Emanuele Daddi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3991053/publications.pdf

Version: 2024-02-01

405 papers 45,911 citations

111 h-index 201 g-index

414 all docs

414 docs citations

414 times ranked 7589 citing authors

#	Article	IF	CITATIONS
1	GOODS-ALMA 2.0: Source catalog, number counts, and prevailing compact sizes in 1.1 mm galaxies. Astronomy and Astrophysics, 2022, 658, A43.	5.1	43
2	COLDz: Probing Cosmic Star Formation With Radio Free–Free Emission. Astrophysical Journal, 2022, 924, 76.	4.5	7
3	AGN Selection Methods Have Profound Impacts on the Distributions of Host-galaxy Properties. Astrophysical Journal, 2022, 925, 74.	4.5	15
4	The Stellar Mass versus Stellar Metallicity Relation of Star-forming Galaxies at 1.6 \hat{a} % z \hat{a} % 3.0 and Implications for the Evolution of the \hat{l} ±-enhancement. Astrophysical Journal, 2022, 925, 82.	4.5	18
5	Evidence for Cold-stream to Hot-accretion Transition as Traced by Lyα Emission from Groups and Clusters at 2 < z < 3.3. Astrophysical Journal Letters, 2022, 926, L21.	8.3	19
6	Quantifying the cool ISM in radio AGNs: evidence for late-time retriggering by galaxy mergers and interactions. Monthly Notices of the Royal Astronomical Society, 2022, 512, 86-103.	4.4	6
7	GOODS-ALMA 2.0: Starbursts in the main sequence reveal compact star formation regulating galaxy evolution prequenching. Astronomy and Astrophysics, 2022, 659, A196.	5.1	23
8	Coincidence between morphology and star formation activity through cosmic time: the impact of the bulge growth. Monthly Notices of the Royal Astronomical Society, 2022, 513, 256-281.	4.4	21
9	The bending of the star-forming main sequence traces the cold- to hot-accretion transition mass over 0 < <i>z</i> à€"< 4. Astronomy and Astrophysics, 2022, 661, L7.	5.1	13
10	A titanic interstellar medium ejection from a massive starburst galaxy at redshift 1.4. Nature Astronomy, 2021, 5, 319-330.	10.1	8
11	Multiwavelength dissection of a massive heavily dust-obscured galaxy and its blue companion at $\langle i \rangle z \langle i \rangle \hat{a}^1/42$. Astronomy and Astrophysics, 2021, 646, A127.	5.1	5
12	Hierarchical fragmentation in high redshift galaxies revealed by hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4641-4657.	4.4	13
13	Feedback factory: multiple faint radio jets detected in a cluster at zÂ=Â2. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1174-1186.	4.4	3
14	Dust, Gas, and Metal Content in Star-forming Galaxies at z $\hat{a}^{1/4}$ 3.3 Revealed with ALMA and Near-IR Spectroscopy. Astrophysical Journal, 2021, 908, 15.	4.5	13
15	From Haloes to Galaxies. II. The Fundamental Relations in Star Formation and Quenching. Astrophysical Journal, 2021, 907, 114.	4.5	15
16	CO Excitation, Molecular Gas Density, and Interstellar Radiation Field in Local and High-redshift Galaxies. Astrophysical Journal, 2021, 909, 56.	4.5	28
17	The interstellar medium of quiescent galaxies and its evolution with time. Astronomy and Astrophysics, 2021, 647, A33.	5.1	32
18	The 2175 à Dust Feature in Star-forming Galaxies at 1.3 ≠z ≠1.8: The Dependence on Stellar Mass and Specific Star Formation Rate. Astrophysical Journal, 2021, 909, 213.	4.5	7

#	Article	IF	CITATIONS
19	The infrared-radio correlation of star-forming galaxies is strongly <i>M</i> _{â<†} -dependent but nearly redshift-invariant since <i>z</i> â^1/4 4. Astronomy and Astrophysics, 2021, 647, A123.	5.1	54
20	Deep Observations of CO and Free–Free Emission in Ultraluminous Infrared QSO IRAS F07599+6508. Astrophysical Journal, 2021, 913, 82.	4.5	3
21	The ALMA Spectroscopic Survey in the HUDF: A Search for [C ii] Emitters at 6 ≠z ≠8. Astrophysical Journal, 2021, 912, 67.	4.5	13
22	The evolution of compact massive quiescent and star-forming galaxies derived from the ⟨i⟩R⟨ i⟩eâ€"⟨i⟩R⟨ i⟩h and ⟨i⟩M⟨ i⟩starâ€"⟨i⟩M⟨ i⟩h relations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4555-4570.	4.4	13
23	Three Lyman- $\langle i \rangle \hat{l} \pm \langle i \rangle$ -emitting filaments converging to a massive galaxy group at $\langle i \rangle z \langle i \rangle = 2.91$: discussing the case for cold gas infall. Astronomy and Astrophysics, 2021, 649, A78.	5.1	41
24	COLDz: Deep 34 GHz Continuum Observations and Free–Free Emission in High-redshift Star-forming Galaxies. Astrophysical Journal, 2021, 912, 73.	4.5	10
25	A Duality in the Origin of Bulges and Spheroidal Galaxies. Astrophysical Journal, 2021, 913, 125.	4.5	25
26	From Haloes to Galaxies. III. The Gas Cycle of Local Galaxy Populations. Astrophysical Journal, 2021, 915, 94.	4. 5	4
27	Radio spectral properties of star-forming galaxies in the MIGHTEE-COSMOS field and their impact on the far-infrared-radio correlation. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2643-2658.	4.4	18
28	An Ancient Massive Quiescent Galaxy Found in a Gas-rich z \hat{a}^4 3 Group. Astrophysical Journal Letters, 2021, 917, L17.	8.3	18
29	HST grism spectroscopy of $\langle i \rangle z \langle i \rangle$ $\hat{a}^1 / 4$ 3 massive quiescent galaxies. Astronomy and Astrophysics, 2021, 653, A32.	5.1	20
30	The effect of active galactic nuclei on the cold interstellar medium in distant star-forming galaxies. Astronomy and Astrophysics, 2021, 654, A165.	5.1	12
31	Compact, bulge-dominated structures of spectroscopically confirmed quiescent galaxies at <i>z</i> â‰^ 3. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2659-2676.	4.4	20
32	MIGHTEE: are giant radio galaxies more common than we thought?. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3833-3845.	4.4	24
33	Submillimetre compactness as a critical dimension to understand the main sequence of star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5217-5238.	4.4	26
34	The Evolving Interstellar Medium of Star-forming Galaxies, as Traced by Stardust*. Astrophysical Journal, 2021, 921, 40.	4.5	28
35	Observations of [OI]63 <i>μ</i> m line emission in main-sequence galaxies at <i>z</i> â^¼ 1.5. Monthly Not of the Royal Astronomical Society, 2020, 499, 1788-1794.	tices 4.4	3
36	A hyper luminous starburst at $\langle i \rangle z \langle i \rangle = 4.72$ magnified by a lensing galaxy pair at $\langle i \rangle z \langle i \rangle = 1.48$. Astronomy and Astrophysics, 2020, 635, A27.	5.1	10

