Åukasz Tymecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3991469/publications.pdf

Version: 2024-02-01

414414 304743 1,136 47 22 32 h-index citations g-index papers 47 47 47 811 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Screen-printed reference electrodes for potentiometric measurements. Analytica Chimica Acta, 2004, 526, 3-11.	5.4	124
2	Paired emitter detector diode (PEDD)-based photometry – an alternative approach. Analyst, The, 2008, 133, 1501.	3.5	62
3	Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sensors and Actuators B: Chemical, 2021, 340, 129915.	7.8	56
4	Simplified paired-emitter–detector-diodes-based photometry with improved sensitivity. Analytica Chimica Acta, 2009, 639, 73-77.	5.4	54
5	Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology. Sensors, 2006, 6, 390-396.	3.8	53
6	Screen-printed disposable urease-based biosensors for inhibitive detection of heavy metal ions. Sensors and Actuators B: Chemical, 2005, 106, 450-454.	7.8	52
7	Hemoglobin determination with paired emitter detector diode. Analytical and Bioanalytical Chemistry, 2011, 399, 3293-3297.	3.7	37
8	Flow injection system for potentiometric determination of alkaline phosphatase inhibitors. Analytica Chimica Acta, 2006, 577, 134-139.	5.4	29
9	UV-PEDD photometry dedicated for bioanalytical uses. Analyst, The, 2009, 134, 1333.	3.5	29
10	A single standard calibration module for flow analysis systems based on solenoid microdevices. Talanta, 2009, 79, 205-210.	5.5	28
11	A concept of dual optical detection using three light emitting diodes. Talanta, 2010, 82, 422-425.	5.5	28
12	Miniaturized optical chemosensor for flow-based assays. Analytical and Bioanalytical Chemistry, 2011, 399, 1381-1387.	3.7	28
13	3D printed flow-through cuvette insert for UV–Vis spectrophotometric and fluorescence measurements. Talanta, 2018, 190, 423-428.	5 . 5	28
14	Low-cost optical detectors and flow systems for protein determination. Talanta, 2012, 96, 121-126.	5.5	27
15	Analytical aspects of smart (phone) fluorometric measurements. Talanta, 2019, 197, 319-325.	5 . 5	27
16	Towards the development of a miniaturized fiberless optofluidic biosensor for glucose. Talanta, 2012, 96, 113-120.	5.5	26
17	Strip bioelectrochemical cell for potentiometric measurements fabricated by screen-printing. Analytica Chimica Acta, 2005, 538, 251-256.	5 . 4	25
18	Multicommutated flow analysis system for determination of creatinine in physiological fluids by Jaffe method. Analytica Chimica Acta, 2013, 787, 118-125.	5.4	25

#	Article	IF	CITATIONS
19	Strip thick-film silver ion-selective electrodes. Sensors and Actuators B: Chemical, 2003, 96, 482-488.	7.8	24
20	Multi-Substrate Biofuel Cell Utilizing Glucose, Fructose and Sucrose as the Anode Fuels. Nanomaterials, 2020, 10, 1534.	4.1	23
21	Fluorometric paired emitter detector diode (FPEDD). Analyst, The, 2011, 136, 73-76.	3.5	22
22	Fluorimetric detector and sensor for flow analysis made of light emitting diodes. Analytica Chimica Acta, 2012, 721, 92-96.	5.4	22
23	Screen-printed copper ion-selective electrodes. Fresenius' Journal of Analytical Chemistry, 2000, 367, 393-395.	1.5	19
24	POTENTIOMETRIC THICK-FILM GRAPHITE ELECTRODES WITH IMPROVED RESPONSE TO COPPER IONS. Analytical Letters, 2001, 34, 71-78.	1.8	19
25	Biparametric multicommutated flow analysis system for determination of human serum phosphoesterase activity. Analytica Chimica Acta, 2013, 797, 57-63.	5.4	19
26	Serum alkaline phosphatase assay with paired emitter detector diode. Talanta, 2012, 96, 127-131.	5.5	18
27	A bimodal optoelectronic flow-through detector for phosphate determination. Talanta, 2014, 128, 211-214.	5.5	18
28	Reticulated vitreous carbon as a scaffold for enzymatic fuel cell designing. Biosensors and Bioelectronics, $2017, 95, 1-7$.	10.1	18
29	Thick-film potentiometric biosensor for bloodless monitoring of hemodialysis. Sensors and Actuators B: Chemical, 2006, 113, 782-786.	7.8	17
30	Optoelectronic detectors and flow analysis systems for determination of dialysate urea nitrogen. Sensors and Actuators B: Chemical, 2016, 226, 563-569.	7.8	17
31	Optoelectronic detectors for flow analysis systems manufactured by means of rapid prototyping technology. Talanta, 2019, 198, 169-178.	5.5	17
32	Poly(vinyl chloride) tubing with covalently bound alkaline phosphatase and alternative approach for investigations of open-tubular bioreactors. Analytical Biochemistry, 2010, 400, 151-153.	2.4	16
33	Flow injection analysis in lab-on-paper format. Sensors and Actuators B: Chemical, 2018, 257, 16-22.	7.8	16
34	Hybrid flow system integrating a miniaturized optoelectronic detector for on-line dynamic fractionation and fluorometric determination of bioaccessible orthophosphate in soils. Talanta, 2015, 133, 59-65.	5.5	14
35	Biomedical analytical monitor of artificial kidney operation: Monitoring of creatinine removal. Journal of Pharmaceutical and Biomedical Analysis, 2016, 128, 28-34.	2.8	12
36	Bianalyte multicommutated flow analysis system for microproteinuria diagnostics. Talanta, 2016, 148, 707-711.	5.5	12

#	Article	IF	CITATIONS
37	An alternative, single-point method for creatinine determination in urine samples with optoelectronic detector. Critical comparison to JaffÃ \odot method. Talanta, 2019, 195, 865-869.	5.5	12
38	Towards optoelectronic urea biosensors. Analytical and Bioanalytical Chemistry, 2015, 407, 1807-1812.	3.7	11
39	A multicommutated tester of bioreactors for flow analysis. Talanta, 2016, 160, 233-240.	5 . 5	11
40	Prussian Blue (bio)sensing device for distance-based measurements. Analytica Chimica Acta, 2020, 1136, 125-133.	5.4	11
41	Biomedical monitoring of phosphate removal by hemodialysis. Journal of Pharmaceutical and Biomedical Analysis, 2016, 126, 9-13.	2.8	8
42	Potentialities of pH-electrode modified with alkaline phosphatase. Sensors and Actuators B: Chemical, 2007, 127, 632-636.	7.8	7
43	From the bottom of an old jar: A fluorometric method for the determination of creatinine in human serum. Analytica Chimica Acta, 2020, 1135, 116-122.	5.4	6
44	Smartphone-Assisted Protein to Creatinine Ratio Determination on a Single Paper-Based Analytical Device. Molecules, 2021, 26, 6282.	3.8	4
45	On-line â€~protein shaker': A multicommutated flow analysis system for fluorometric creatinine determination in deproteinized serum. Analytica Chimica Acta, 2022, 1191, 339246.	5.4	3
46	Enzymes in Flow Injection Analysis. , 0, , 395-423.		1
47	Paired Light-Emitting Diodes for Educational Purposes: Comment on "Demonstrating Basic Properties of Spectroscopy Using a Self-Constructed Combined Fluorimeter and UV-Photometer― Journal of Chemical Education, 2018, 95, 496-497.	2.3	1