
Rupert Seidl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3994198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identifying effective tree planting schemes to restore forest carbon and biodiversity in Shiretoko National Park, Japan. Restoration Ecology, 2023, 31, .	2.9	4
2	From sink to source: changing climate and disturbance regimes could tip the 21st century carbon balance of an unmanaged mountain forest landscape. Forestry, 2023, 96, 399-409.	2.3	10
3	Accelerating Mountain Forest Dynamics in the Alps. Ecosystems, 2022, 25, 603-617.	3.4	14
4	Using historical spy satellite photographs and recent remote sensing data to identify high onservationâ€value forests. Conservation Biology, 2022, 36, .	4.7	13
5	Postâ€disturbance canopy recovery and the resilience of Europe's forests. Global Ecology and Biogeography, 2022, 31, 25-36.	5.8	35
6	The magnitude, direction, and tempo of forest change in Greater Yellowstone in a warmer world with more fire. Ecological Monographs, 2022, 92, e01485.	5.4	26
7	Roadmap to develop a stress test for forest ecosystem services supply. One Earth, 2022, 5, 25-34.	6.8	9
8	The impact of radioactive contamination on tree regeneration and forest development in the Chernobyl Exclusion Zone. Applied Vegetation Science, 2022, 25, .	1.9	1
9	Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations. Ecological Applications, 2022, 32, e2516.	3.8	10
10	Will forest dynamics continue to accelerate throughout the 21st century in the Northern Alps?. Global Change Biology, 2022, 28, 3260-3274.	9.5	11
11	Post-disturbance reorganization of forest ecosystems in a changing world. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	69
12	Can we manage a future with more fire? Effectiveness of defensible space treatment depends on housing amount and configuration. Landscape Ecology, 2021, 36, 309-330.	4.2	21
13	Forest structure, not climate, is the primary driver of functional diversity in northeastern North America. Science of the Total Environment, 2021, 762, 143070.	8.0	19
14	Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe?. Journal of Ecology, 2021, 109, 737-749.	4.0	52
15	Mapping the forest disturbance regimes of Europe. Nature Sustainability, 2021, 4, 63-70.	23.7	190
16	Ecology versus society: Impacts of bark beetle infestations on biodiversity and restorativeness in protected areas of Central Europe. Biological Conservation, 2021, 254, 108931.	4.1	26
17	The impact of land-use legacies and recent management on natural disturbance susceptibility in mountain forests. Forest Ecology and Management, 2021, 484, 118950.	3.2	30
18	Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecology and Evolution, 2021, 11, 3746-3770.	1.9	37

#	Article	IF	CITATIONS
19	From mycelia to mastodons $\hat{a} \in$ A general approach for simulating biotic disturbances in forest ecosystems. Environmental Modelling and Software, 2021, 138, 104977.	4.5	9
20	Concerns about reported harvests in European forests. Nature, 2021, 592, E15-E17.	27.8	56
21	Increasing canopy mortality affects the future demographic structure of Europe's forests. One Earth, 2021, 4, 749-755.	6.8	46
22	Storm and fire disturbances in Europe: Distribution and trends. Global Change Biology, 2021, 27, 3605-3619.	9.5	69
23	Mixing tree species at different spatial scales: The effect of alpha, beta and gamma diversity on disturbance impacts under climate change. Journal of Applied Ecology, 2021, 58, 1749-1763.	4.0	13
24	Biodiversity–productivity relationships are key to nature-based climate solutions. Nature Climate Change, 2021, 11, 543-550.	18.8	77
25	Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Current Forestry Reports, 2021, 7, 138-165.	7.4	133
26	Economic losses from natural disturbances in Norway spruce forests – A quantification using Monte-Carlo simulations. Ecological Economics, 2021, 185, 107046.	5.7	31
27	The long way back: Development of Central European mountain forests towards oldâ€growth conditions after cessation of management. Journal of Vegetation Science, 2021, 32, e13052.	2.2	12
28	Widespread regeneration failure in forests of Greater Yellowstone under scenarios of future climate and fire. Global Change Biology, 2021, 27, 4339-4351.	9.5	42
29	The potential role of an alien tree species in supporting forest restoration: Lessons from Shiretoko National Park, Japan. Forest Ecology and Management, 2021, 493, 119253.	3.2	9
30	Effects of stand edges on the structure, functioning, and diversity of a temperate mountain forest landscape. Ecosphere, 2021, 12, e03692.	2.2	10
31	Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences, 2021, 18, 5223-5230.	3.3	55
32	Human or natural? Landscape context improves the attribution of forest disturbances mapped from Landsat in Central Europe. Remote Sensing of Environment, 2021, 262, 112502.	11.0	32
33	The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597, 77-81.	27.8	123
34	The Management Response to Wind Disturbances in European Forests. Current Forestry Reports, 2021, 7, 167-180.	7.4	13
35	Can wildland fire management alter 21st entury subalpine fire and forests in Grand Teton National Park, Wyoming, <scp>USA</scp> ?. Ecological Applications, 2020, 30, e02030.	3.8	21
36	Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks?. Journal of Applied Ecology, 2020, 57, 67-76.	4.0	66