3

#	Article	IF	CITATIONS
37	Deceptively cold dust in the massive starburst galaxy GN20 at $\langle i \rangle z \langle i \rangle$ $\hat{a}^1/4$ 4. Astronomy and Astrophysics, 2020, 634, L14.	5.1	47
38	COLDz: A High Space Density of Massive Dusty Starburst Galaxies â ¹ / ₄ 1 Billion Years after the Big Bang. Astrophysical Journal, 2020, 895, 81.	4.5	50
39	The Properties of the Interstellar Medium of Galaxies across Time as Traced by the Neutral Atomic Carbon [C i]. Astrophysical Journal, 2020, 890, 24.	4.5	68
40	Probing black hole accretion tracks, scaling relations, and radiative efficiencies from stacked X-ray active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1500-1511.	4.4	28
41	Coevolution of black hole accretion and star formation in galaxies up to $\langle i \rangle z \langle j \rangle = 3.5$. Astronomy and Astrophysics, 2020, 642, A65.	5.1	20
42	GOODS-ALMA: Optically dark ALMA galaxies shed light on a cluster in formation at $\langle i \rangle z \langle i \rangle = 3.5$. Astronomy and Astrophysics, 2020, 642, A155.	5.1	24
43	GOODS-ALMA: Using IRAC and VLA to probe fainter millimeter galaxies. Astronomy and Astrophysics, 2020, 643, A53.	5.1	17
44	GOODS-ALMA: The slow downfall of star formation in <i>>z</i> = 2â€"3 massive galaxies. Astronomy and Astrophysics, 2020, 643, A30.	5.1	39
45	CO emission in distant galaxies on and above the main sequence. Astronomy and Astrophysics, 2020, 641, A155.	5.1	36
46	MusE GAs FLOw and wind (MEGAFLOW) VII. A NOEMA pilot program to probe molecular gas in galaxies with measured circumgalactic gas flows. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1900-1910.	4.4	7
47	The ALMA Spectroscopic Survey in the HUDF: Deep 1.2 mm Continuum Number Counts. Astrophysical Journal, 2020, 897, 91.	4.5	49
48	The ALMA Spectroscopic Survey in the HUDF: The Cosmic Dust and Gas Mass Densities in Galaxies up to $z\hat{A}\hat{a}^1/4\hat{A}$ 3. Astrophysical Journal, 2020, 892, 66.	4.5	41
49	The Evolving AGN Duty Cycle in Galaxies Since zÂâ^¼Â3 as Encoded in the X-Ray Luminosity Function. Astrophysical Journal, 2020, 892, 17.	4.5	18
50	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: The Nature of the Faintest Dusty Star-forming Galaxies. Astrophysical Journal, 2020, 901, 79.	4.5	45
51	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Multiband Constraints on Line-luminosity Functions and the Cosmic Density of Molecular Gas. Astrophysical Journal, 2020, 902, 110.	4.5	62
52	A Census of Sub-kiloparsec Resolution Metallicity Gradients in Star-forming Galaxies at Cosmic Noon from HST Slitless Spectroscopy. Astrophysical Journal, 2020, 900, 183.	4.5	26
53	The Evolution of the Baryons Associated with Galaxies Averaged over Cosmic Time and Space. Astrophysical Journal, 2020, 902, 111.	4.5	73
54	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Excitation and Atomic Carbon in Star-forming Galaxies at zÂ=Â1–3. Astrophysical Journal, 2020, 902, 109.	4.5	62

#	Article	IF	Citations
55	The ALMA Spectroscopic Survey Large Program: The Infrared Excess of zÂ=Â1.5–10 UV-selected Galaxies and the Implied High-redshift Star Formation History. Astrophysical Journal, 2020, 902, 112.	4.5	94
56	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Constraining the Molecular Content at log(M _* /M _劙)Ââ^¼Â9.5 with CO Stacking of MUSE-detected zÂâ^¼Â1.5 Galaxies. Ast Journal, 2020, 902, 113.	rophysical	11
57	The Typical Massive Quiescent Galaxy at zÂâ^1/4Â3 is a Post-starburst. Astrophysical Journal Letters, 2020, 892, L2.	8.3	35
58	Active Galactic Nuclei in Dusty Starbursts at zÂ=Â2: Feedback Still to Kick in. Astrophysical Journal Letters, 2019, 877, L38.	8.3	9
59	Revealing the differences in the SMBH accretion rate distributions of starburst and non-starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4071-4082.	4.4	8
60	No signs of star formation being regulated in the most luminous quasars at z $\hat{a}^{1/4}$ 2 with ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1180-1198.	4.4	37
61	MAGPHYS+photo-z: Constraining the Physical Properties of Galaxies with Unknown Redshifts. Astrophysical Journal, 2019, 882, 61.	4.5	49
62	ALMA 200 pc Resolution Imaging of Smooth Cold Dusty Disks in Typical zÂâ^1⁄4Â3 Star-forming Galaxies. Astrophysical Journal, 2019, 882, 107.	4.5	53
63	A contribution of star-forming clumps and accreting satellites to the mass assembly of z \hat{a}^4 2 galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2792-2818.	4.4	43
64	Rejuvenated galaxies with very old bulges at the origin of the bending of the main sequence and of the †green valley'. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1265-1290.	4.4	36
65	Discovery of Strongly Inverted Metallicity Gradients in Dwarf Galaxies at zÂâ^1⁄4Â2. Astrophysical Journal, 2019, 882, 94.	4.5	42
66	The Atacama Large Millimeter/submillimeter Array Spectroscopic Survey in the Hubble Ultra Deep Field: CO Emission Lines and 3 mm Continuum Sources. Astrophysical Journal, 2019, 882, 139.	4.5	62
67	The structural properties of classical bulges and discs from z \hat{a}^4 2. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4135-4154.	4.4	14
68	The Main Sequence at $z\hat{A}\hat{a}^{1}/4\hat{A}1.3$ Contains a Sizable Fraction of Galaxies with Compact Star Formation Sizes: A New Population of Early Post-starbursts?. Astrophysical Journal Letters, 2019, 877, L23.	8.3	48
69	Three regimes of CO emission in galaxy mergers. Astronomy and Astrophysics, 2019, 621, A104.	5.1	13
70	A diversity of starburst-triggering mechanisms in interacting galaxies and their signatures in CO emission. Astronomy and Astrophysics, 2019, 625, A65.	5.1	28
71	Early- and late-stage mergers among main sequence and starburst galaxies at 0.2 ≠z ≠2. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5631-5651.	4.4	54
72	High Gas Fraction in a CO-detected Main-sequence Galaxy at zÂ>Â3. Astrophysical Journal, 2019, 875, 6.	4.5	29

