
Martin Kos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3994017/publications.pdf Version: 2024-02-01

Μλατιν Κος

#	Article	IF	CITATIONS
1	Modulation of mammalian translation by a ribosome-associated tRNA half. RNA Biology, 2020, 17, 1125-1136.	3.1	27
2	At least two molecules of the RNA helicase Has1 are simultaneously present in pre-ribosomes during ribosome biogenesis. Nucleic Acids Research, 2019, 47, 10852-10864.	14.5	13
3	Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Research, 2019, 47, 11807-11825.	14.5	67
4	A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. ELife, 2019, 8, .	6.0	124
5	NSUN5 methylates ribosomal RNA and modulates ribosome function in human cells. Experimental Gerontology, 2017, 94, 115-116.	2.8	0
6	Post-transcriptional regulation of ribosome biogenesis in yeast. Microbial Cell, 2017, 4, 179-181.	3.2	21
7	Tor1 and CK2 kinases control a switch between alternative ribosome biogenesis pathways in a growth-dependent manner. PLoS Biology, 2017, 15, e2000245.	5.6	54
8	Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome. Cell, 2016, 166, 380-393.	28.9	184
9	Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs. Toxicology Letters, 2016, 242, 47-52.	0.8	6
10	Self-association of Trimethylguanosine Synthase Tgs1 is required for efficient snRNA/snoRNA trimethylation and pre-rRNA processing. Scientific Reports, 2015, 5, 11282.	3.3	6
11	Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nature Communications, 2015, 6, 6158.	12.8	231
12	Fast protein-depletion system utilizing tetracycline repressible promoter and N-end rule in yeast. Molecular Biology of the Cell, 2015, 26, 762-768.	2.1	18
13	A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. Rna, 2014, 20, 1632-1644.	3.5	64
14	An integrated approach for genome annotation of the eukaryotic thermophile Chaetomium thermophilum. Nucleic Acids Research, 2014, 42, 13525-13533.	14.5	55
15	Deletion of Swm2p selectively impairs trimethylation of snRNAs by trimethylguanosine synthase (Tgs1p). FEBS Letters, 2010, 584, 3299-3304.	2.8	8
16	RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3′-end processing in <i>Saccharomyces cerevisiae</i> . Rna, 2010, 16, 2570-2580.	3.5	48
17	Yeast Pre-rRNA Processing and Modification Occur Cotranscriptionally. Molecular Cell, 2010, 37, 809-820.	9.7	258
18	Modelling co-transcriptional cleavage in the synthesis of yeast pre-rRNA. Theoretical Computer Science, 2008, 408, 41-54.	0.9	6

MARTIN KOS

#	Article	IF	CITATIONS
19	Quantitative analysis of snoRNA association with preâ€ribosomes and release of snR30 by Rok1 helicase. EMBO Reports, 2008, 9, 1230-1236.	4.5	72
20	Modelling Yeast Pre-rRNA Processing. Lecture Notes in Computer Science, 2007, , 32-47.	1.3	3
21	FLIPing heterokaryons to analyze nucleo-cytoplasmic shuttling of yeast proteins. Rna, 2006, 12, 921-930.	3.5	14
22	The Putative RNA Helicase Dbp4p Is Required for Release of the U14 snoRNA from Preribosomes in Saccharomyces cerevisiae. Molecular Cell, 2005, 20, 53-64.	9.7	83
23	Transcriptional complexes engaged by apo-estrogen receptor-α isoforms have divergent outcomes. EMBO Journal, 2004, 23, 3653-3666.	7.8	97
24	Estrogen Receptor-α Directs Ordered, Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter. Cell, 2003, 115, 751-763.	28.9	1,459
25	Down but not out? A novel protein isoform of the estrogen receptor alpha is expressed in the estrogen receptor alpha knockout mouse. Journal of Molecular Endocrinology, 2002, 29, 281-286.	2.5	74
26	A Novel Promoter Is Involved in the Expression of Estrogen Receptor α in Human Testis and Epididymis. Endocrinology, 2002, 143, 3397-3404.	2.8	30
27	A Dynamic Structural Model for Estrogen Receptor-α Activation by Ligands, Emphasizing the Role of Interactions between Distant A and E Domains. Molecular Cell, 2002, 10, 1019-1032.	9.7	114
28	Upstream Open Reading Frames Regulate the Translation of the Multiple mRNA Variants of the Estrogen Receptor α. Journal of Biological Chemistry, 2002, 277, 37131-37138.	3.4	77
29	Human estrogen receptor-α: regulation by synthesis, modification and degradation. Cellular and Molecular Life Sciences, 2002, 59, 821-831.	5.4	135
30	Tissue-specific expression of human ERα and ERβ in the male. Molecular and Cellular Endocrinology, 2001, 178, 155-160.	3.2	41
31	Minireview: Genomic Organization of the Human ERα Gene Promoter Region. Molecular Endocrinology, 2001, 15, 2057-2063.	3.7	213
32	Minireview: Genomic Organization of the Human ERÂ Gene Promoter Region. Molecular Endocrinology, 2001, 15, 2057-2063.	3.7	144
33	ERÂ Gene Expression in Human Primary Osteoblasts: Evidence for the Expression of Two Receptor Proteins. Molecular Endocrinology, 2001, 15, 2064-2077.	3.7	92
34	Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1. EMBO Journal, 2000, 19, 4688-4700.	7.8	349
35	Tissue-specific expression of multiple mRNA variants of the mouse estrogen receptor α gene. FEBS Letters, 2000, 477, 15-20.	2.8	54