#	Article	IF	CITATIONS
37	Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytologist, 2020, 225, 26-36.	7.3	144
38	Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes. Journal of Environmental Management, 2020, 254, 109792.	7.8	32
39	How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models. Environmental Modelling and Software, 2020, 134, 104844.	4.5	34
40	Simulating forest resilience: A review. Global Ecology and Biogeography, 2020, 29, 2082-2096.	5.8	51
41	Reducing rotation age to address increasing disturbances in Central Europe: Potential and limitations. Forest Ecology and Management, 2020, 475, 118408.	3.2	31
42	The response of canopy height diversity to natural disturbances in two temperate forest landscapes. Landscape Ecology, 2020, 35, 2101-2112.	4.2	24
43	Excess forest mortality is consistently linked to drought across Europe. Nature Communications, 2020, 11, 6200.	12.8	221
44	Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368, .	12.6	576
45	Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agricultural and Forest Meteorology, 2020, 291, 108066.	4.8	61
46	The influence of climate change and canopy disturbances on landslide susceptibility in headwater catchments. Science of the Total Environment, 2020, 742, 140588.	8.0	34
47	Norway spruce at the trailing edge: the effect of landscape configuration and composition on climate resilience. Landscape Ecology, 2020, 35, 591-606.	4.2	54
48	Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems. Ecography, 2020, 43, 967-978.	4.5	90
49	Climate change causes critical transitions and irreversible alterations of mountain forests. Clobal Change Biology, 2020, 26, 4013-4027.	9.5	120
50	The effects of forest cover and disturbance on torrential hazards: large-scale evidence from the Eastern Alps. Environmental Research Letters, 2019, 14, 114032.	5.2	46
51	Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landscape Ecology, 2019, 34, 2837-2850.	4.2	59
52	Harnessing Deep Learning in Ecology: An Example Predicting Bark Beetle Outbreaks. Frontiers in Plant Science, 2019, 10, 1327.	3.6	41
53	Modelling the multi-scaled nature of pest outbreaks. Ecological Modelling, 2019, 409, 108745.	2.5	16
54	What drives the future supply of regulating ecosystem services in a mountain forest landscape?. Forest Ecology and Management, 2019, 445, 37-47.	3.2	70

#	Article	IF	CITATIONS
55	A scalable model of vegetation transitions using deep neural networks. Methods in Ecology and Evolution, 2019, 10, 879-890.	5.2	17
56	Tree mortality submodels drive simulated longâ€ŧerm forest dynamics: assessing 15 models from the stand to global scale. Ecosphere, 2019, 10, e02616.	2.2	93
57	It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology, 2018, 99, 966-977.	3.2	87
58	Invasive alien pests threaten the carbon stored in Europe's forests. Nature Communications, 2018, 9, 1626.	12.8	78
59	Modelling understorey dynamics in temperate forests under global change–Challenges and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 31, 44-54.	2.7	45
60	Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. Journal of Environmental Management, 2018, 209, 46-56.	7.8	42
61	An empirical, integrated forest biomass monitoring system. Environmental Research Letters, 2018, 13, 025004.	5.2	50
62	Largeâ€scale disturbance legacies and the climate sensitivity of primary <i>Picea abies</i> forests. Global Change Biology, 2018, 24, 2169-2181.	9.5	79
63	Impacts of salvage logging on biodiversity: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 279-289.	4.0	252
64	Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Global Change Biology, 2018, 24, 1201-1211.	9.5	93
65	Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 2018, 21, 31-42.	6.4	74
66	Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nature Communications, 2018, 9, 4978.	12.8	182
67	Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 2018, 9, 4355.	12.8	167
68	Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences, 2018, 15, 5699-5713.	3.3	52
69	Looking beyond the mean: Drivers of variability in postfire stand development of conifers in Greater Yellowstone. Forest Ecology and Management, 2018, 430, 460-471.	3.2	23
70	Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agricultural and Forest Meteorology, 2018, 263, 308-322.	4.8	44
71	Î ² -Diversity, Community Assembly, and Ecosystem Functioning. Trends in Ecology and Evolution, 2018, 33, 549-564.	8.7	374
72	Tradeâ€offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecological Applications, 2018, 28, 1884-1896.	3.8	52