#	Article	IF	Citations
73	ATLAS probe: Breakthrough science of galaxy evolution, cosmology, Milky Way, and the Solar System. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	10
74	Suppressed CO emission and high G/D ratios in $z\hat{A}=\hat{A}2$ galaxies with sub-solar gas-phase metallicity. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2092-2105.	4.4	13
75	Near-infrared Survey and Photometric Redshifts in the Extended GOODS-North Field. Astrophysical Journal, 2019, 871, 233.	4.5	6
76	The FMOS-COSMOS Survey of Star-forming Galaxies at zÂâ^¼Â1.6. VI. Redshift and Emission-line Catalog and Basic Properties of Star-forming Galaxies. Astrophysical Journal, Supplement Series, 2019, 241, 10.	7.7	60
77	COLDz: Shape of the CO Luminosity Function at High Redshift and the Cold Gas History of the Universe. Astrophysical Journal, 2019, 872, 7.	4.5	115
78	Modelling the emission of passive galaxy candidates at $z\hat{a}^1/43$. Proceedings of the International Astronomical Union, 2019, 15, 44-49.	0.0	0
79	Discovery of Four Apparently Cold Dusty Galaxies at zÂ=Â3.62–5.85 in the COSMOS Field: Direct Evidence of Cosmic Microwave Background Impact on High-redshift Galaxy Observables. Astrophysical Journal, 2019, 887, 144.	4.5	65
80	Deciphering an evolutionary sequence of merger stages in infrared-luminous starburst galaxies at <i>$z < li > \hat{a}^2 / 4$ 0.7. Astronomy and Astrophysics, 2019, 623, A64.</i>	5.1	15
81	Merger induced clump formation in distant infrared luminous starburst galaxies. Astronomy and Astrophysics, 2019, 632, A98.	5.1	19
82	Sunyaev-Zel'dovich detection of the galaxy cluster Cl J1449+0856 at <i>z</i> = 1.99: The pressure profile in <i>uv</i> space. Astronomy and Astrophysics, 2019, 629, A104.	5.1	10
83	The Galaxy's Gas Content Regulated by the Dark Matter Halo Mass Results in a Superlinear M _{BH} –M _{â<†} Relation. Astrophysical Journal Letters, 2019, 885, L36.	8.3	14
84	Resolving the Interstellar Medium in Ultraluminous Infrared QSO Hosts with ALMA. Astrophysical Journal, 2019, 887, 24.	4.5	16
85	<i>Chandra</i> centres for COSMOS X-ray galaxy groups: differences in stellar properties between central dominant and offset brightest group galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3545-3565.	4.4	39
86	PAHs as tracers of the molecular gas in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1618-1633.	4.4	29
87	Inferring a difference in the star-forming properties of lower versus higher X-ray luminosity AGNs. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 483, L52-L57.	3.3	30
88	Neutral carbon and highly excited CO in a massive star-forming main sequence galaxy at $\langle i \rangle z \langle j \rangle = 2.2$. Astronomy and Astrophysics, 2019, 628, A104.	5.1	16
89	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Evolution of the Molecular Gas in CO-selected Galaxies. Astrophysical Journal, 2019, 882, 136.	4.5	59
90	The ALMA Spectroscopic Survey in the HUDF: the Molecular Gas Content of Galaxies and Tensions with IllustrisTNG and the Santa Cruz SAM. Astrophysical Journal, 2019, 882, 137.	4.5	65

#	Article	IF	Citations
91	The ALMA Spectroscopic Survey in the HUDF: CO Luminosity Functions and the Molecular Gas Content of Galaxies through Cosmic History. Astrophysical Journal, 2019, 882, 138.	4.5	114
92	The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-mass Selected Galaxies Using MUSE Spectroscopy. Astrophysical Journal, 2019, 882, 140.	4.5	42
93	Automated Mining of the ALMA Archive in the COSMOS Field (A ³ COSMOS). II. Cold Molecular Gas Evolution out to Redshift 6. Astrophysical Journal, 2019, 887, 235.	4.5	85
94	The environmental effect on galaxy evolution: Cl J1449 + 0856 at z = 1.99. Proceedings of the International Astronomical Union, 2019, 15, 170-172.	0.0	0
95	Evidence for a mass-dependent AGN Eddington ratio distribution via the flat relationship between SFR and AGN luminosity. Monthly Notices of the Royal Astronomical Society, 2018, 476, 436-450.	4.4	13
96	"Super-deblended―Dust Emission in Galaxies. I. The GOODS-North Catalog and the Cosmic Star Formation Rate Density out to Redshift 6. Astrophysical Journal, 2018, 853, 172.	4.5	102
97	A molecular gas-rich GRB host galaxy at the peak of cosmic star formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2332-2338.	4.4	15
98	The unexpectedly large dust and gas content of quiescent galaxies at $z \ gt; 1.4$. Nature Astronomy, 2018, 2, 239-246.	10.1	71
99	An FMOS Survey of Moderate-luminosity, Broad-line AGNs in COSMOS, SXDS, and E-CDF-S. Astrophysical Journal, Supplement Series, 2018, 239, 22.	7.7	15
100	Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA. Astronomy and Astrophysics, 2018, 612, A29.	5.1	70
101	Revealing the Environmental Dependence of Molecular Gas Content in a Distant X-Ray Cluster at zÂ=Â2.51. Astrophysical Journal Letters, 2018, 867, L29.	8.3	45
102	Concurrent Starbursts in Molecular Gas Disks within a Pair of Colliding Galaxies at $z\hat{A}=\hat{A}1.52$. Astrophysical Journal, 2018, 868, 75.	4.5	11
103	The Molecular Gas Content and Fuel Efficiency of Starbursts at zÂâ^¼Â1.6 with ALMA. Astrophysical Journal, 2018, 867, 92.	4.5	38
104	Molecular gas content in obscured AGN at <i>z</i> > 1. Astronomy and Astrophysics, 2018, 619, A90.	5.1	35
105	A unique distant submillimeter galaxy with an X-ray-obscured radio-luminous active galactic nucleus. Astronomy and Astrophysics, 2018, 619, A76.	5.1	2
106	GOODS-ALMA: 1.1 mm galaxy survey. Astronomy and Astrophysics, 2018, 620, A152.	5.1	147
107	The [C ii] emission as a molecular gas mass tracer in galaxies at low and high redshifts. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1976-1999.	4.4	130
108	A Survey of Atomic Carbon [C i] in High-redshift Main-sequence Galaxies. Astrophysical Journal, 2018, 869, 27.	4.5	87

