method for quantifying plant hormones and phenolics in Arabidopsis. Functional Plant Biology, 2017, 44, 624.	2.1	4
51	Atmospheric CO ₂ mole fraction affects standâ€scale carbon use efficiency of sunflower by stimulating respiration in light. Plant, Cell and Environment, 2017, 40, 401-412.	5.7	23
52	Leaf day respiration: low <scp>CO</scp> ₂ flux but high significance for metabolism and carbon balance. New Phytologist, 2017, 216, 986-1001.	7.3	159
53	Direct assessment of the metabolic origin of carbon atoms in glutamate from illuminated leaves using ¹³ Câ€ <scp>NMR</scp> . New Phytologist, 2017, 216, 1079-1089.	7.3	41
54	Tracking the Orchestration of the Tricarboxylic Acid Pathway in Plants, 80 Years After the Discovery of the Krebs Cycle. Advances in Photosynthesis and Respiration, 2017, , 285-298.	1.0	6

GUILLAUME TCHERKEZ

#	Article	IF	CITATIONS
55	Respiratory Effects on the Carbon Isotope Discrimination Near the Compensation Point. Advances in Photosynthesis and Respiration, 2017, , 143-160.	1.0	10
56	Interactions Between Day Respiration, Photorespiration, and N and S Assimilation in Leaves. Advances in Photosynthesis and Respiration, 2017, , 1-18.	1.0	7
57	Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues. Methods in Enzymology, 2017, 596, 113-147.	1.0	9
58	Metabolomics analysis of postphotosynthetic effects of gaseous O2 on primary metabolism in illuminated leaves. Functional Plant Biology, 2017, 44, 929.	2.1	20
59	The mechanism of Rubiscoâ€catalysed oxygenation. Plant, Cell and Environment, 2016, 39, 983-997.	5.7	57
60	lsotopic evidence for nitrogen exchange between autotrophic and heterotrophic tissues in variegated leaves. Functional Plant Biology, 2016, 43, 298.	2.1	4
61	Concerted changes in phosphoproteome and metabolome under different CO ₂ /O ₂ gaseous conditions in <i>Arabidopsis</i> rosettes. Plant and Cell Physiology, 2016, 57, pcw086.	3.1	19
62	Natural ¹³ C distribution in oil palm (<i>Elaeis guineensis</i> Jacq.) and consequences for allocation pattern. Plant, Cell and Environment, 2016, 39, 199-212.	5.7	18
63	Kinetic commitment in the catalysis of glutamine synthesis by GS1 from Arabidopsis using 14 N/ 15 N and solvent isotope effects. Plant Physiology and Biochemistry, 2016, 108, 203-211.	5.8	4
64	In vivo stoichiometry of photorespiratory metabolism. Nature Plants, 2016, 2, 15220.	9.3	49
65	13C and 15N natural isotope abundance reflects breast cancer cell metabolism. Scientific Reports, 2016, 6, 34251.	3.3	22
66	Pyridine nucleotides induce changes in cytosolic pools of calcium in Arabidopsis. Plant Signaling and Behavior, 2016, 11, e1249082.	2.4	8
67	Differential <scp><scp>CO₂</scp><fscp> effect on primary carbon metabolism of flag leaves in durum wheat (<scp><i>T</i></scp><i>riticum durum</i> Desf.). Plant, Cell and Environment, 2015, 38, 2780-2794.</fscp></scp>	5.7	29
68	PhenoMeter: A Metabolome Database Search Tool Using Statistical Similarity Matching of Metabolic Phenotypes for High-Confidence Detection of Functional Links. Frontiers in Bioengineering and Biotechnology, 2015, 3, 106.	4.1	22
69	Photosynthetic activity influences cellulose biosynthesis and phosphorylation of proteins involved therein in Arabidopsis leaves. Journal of Experimental Botany, 2014, 65, 4997-5010.	4.8	41
70	Metabolic origin of <i>δ</i> ¹⁵ N values in nitrogenous compounds from <i>Brassica napus</i> L. leaves. Plant, Cell and Environment, 2013, 36, 128-137.	5.7	39
71	³² S/ ³⁴ S isotope fractionation in plant sulphur metabolism. New Phytologist, 2013, 200, 44-53.	7.3	58
72	Modelling the reaction mechanism of ribuloseâ€1,5â€bisphosphate carboxylase/oxygenase and consequences for kinetic parameters. Plant, Cell and Environment, 2013, 36, 1586-1596.	5.7	62