#	Article	IF	CITATIONS
73	Forest structure following natural disturbances and early succession provides habitat for two avian flagship species, capercaillie (Tetrao urogallus) and hazel grouse (Tetrastes bonasia). Biological Conservation, 2018, 226, 81-91.	4.1	28
74	Biodiversity along temperate forest succession. Journal of Applied Ecology, 2018, 55, 2756-2766.	4.0	175
75	Key ecological research questions for Central European forests. Basic and Applied Ecology, 2018, 32, 3-25.	2.7	71
76	The impacts of climate change and disturbance on spatioâ€ŧemporal trajectories of biodiversity in a temperate forest landscape. Journal of Applied Ecology, 2017, 54, 28-38.	4.0	139
77	Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials. Forest Ecology and Management, 2017, 388, 3-12.	3.2	35
78	Disentangling the effects of compositional and structural diversity on forest productivity. Journal of Vegetation Science, 2017, 28, 649-658.	2.2	51
79	Remote sensing of forest insect disturbances: Current state and future directions. International Journal of Applied Earth Observation and Geoinformation, 2017, 60, 49-60.	2.8	134
80	Climate variability drives recent tree mortality in Europe. Global Change Biology, 2017, 23, 4788-4797.	9.5	183
81	Forest disturbances under climate change. Nature Climate Change, 2017, 7, 395-402.	18.8	1,561
82	Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?. Environmental Research Letters, 2017, 12, 034027.	5.2	142
83	Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 2017, 20, 1414-1426.	6.4	244
84	Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130, 453-463.	11.1	64
85	The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecological Monographs, 2017, 87, 665-684.	5.4	84
86	To Model or not to Model, That is no Longer the Question for Ecologists. Ecosystems, 2017, 20, 222-228.	3.4	41
87	Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecology, 2017, 32, 1485-1498.	4.2	140
88	Changes of forest cover and disturbance regimes in the mountain forests of the Alps. Forest Ecology and Management, 2017, 388, 43-56.	3.2	124
89	A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecology and Management, 2017, 388, 120-131.	3.2	172
90	Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Global Change Biology, 2017, 23, 269-282.	9.5	110

#	ARTICLE	IF	CITATIONS
91	The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecology and Management, 2017, 388, 67-78.	3.2	103
92	Intensive ground vegetation growth mitigates the carbon loss after forest disturbance. Plant and Soil, 2017, 420, 239-252.	3.7	19
93	Small beetle, largeâ€scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. Journal of Applied Ecology, 2016, 53, 530-540.	4.0	161
94	Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13075-13080.	7.1	65
95	Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA. Forest Ecology and Management, 2016, 366, 193-207.	3.2	23
96	A disturbance-induced increase in tree species diversity facilitates forest productivity. Landscape Ecology, 2016, 31, 989-1004.	4.2	45
97	REVIEW: Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology, 2016, 53, 120-129.	4.0	353
98	Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews, 2016, 91, 760-781.	10.4	483
99	The sensitivity of current and future forest managers to climate-induced changes in ecological processes. Ambio, 2016, 45, 430-441.	5.5	35
100	Coupling human and natural systems: Simulating adaptive management agents in dynamically changing forest landscapes. Global Environmental Change, 2015, 35, 475-485.	7.8	63
101	Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia, 2015, 177, 619-630.	2.0	94
102	The Shape of Ecosystem Management to Come: Anticipating Risks and Fostering Resilience. BioScience, 2014, 64, 1159-1169.	4.9	70
103	Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecological Applications, 2014, 24, 2063-2077.	3.8	209
104	Climate change increases the drought risk in Central European forests: What are the options for adaptation?. LesnÃcky ÄŒasopis, 2014, 60, 5-18.	0.8	66
105	Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 2014, 4, 806-810.	18.8	799
106	Simulating wind disturbance impacts on forest landscapes: Tree-level heterogeneity matters. Environmental Modelling and Software, 2014, 51, 1-11.	4.5	101
107	Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios. Carbon Balance and Management, 2013, 8, 2.	3.2	42
108	Forest management under climatic and social uncertainty: Trade-offs between reducing climate change impacts and fostering adaptive capacity. Journal of Environmental Management, 2013, 114, 461-469.	7.8	74