#	Article	lF	CITATIONS
109	ALMA view of a massive spheroid progenitor: a compact rotating core of molecular gas in an AGN host at z = 2.226. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3956-3963.	4.4	50
110	The SINS/zC-SINF Survey of zÂâ^¼Â2 Galaxy Kinematics: SINFONI Adaptive Optics–assisted Data and Kiloparsec-scale Emission-line Properties < sup > â^— < / sup > . Astrophysical Journal, Supplement Series, 2018, 238, 21.	7.7	143
111	Identification of galaxies that experienced a recent major drop of star formation. Astronomy and Astrophysics, 2018, 615, A61.	5.1	29
112	Starbursts in and out of the star-formation main sequence. Astronomy and Astrophysics, 2018, 616, A110.	5.1	125
113	A simultaneous search for high-z LAEs and LBGs in the SHARDS survey. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3740-3755.	4.4	25
114	"Super-deblended―Dust Emission in Galaxies. II. Far-IR to (Sub)millimeter Photometry and High-redshift Galaxy Candidates in the Full COSMOS Field. Astrophysical Journal, 2018, 864, 56.	4.5	108
115	The CO Luminosity Density at High-z (COLDz) Survey: A Sensitive, Large-area Blind Search for Low-J CO Emission from Cold Gas in the Early Universe with the Karl G. Jansky Very Large Array. Astrophysical Journal, 2018, 864, 49.	4.5	71
116	A catalog of polychromatic bulge-disc decompositions of $\hat{a}^{1}/417.600$ galaxies in CANDELS. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5410-5426.	4.4	49
117	Near-infrared Emission Lines in Starburst Galaxies at 0.5Â<ÂzÂ<Â0.9: Discovery of a Merger Sequence of Extreme Obscurations. Astrophysical Journal Letters, 2018, 862, L22.	8.3	24
118	Luminous and Obscured Quasars and Their Host Galaxies. Frontiers in Astronomy and Space Sciences, 2018, 4, .	2.8	1
119	Deciphering the Activity and Quiescence of High-redshift Cluster Environments: ALMA Observations of Cl J1449+0856 at zÂ=Â2. Astrophysical Journal, 2018, 862, 64.	4.5	26
120	ATLAS probe for the study of galaxy evolution with 300,000,000 galaxy spectra. , 2018, , .		0
121	In and out star formation in i>z < /i> $\hat{a} \in \infty$ - $\hat{a} \in \infty$ 1.5 quiescent galaxies from rest-frame UV spectroscopy and the far-infrared. Astronomy and Astrophysics, 2017, 599, A95.	5.1	21
122	The Bright and Dark Sides of High-redshift Starburst Galaxies from Herschel and Subaru Observations. Astrophysical Journal Letters, 2017, 838, L18.	8.3	32
123	AGN-host connection at 0.5Â<Â <i>z</i> Â<Â2.5: A rapid evolution of AGN fraction in red galaxies during the last 10 Gyr. Astronomy and Astrophysics, 2017, 601, A63.	5.1	39
124	Molecular gas, dust, and star formation in galaxies. Astronomy and Astrophysics, 2017, 602, A68.	5.1	26
125	High Dense Gas Fraction in a Gas-rich Star-forming Galaxy at zÂ=Â1.2 ^{â^—} . Astrophysical Journal, 2017, 838, 136.	4.5	6
126	The FMOS-COSMOS Survey of Star-forming Galaxies at ZÂâ^¼Â1.6. V: Properties of Dark Matter Halos Containing Hα Emitting Galaxies. Astrophysical Journal, 2017, 843, 138.	4.5	14

#	Article	IF	CITATIONS
127	ALMA constraints on star-forming gas in a prototypical $z\hat{A}=\hat{A}1.5$ clumpy galaxy: the dearth of CO(5 \hat{a}^{3} 4) emission from UV-bright clumps. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4683-4704.	4.4	24
128	The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields. Astrophysical Journal, 2017, 847, 76.	4.5	142
129	Radio Selection of the Most Distant Galaxy Clusters. Astrophysical Journal Letters, 2017, 846, L31.	8.3	21
130	Predicting emission line fluxes and number counts of distant galaxies for cosmological surveys. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4878-4899.	4.4	15
131	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT zÂâ^1⁄4Â1.6. IV. EXCITATION STATE AND CHEMICAL ENRICHMENT OF THE INTERSTELLAR MEDIUM. Astrophysical Journal, 2017, 835, 88.	- 4.5	96
132	The impact of clustering and angular resolution on far-infrared and millimeter continuum observations. Astronomy and Astrophysics, 2017, 607, A89.	5.1	116
133	Dust and gas in star-forming galaxies at $\langle i \rangle z \langle i \rangle \sim 3$. Astronomy and Astrophysics, 2017, 603, A93.	5.1	49
134	Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the past 10 Gyr. Astronomy and Astrophysics, 2016, 589, A35.	5.1	66
135	Dust attenuation in <i>>z </i> — 1 galaxies from <i> Herschel </i> and 3D-HST H <i> α </i> measurements. Astronomy and Astrophysics, 2016, 586, A83.	5.1	50
136	HIDE-AND-SEEK WITH THE FUNDAMENTAL METALLICITY RELATION. Astrophysical Journal Letters, 2016, 823, L24.	8.3	39
137	THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: MOLECULAR GAS RESERVOIRS IN HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2016, 833, 70.	4.5	89
138	Galaxy Formation and Evolution. Space Science Reviews, 2016, 202, 79-109.	8.1	3
139	DISCOVERY OF A GALAXY CLUSTER WITH A VIOLENTLY STARBURSTING CORE AT zÂ=Â2.506. Astrophysical Journal, 2016, 828, 56.	4.5	148
140	Mass assembly and morphological transformations since $\langle i \rangle z \langle i \rangle \hat{a}^{-1}/4$ 3 from CANDELS. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4495-4516.	4.4	73
141	THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: SEARCH FOR [] LINE AND DUST EMISSION IN 6Â<ÂzÂ<Â8 GALAXIES. Astrophysical Journal, 2016, 833, 71.	4.5	83
142	THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CONTINUUM NUMBER COUNTS, RESOLVED 1.2 mm EXTRAGALACTIC BACKGROUND, AND PROPERTIES OF THE FAINTEST DUSTY STAR-FORMING GALAXIES. Astrophysical Journal, 2016, 833, 68.	4.5	115
143	A GIANT LYα NEBULA IN THE CORE OF AN X-RAY CLUSTER AT ZÂ=Â1.99: IMPLICATIONS FOR EARLY ENERGY INJECTION. Astrophysical Journal, 2016, 829, 53.	4.5	27
144	THE RED SEQUENCE AT BIRTH IN THE GALAXY CLUSTER Cl J1449+0856 AT $z=2$. Astrophysical Journal Letters, 2016, 833, L20.	8.3	28