Guillaume Tcherkez

#	Article	IF	CITATIONS
73	ls the recovery of (photo) respiratory <scp>CO</scp> ₂ and intermediates minimal?. New Phytologist, 2013, 198, 334-338.	7.3	18
74	Photosynthetic Control of Arabidopsis Leaf Cytoplasmic Translation Initiation by Protein Phosphorylation. PLoS ONE, 2013, 8, e70692.	2.5	55
75	Respiratory carbon fluxes in leaves. Current Opinion in Plant Biology, 2012, 15, 308-314.	7.1	163
76	Shortâ€ŧerm effects of CO ₂ and O ₂ on citrate metabolism in illuminated leaves. Plant, Cell and Environment, 2012, 35, 2208-2220.	5.7	53
77	Natural 15N/14N isotope composition in C3 leaves: are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites?. Functional Plant Biology, 2011, 38, 1.	2.1	79
78	The ¹³ C/ ¹² C isotopic signal of dayâ€respired CO ₂ in variegated leaves of <i>Pelargonium</i> â€fĂ—â€f <i>hortorum</i> . Plant, Cell and Environment, 2011, 34, 270-283.	5.7	29
79	A ¹³ C NMR spectrometric method for the determination of intramolecular l´ ¹³ C values in fructose from plant sucrose samples. New Phytologist, 2011, 191, 579-588.	7.3	51
80	On the ¹³ C/ ¹² C isotopic signal of day and night respiration at the mesocosm level. Plant, Cell and Environment, 2010, 33, 900-913.	5.7	56
81	In Folio Respiratory Fluxomics Revealed by 13C Isotopic Labeling and H/D Isotope Effects Highlight the Noncyclic Nature of the Tricarboxylic Acid "Cycle―in Illuminated Leaves Â. Plant Physiology, 2009, 151, 620-630.	4.8	186
82	On the resilience of nitrogen assimilation by intact roots under starvation, as revealed by isotopic and metabolomic techniques. Rapid Communications in Mass Spectrometry, 2009, 23, 2847-2856.	1.5	18
83	On the metabolic origin of the carbon isotope composition of CO ₂ evolved from darkened lightâ€acclimated leaves in <i>Ricinus communis</i> . New Phytologist, 2009, 181, 374-386.	7.3	125
84	Metabolic origin of the δ ¹³ C of respired CO ₂ in roots of <i>Phaseolus vulgaris</i> . New Phytologist, 2009, 181, 387-399.	7.3	64
85	Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 2009, 36, 199.	2.1	348
86	Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in <i>Ricinus communis</i> . Plant, Cell and Environment, 2008, 31, 941-953.	5.7	130
87	How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo)respiration in C3 leaves. Journal of Experimental Botany, 2008, 59, 1685-1693.	4.8	76
88	Respiratory metabolism of illuminated leaves depends on CO ₂ and O ₂ conditions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 797-802.	7.1	178
89	A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant, Cell and Environment, 2007, 30, 469-482.	5.7	148
90	Viewpoint: Isotopic fractionation by plant nitrate reductase, twenty years later. Functional Plant Biology, 2006, 33, 531.	2.1	40

#	Article	IF	CITATIONS
91	Viewpoint: Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Functional Plant Biology, 2005, 32, 277.	2.1	76
92	Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Communications in Mass Spectrometry, 2005, 19, 1381-1391.	1.5	390
93	In Vivo Respiratory Metabolism of Illuminated Leaves. Plant Physiology, 2005, 138, 1596-1606.	4.8	218
94	Metabolic Origin of Carbon Isotope Composition of Leaf Dark-Respired CO2 in French Bean. Plant Physiology, 2003, 131, 237-244.	4.8	248