#	Article	IF	CITATIONS
109	Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. Forest Ecology and Management, 2013, 307, 293-302.	3.2	97
110	Scaling issues in forest ecosystem management and how to address them with models. European Journal of Forest Research, 2013, 132, 653-666.	2.5	39
111	Reconstructed forest age structure in Europe 1950–2010. Forest Ecology and Management, 2012, 286, 203-218.	3.2	70
112	Multi-scale Drivers of Spatial Variation in Old-Growth Forest Carbon Density Disentangled with Lidar and an Individual-Based Landscape Model. Ecosystems, 2012, 15, 1321-1335.	3.4	54
113	Pervasive Growth Reduction in Norway Spruce Forests following Wind Disturbance. PLoS ONE, 2012, 7, e33301.	2.5	45
114	Large-Scale Forest Modeling: Deducing Stand Density from Inventory Data. International Journal of Forestry Research, 2012, 2012, 1-13.	0.8	5
115	An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling, 2012, 231, 87-100.	2.5	207
116	Reviewing the Science and Implementation of Climate Change Adaptation Measures in European Forestry. Forests, 2011, 2, 961-982.	2.1	169
117	Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 2011, 17, 2842-2852.	9.5	411
118	Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling, 2011, 222, 903-924.	2.5	318
119	Climate change vulnerability of sustainable forest management in the Eastern Alps. Climatic Change, 2011, 106, 225-254.	3.6	93
120	Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Canadian Journal of Forest Research, 2011, 41, 694-706.	1.7	98
121	Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management. Environmental Management, 2010, 46, 850-861.	2.7	49
122	Testing generalized allometries in allocation modeling within an individual-based simulation framework. Trees - Structure and Function, 2010, 24, 139-150.	1.9	15
123	Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 2010, 259, 698-709.	3.2	1,684
124	Potentials and limitations of using large-scale forest inventory data for evaluating forest succession models. Ecological Modelling, 2009, 220, 133-147.	2.5	28
125	Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies. Regional Environmental Change, 2009, 9, 101-119.	2.9	95
126	A generic model of thinning and stand density effects on forest growth, mortality and net increment. Annals of Forest Science, 2009, 66, 815-815.	2.0	25

#	Article	IF	CITATIONS
127	Addressing biodiversity in a stakeholder-driven climate change vulnerability assessment of forest management. Forest Ecology and Management, 2009, 258, S158-S167.	3.2	34
128	Coupling a 3D patch model and a rockfall module to assess rockfall protection in mountain forests. Journal of Environmental Management, 2008, 87, 373-388.	7.8	43
129	Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. Forest Ecology and Management, 2008, 256, 209-220.	3.2	147
130	Does conversion of even-aged, secondary coniferous forests affect carbon sequestration? A simulation study under changing environmental conditions. Silva Fennica, 2008, 42, .	1.3	38
131	Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. Forest Ecology and Management, 2007, 248, 64-79.	3.2	160
132	Modelling tree mortality by bark beetle infestation in Norway spruce forests. Ecological Modelling, 2007, 206, 383-399.	2.5	79
133	Evaluating the accuracy and generality of a hybrid patch model. Tree Physiology, 2005, 25, 939-951.	3.1	81
134	Influence of Canopy Disturbances on Runoff and Landslide Disposition after Heavy Rainfall Events. , 0,		1