#	Article	IF	Citations
145	ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS. Astrophysical Journal, 2016, 833, 69.	4.5	97
146	ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: THE INFRARED EXCESS OF UV-SELECTED z =Â2–10 GALAXIES AS A FUNCTION OF UV-CONTINUUM SLOPE AND STELLAR MASS. Astrophysical Journal, 2016, 833, 72.	4.5	243
147	ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: SURVEY DESCRIPTION. Astrophysical Journal, 2016, 833, 67.	4.5	172
148	Characterizing elusive, faint dusty star-forming galaxies: a lensed, optically undetected ALMA galaxy atz ~ 3.3. Astronomy and Astrophysics, 2016, 596, A75.	5.1	3
149	Revisiting the role of the thermally pulsating asymptotic-giant-branch phase in high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 790-830.	4.4	16
150	An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs. Monthly Notices of the Royal Astronomical Society, 2016, 460, 902-916.	4.4	29
151	Mid-infrared luminous quasars in the GOODS– <i>Herschel</i> fields: a large population of heavily obscured, Compton-thick quasars at <i>z</i> â‰^2. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2105-2125.	4.4	65
152	ALMA resolves extended star formation in high- <i>z</i> AGN host galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L122-L126.	3.3	21
153	INFRARED COLOR SELECTION OF MASSIVE GALAXIES AT zÂ>Â3. Astrophysical Journal, 2016, 816, 84.	4.5	57
154	ISM EXCITATION AND METALLICITY OF STAR-FORMING GALAXIES AT ZÂâ $\%$ fÂ3.3 FROM NEAR-IR SPECTROSCOPY Astrophysical Journal, 2016, 822, 42.	4.5	110
155	Galaxy Formation and Evolution. Space Sciences Series of ISSI, 2016, , 81-111.	0.0	0
156	ALMA and <i>Herschel</i> reveal that X-ray-selected AGN and main-sequence galaxies have different star formation rate distributions. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L83-L87.	3.3	92
157	SHARDS: A GLOBAL VIEW OF THE STAR FORMATION ACTIVITY AT <i>z</i> i>â^1/4 0.84 and <i>z</i> i>â^1/4 1.23. Astrophysical Journal, 2015, 812, 155.	4.5	16
158	THE MORPHOLOGIES OF MASSIVE GALAXIES FROM <i>z</i> å°¹¼ 3—WITNESSING THE TWO CHANNELS OF BULG GROWTH. Astrophysical Journal, 2015, 809, 95.	GE 4.5	67
159	REST-FRAME OPTICAL EMISSION LINES IN FAR-INFRARED-SELECTED GALAXIES AT <i>z</i> &t 1.7 FROM THE FMOS-COSMOS SURVEY. Astrophysical Journal Letters, 2015, 806, L35.	8.3	24
160	HIGH- <i>J</i> CO VERSUS FAR-INFRARED RELATIONS IN NORMAL AND STARBURST GALAXIES. Astrophysical Journal Letters, 2015, 810, L14.	8.3	86
161	A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT $\langle i \rangle z \langle i \rangle$ $\hat{a}^{-1}/4$ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE. Astrophysical Journal Letters, 2015, 812, L23.	8.3	84
162	Old age and supersolar metallicity in a massive $\langle i \rangle z \langle i \rangle \hat{a}^1/4$ 1.4 early-type galaxy from VLT/X-Shooter spectroscopy. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3912-3919.	4.4	32

#	Article	IF	CITATIONS
163	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT <i>>z</i>	7.7	106
164	The <i>Herschel </i> view of the dominant mode of galaxy growth from <i>z </i> = 4 to the present day. Astronomy and Astrophysics, 2015, 575, A74.	5.1	582
165	Passive galaxies as tracers of cluster environments at <i>z</i> ~ 2. Astronomy and Astrophysics, 2015, 576, L6.	5.1	22
166	Evolution of the dust emission of massive galaxies up to $\langle i \rangle z \langle i \rangle = 4$ and constraints on their dominant mode of star formation. Astronomy and Astrophysics, 2015, 573, A113.	5.1	221
167	Satellite content and quenching of star formation in galaxy groups at <i>z < /i> ~ 1.8. Astronomy and Astrophysics, 2015, 581, A56.</i>	5.1	11
168	The star formation rate cookbook at $1\hat{A}$ lt; \hat{A} <i>z</i> \hat{A} lt; \hat{A} 3: Extinction-corrected relations for UV and [OII] <i>\hat{I}9.7 Value of the star formation rate cookbook at $1\hat{A}$8.1 \hat{A}8.2 \hat{A}8.2 \hat{A}8.3 \hat{A}8.3 \hat{A}8.4 \hat{A}8.5 \hat{A}8.7 \hat{A}8.8 \hat{A}8.7 \hat{A}8.8 \hat{A}8 \hat{A}8 </i>	5.1	17
169	A DIRECT CONSTRAINT ON THE GAS CONTENT OF A MASSIVE, PASSIVELY EVOLVING ELLIPTICAL GALAXY AT $\langle i \rangle z \langle i \rangle = 1.43$. Astrophysical Journal Letters, 2015, 806, L20.	8.3	40
170	Star formation and quenching among the most massive galaxies at zÂâ^1/4Â1.7. Monthly Notices of the Royal Astronomical Society, 2015, 450, 763-786.	4.4	23
171	THE KILOPARSEC-SCALE STAR FORMATION LAW AT REDSHIFT 4: WIDESPREAD, HIGHLY EFFICIENT STAR FORMATION IN THE DUST-OBSCURED STARBURST GALAXY GN20. Astrophysical Journal Letters, 2015, 798, L18.	8.3	113
172	RELATIONSHIP BETWEEN STAR FORMATION RATE AND BLACK HOLE ACCRETION AT $\langle i \rangle z \langle j \rangle = 2$: THE DIFFERENT CONTRIBUTIONS IN QUIESCENT, NORMAL, AND STARBURST GALAXIES. Astrophysical Journal Letters, 2015, 800, L10.	8.3	56
173	COLDz: KARL G. JANSKY VERY LARGE ARRAY DISCOVERY OF A GAS-RICH GALAXY IN COSMOS. Astrophysical Journal, 2015, 800, 67.	4.5	8
174	Modeling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies. Astronomy and Astrophysics, 2015, 575, A56.	5.1	55
175	GOODS- <i>HERSCHEL</i> : STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO <i>z</i> i>â‰f 4. Astrophysical Journal, 2015, 807, 141.	4.5	174
176	An extremely young massive clump forming by gravitational collapse in a primordial galaxy. Nature, 2015, 521, 54-56.	27.8	53
177	METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT <i>Z</i> = 2. Astrophysical Journal, 2015, 801, 132.	4.5	61
178	THE AGES, METALLICITIES, AND ELEMENT ABUNDANCE RATIOS OF MASSIVE QUENCHED GALAXIES AT \$zsimeq 1.6\$. Astrophysical Journal, 2015, 808, 161.	4.5	91
179	A PHYSICAL APPROACH TO THE IDENTIFICATION OF HIGH- <i>Z</i> MERGERS: MORPHOLOGICAL CLASSIFICATION IN THE STELLAR MASS DOMAIN. Astrophysical Journal, 2015, 805, 181.	4.5	30
180	CO excitation of normal star-forming galaxies out to $\langle i \rangle z \langle i \rangle = 1.5$ as regulated by the properties of their interstellar medium. Astronomy and Astrophysics, 2015, 577, A46.	5.1	213

#	Article	IF	CITATIONS
181	Evidence for feedback in action from the molecular gas content in the $\langle i \rangle z \langle i \rangle \sim 1.6$ outflowing QSO XID2028. Astronomy and Astrophysics, 2015, 578, A11.	5.1	43
182	The influence of wavelength, flux, and lensing selection effects on the redshift distribution of dusty, star-forming galaxies. Astronomy and Astrophysics, 2015, 576, L9.	5.1	59
183	The WIRCam Deep Survey. Astronomy and Astrophysics, 2014, 568, A24.	5.1	20
184	A multiwavelength consensus on the main sequence of star-forming galaxies at $z\hat{A}\hat{a}^1/4\hat{A}\hat{2}$. Monthly Notices of the Royal Astronomical Society, 2014, 443, 19-30.	4.4	104
185	MOONS: the Multi-Object Optical and Near-infrared Spectrograph for the VLT. Proceedings of SPIE, 2014, , .	0.8	52
186	THE LONG LIVES OF GIANT CLUMPS AND THE BIRTH OF OUTFLOWS IN GAS-RICH GALAXIES AT HIGH REDSHIFT. Astrophysical Journal, 2014, 780, 57.	4.5	161
187	REGULARITY UNDERLYING COMPLEXITY: A REDSHIFT-INDEPENDENT DESCRIPTION OF THE CONTINUOUS VARIATION OF GALAXY-SCALE MOLECULAR GAS PROPERTIES IN THE MASS-STAR FORMATION RATE PLANE. Astrophysical Journal, 2014, 793, 19.	4.5	263
188	A MOLECULAR LINE SCAN IN THE HUBBLE DEEP FIELD NORTH: CONSTRAINTS ON THE CO LUMINOSITY FUNCTION AND THE COSMIC H ₂ DENSITY. Astrophysical Journal, 2014, 782, 79.	4.5	91
189	A MOLECULAR LINE SCAN IN THE HUBBLE DEEP FIELD NORTH. Astrophysical Journal, 2014, 782, 78.	4.5	62
190	CO(1–0) line imaging of massive star-forming disc galaxies at z=1.5–2.2. Monthly Notices of the Royal Astronomical Society, 2014, 442, 558-564.	4.4	55
191	POLYCYCLIC AROMATIC HYDROCARBON AND MID-INFRARED CONTINUUM EMISSION IN A <i>z</i> \$\langle z\$\langle z\$\lang	4.5	47
192	ACTIVE GALACTIC NUCLEI EMISSION LINE DIAGNOSTICS AND THE MASS-METALLICITY RELATION UP TO REDSHIFT <i>z</i> â ¹ / ₄ 2: THE IMPACT OF SELECTION EFFECTS AND EVOLUTION. Astrophysical Journal, 2014, 788, 88.	4.5	147
193	THE SINS/zC-SINF SURVEY OF $\langle i \rangle z \langle j \rangle \hat{a}^{-1}/4$ 2 GALAXY KINEMATICS: EVIDENCE FOR POWERFUL ACTIVE GALACTIC NUCLEUS-DRIVEN NUCLEAR OUTFLOWS IN MASSIVE STAR-FORMING GALAXIES. Astrophysical Journal, 2014, 787, 38.	4.5	155
194	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT <i>z</i> \hat{a}^{1} /4 1.6. II. THE MASS-METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION. Astrophysical Journal, 2014, 792, 75.	4.5	140
195	Modelling the connection between ultraviolet and infrared galaxy populations across cosmic times. Monthly Notices of the Royal Astronomical Society, 2014, 442, 509-520.	4.4	24
196	Clustering, host halos, and environment of $\langle i \rangle z \langle j \rangle \hat{A} \sim \hat{A}^2$ galaxies as a function of their physical properties. Astronomy and Astrophysics, 2014, 567, A103.	5.1	41
197	The evolution of the dust and gas content in galaxies. Astronomy and Astrophysics, 2014, 562, A30.	5.1	220
198	ALMA reveals a warm and compact starburst around a heavily obscured supermassive black hole at $>z>= 4.75$. Astronomy and Astrophysics, 2014, 562, A67.	5.1	63

#	Article	IF	CITATIONS
199	Dust and gas in luminous proto-cluster galaxies at $i > z < i> = 4.05$: the case for different cosmic dust evolution in normal and starburst galaxies. Astronomy and Astrophysics, 2014, 569, A98.	5.1	70
200	The evolution of the dust temperatures of galaxies in the SFR– <i>M</i> _{â^—} plane up to <i>z</i> Â~Â2. Astronomy and Astrophysics, 2014, 561, A86.	5.1	194
201	The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep <i>K</i> -band number counts. Astronomy and Astrophysics, 2014, 570, A11.	5.1	89
202	Gas reservoir of a hyper-luminous quasar at $\langle i \rangle z \langle i \rangle = 2.6$. Astronomy and Astrophysics, 2014, 565, A91.	5.1	18
203	WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3. Astrophysical Journal, 2013, 764, 176.	4.5	95
204	The Herschelã PEP/HerMES luminosity function – I. Probing the evolution of PACS selected Galaxies to z â‰f 4. Monthly Notices of the Royal Astronomical Society, 2013, 432, 23-52.	4.4	341
205	SHARDS: stellar populations and star formation histories of a mass-selected sample of 0.65 < z < 1.1 galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2136-2152.	4.4	23
206	Lyman Break and ultraviolet-selected galaxies at zÂâ ¹ ¼Â1 – II. PACS 100 μm/160 μm FIR detections Notices of the Royal Astronomical Society, 2013, 435, 158-186.	s☠Mon 4:4	thly
207	A DEEP SEARCH FOR MOLECULAR GAS IN TWO MASSIVE LYMAN BREAK GALAXIES AT <i>z</i> = 3 AND 4: VANISHING CO-EMISSION DUE TO LOW METALLICITY?. Astrophysical Journal Letters, 2013, 776, L24.	8.3	24
208	ACTIVE GALACTIC NUCLEUS FEEDBACK AT $\langle i \rangle_z \langle j \rangle$ â ¹ / ₄ 2 AND THE MUTUAL EVOLUTION OF ACTIVE AND INACTIVE GALAXIES. Astrophysical Journal Letters, 2013, 779, L13.	VE 8.3	52
209	WFC3 GRISM CONFIRMATION OF THE DISTANT CLUSTER CI J1449+0856 AT ⟠ <i>z</i> star-forming galaxy populations. Astrophysical Journal, 2013, 776, 9.	AND 4.5	78
210	PROBING THE INTERSTELLAR MEDIUM OF $\langle i \rangle z \langle /i \rangle \hat{a}^1 /4 1$ ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO AND $\langle i \rangle$ SPITZER $\langle /i \rangle$ MID-INFRARED SPECTROSCOPY. Astrophysical Journal, 2013, 772, 92.	4.5	31
211	ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS. Astrophysical Journal, 2013, 766, 13.	4.5	305
212	GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER AT <i>z</i> 2. Astrophysical Journal, 2013, 772, 118.	4.5	105
213	HIGH-RESOLUTION SPECTROSCOPIC IMAGING OF CO IN A <i>z</i> Journal, 2013, 776, 22.	4.5	54
214	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT $\langle i \rangle z \langle i \rangle$ $\hat{a}^1 / 1.6$. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION. Astrophysical Journal Letters, 2013, 777, L8.	8.3	178
215	EMPIRICAL PREDICTIONS FOR (SUB-)MILLIMETER LINE AND CONTINUUM DEEP FIELDS. Astrophysical Journal, 2013, 765, 9.	4.5	35
216	The redshift evolution of the distribution of star formation among dark matter halos as seen in the infrared. Astronomy and Astrophysics, 2013, 557, A66.	5.1	79

#	Article	IF	CITATIONS
217	GOODS- <i>Herschel</i> : radio-excess signature of hidden AGN activity in distant star-forming galaxies. Astronomy and Astrophysics, 2013, 549, A59.	5.1	110
218	Obscured quasars at redshift z \sim 2. Proceedings of the International Astronomical Union, 2013, 9, 199-199.	0.0	0
219	SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES. Astrophysical Journal, 2013, 762, 46.	4.5	95
220	GOODS- <i>HERSCHEL</i> : SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS. Astrophysical Journal, 2013, 763, 123.	4.5	46
221	The deepest (i) Herschel (i)-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations. Astronomy and Astrophysics, 2013, 553, A132.	5.1	345
222	GMASS ultradeep spectroscopy of galaxies at <i>z</i> Â-Â 2. Astronomy and Astrophysics, 2013, 549, A63.	5.1	90
223	The intense starburst HDF 850.1 in a galaxy overdensity at z â‰^ 5.2 in the Hubble Deep Field. Natu 486, 233-236.	re, 2012, 27.8	226
224	EVIDENCE FOR A CLUMPY, ROTATING GAS DISK IN A SUBMILLIMETER GALAXY AT $\langle i \rangle z \langle i \rangle = 4$. Astrophysical Journal, 2012, 760, 11.	4.5	161
225	GOODS- <i>HERSCHEL</i> MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT <i>z</i> e>a^1/4 2. Astrophysical Journal, 2012, 744, 154.	4.5	201
226	THE HIDDEN "AGN MAIN SEQUENCE†EVIDENCE FOR A UNIVERSAL BLACK HOLE ACCRETION TO STAR FORMATION RATE RATIO SINCE ⟨i⟩z⟨ i⟩ â^½ 2 PRODUCING AN ⟨i⟩M⟨ i⟩ ⟨sub⟩BH⟨ sub⟩ - ⟨i⟩M⟨ i⟩ ⟨sub⟩ *⟨ sub⟩ RELATION. Astrophysical Journal Letters, 2012, 753, L30.	8.3	213
227	The WIRCam Deep Survey. Astronomy and Astrophysics, 2012, 545, A23.	5.1	145
228	GOODS- <i>Herschel</i> : ultra-deep <i>XMM-Newton</i> observations reveal AGN/star-formation connection. Astronomy and Astrophysics, 2012, 546, A58.	5.1	94
229	The evolution of the star formation activity per halo mass up to redshift \hat{A} -1.6 as seen by <i>Herschel</i> . Astronomy and Astrophysics, 2012, 537, A58.	5.1	60
230	The mean star formation rate of X-ray selected active galaxies and its evolution from $\langle i \rangle z \langle i \rangle \hat{A} \sim 2.5$: results from PEP- $\langle i \rangle$ Herschel $\langle i \rangle$. Astronomy and Astrophysics, 2012, 545, A45.	5.1	250
231	THE MOLECULAR GAS CONTENT OF <i>z</i> = 3 LYMAN BREAK GALAXIES: EVIDENCE OF A NON-EVOLVING GAS FRACTION IN MAIN-SEQUENCE GALAXIES AT <i>z</i> > 2. Astrophysical Journal Letters, 2012, 758, L9.	8.3	90
232	GOODS- <i>HERSCHEL</i> : IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT. Astrophysical Journal, 2012, 759, 139.	4.5	148
233	NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI. Astrophysical Journal Letters, 2012, 760, L15.	8.3	146
234	GOODS- <i>Herschel</i> : Dust attenuation up to $z\hat{a}^1/44$. Proceedings of the International Astronomical Union, 2012, 8, 289-289.	0.0	1

#	Article	IF	Citations
235	Looking for molecular gas in a massive lyman break galaxy at $z=4.05$. Proceedings of the International Astronomical Union, 2012, 8, 23-23.	0.0	O
236	Star Formation & Molecular Gas over Cosmic Time. Proceedings of the International Astronomical Union, 2012, 8, 64-73.	0.0	1
237	A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES. Astrophysical Journal Letters, 2012, 757, L23.	8.3	179
238	THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE $\langle i \rangle z \langle j \rangle = 2$ AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS. Astrophysical Journal, 2012, 760, 6.	4.5	418
239	THE CONTRIBUTION OF STARBURSTS AND NORMAL GALAXIES TO INFRARED LUMINOSITY FUNCTIONS AT <i>z</i> < 2. Astrophysical Journal Letters, 2012, 747, L31.	8.3	223
240	THE EARLY EARLY TYPE: DISCOVERY OF A PASSIVE GALAXY AT <i>z</i> _{spec} â ¹ / ₄ 3. Astrophysical Journal Letters, 2012, 759, L44.	8.3	57
241	DEEP NEAR-INFRARED SPECTROSCOPY OF PASSIVELY EVOLVING GALAXIES AT <i>z</i> å%³ 1.4. Astrophysical Journal, 2012, 755, 26.	4.5	128
242	AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2012, 757, 81.	4.5	73
243	MOONS: a multi-object optical and near-infrared spectrograph for the VLT. Proceedings of SPIE, 2012, , .	0.8	16
244	THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES. Astrophysical Journal, 2012, 745, 182.	4.5	85
245	DISSECTING THE STELLAR-MASS-SFR CORRELATION IN $\langle i \rangle z \langle i \rangle = 1$ STAR-FORMING DISK GALAXIES. Astrophysical Journal Letters, 2012, 754, L14.	8.3	89
246	PHYSICAL PROPERTIES OF LyÎ \pm EMITTERS AT <i>z</i> åî 1 /4 0.3 FROM UV-TO-FIR MEASUREMENTS. Astrophysical Journal, 2012, 751, 139.	4.5	13
247	<i>Herschel</i> -PACS far-infrared detections of Lyman- <i>α</i> emitters at 2.0 Â≲Â <i>z</i> Â≲ 3.5. Astronal Astrophysics, 2012, 541, A65.	nomy 5.1	22
248	A <i>Herschel</i> view of the far-infrared properties of submillimetre galaxies. Astronomy and Astrophysics, 2012, 539, A155.	5.1	232
249	GOODS-Herschel: the far-infrared view of star formation in active galactic nucleus host galaxies sinceâ€,zâ€,â‰^ 3. Monthly Notices of the Royal Astronomical Society, 2012, 419, 95-115.	4.4	226
250	GMASS ultradeep spectroscopy of galaxies at <i>z</i> Â-Â 2. Astronomy and Astrophysics, 2012, 539, A61.	5.1	34
251	Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP- <i>Herschel</i> hosts vith respect to inactive galaxies from PEP- <i>Herschel</i> hosts vith respect to inactive galaxies from PEP- <i>Herschel</i> hosts vith respect to inactive galaxies from PEP- <i>hosts vith respect to inactive galaxies from PEP-<i>hosts vith respect to inactive galaxies from PEP-</i>hosts vith respect to inactive galaxies from PEP-<i>hosts vith respect to inactive galaxies from PEP-</i>hosts vith respect to inactive galaxies from PEP-</i>hosts vith respect to inactive galaxies from PEP-</i></i></i></i></i></i></i></i></i></i></i>	5.1	183
252	EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN <i>z</i> sâ^1/4 2 DUSTY GALAXIES FROM THE GOODS- <i>HERSCHEL</i> SURVEY. Astrophysical Journal, 2012, 759, 28.	4.5	36

#	Article	IF	CITATIONS
253	DISCOVERY OF STRONG IRON \hat{k} EMITTING COMPTON THICK QUASARS AT $\langle i \rangle z \langle j \rangle = 2.5$ AND 2.9. Astrophysical Journal Letters, 2011, 729, L4.	8.3	44
254	GOODS- <i>Herschel</i> : the impact of galaxy-galaxy interactions on the far-infrared properties of galaxies. Astronomy and Astrophysics, 2011, 535, A60.	5.1	42
255	PACS Evolutionary Probe (PEP) – A <i>Herschel</i> key program. Astronomy and Astrophysics, 2011, 532, A90.	5.1	407
256	The effect of environment on star forming galaxies at redshift. Astronomy and Astrophysics, 2011, 532, A145.	5.1	45
257	The effect of environment on star forming galaxies at redshift 1 First insight from PACS (<i>Corrigendum</i>). Astronomy and Astrophysics, 2011, 534, C2.	5.1	2
258	Building the cosmic infrared background brick by brick with <i>Herschel</i> /i>/PEP. Astronomy and Astrophysics, 2011, 532, A49.	5.1	151
259	GOODS- <i>HERSCHEL</i> : GAS-TO-DUST MASS RATIOS AND CO-TO-H ₂ CONVERSION FACTORS IN NORMAL AND STARBURSTING GALAXIES AT HIGH- <i>z</i>). Astrophysical Journal Letters, 2011, 740, L15.	8.3	128
260	FIR MEASUREMENTS OF LyÎ \pm EMITTERS AT <i>z</i> ≲ 1.0: DUST ATTENUATION FROM PACS- <i>HERSCHEL</i> Astrophysical Journal Letters, 2011, 735, L15.	··8.3	8
261	THE zCOSMOS-SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS. Astrophysical Journal, 2011, 743, 86.	4.5	86
262	ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO <i>>z </i> $\hat{a}^{1}/4$ 3. Astrophysical Journal, 2011, 738, 106.	4.5	356
263	A mature cluster with X-ray emission at <i>z</i> = 2.07. Astronomy and Astrophysics, 2011, 526, A133.	5.1	166
264	BLACK HOLE GROWTH AND ACTIVE GALACTIC NUCLEI OBSCURATION BY INSTABILITY-DRIVEN INFLOWS IN HIGH-REDSHIFT DISK GALAXIES FED BY COLD STREAMS. Astrophysical Journal Letters, 2011, 741, L33.	8.3	199
265	GOODS- <i>Herschel</i> : a population of 24Â Â <i>μ</i> m dropout sources at <i>z</i> Â< 2. Astronomy a Astrophysics, 2011, 534, A15.	nd 5.1	42
266	EXPANDED VERY LARGE ARRAY OBSERVATIONS OF A PROTO-CLUSTER OF MOLECULAR GAS-RICH GALAXIES AT $\langle i \rangle_z \langle j \rangle_z = 4.05$. Astrophysical Journal Letters, 2011, 739, L33.	8.3	52
267	X-RAY SPECTRAL CONSTRAINTS FOR <i>>z</i> >ê%^2 MASSIVE GALAXIES: THE IDENTIFICATION OF REFLECTION-DOMINATED ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2011, 738, 44.	4.5	53
268	THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT $\langle i \rangle z \langle i \rangle = 2$. Astrophysical Journal Letters, 2011, 739, L40.	8.3	669
269	GOODS– <i>Herschel</i> : an infrared main sequence for star-forming galaxies. Astronomy and Astrophysics, 2011, 533, A119.	5.1	889
270	The Hubble Space Telescope GOODS NICMOS Survey: overview and the evolution of massive galaxies at 1.5< z< 3. Monthly Notices of the Royal Astronomical Society, 2011, 413, 80-100.	4.4	81

#	Article	IF	CITATIONS
271	The PEP survey: clustering of infrared-selected galaxies and structure formation at z $\hat{a}^{1/4}$ 2 in GOODS-Southa~ Monthly Notices of the Royal Astronomical Society, 2011, 416, 1105-1117.	4.4	27
272	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEYâ€"THE ⟨i⟩HUBBLE SPACE TELESCOPE⟨ i⟩ OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS. Astrophysical Journal, Supplement Series, 2011, 197, 36.	7.7	1, 549
273	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. Astrophysical Journal, Supplement Series, 2011, 197, 35.	7.7	1,590
274	GOODS- $\langle i \rangle$ Herschel $\langle i \rangle$: evidence of a UV extinction bump in galaxies at $\langle i \rangle$ z $\langle i \rangle$ Â>Â1. Astronomy and Astrophysics, 2011, 533, A93.	5.1	69
275	THE COSMOS-WIRCam NEAR-INFRARED IMAGING SURVEY. I. <i> BzK < /i > -SELECTED PASSIVE AND STAR-FORMING GALAXY CANDIDATES AT <i> z < /i > ≳ 1.4. Astrophysical Journal, 2010, 708, 202-217.</i></i>	4.5	214
276	A $\langle i \rangle z \langle i \rangle$ = 1.82 ANALOG OF LOCAL ULTRA-MASSIVE ELLIPTICAL GALAXIES. Astrophysical Journal Letters, 2010, 715, L6-L11.	8.3	45
277	IMAGING THE MOLECULAR GAS IN A SUBMILLIMETER GALAXY AT <i>>z</i> >= 4.05: COLD MODE ACCRETION OR A MAJOR MERGER?. Astrophysical Journal, 2010, 714, 1407-1417.	4.5	144
278	COLD MOLECULAR GAS IN MASSIVE, STAR-FORMING DISK GALAXIES AT <i>$z=1.5$. Astrophysical Journal, 2010, 718, 177-183.</i>	4.5	68
279	The far-infrared/radio correlation as probed by <i>Herschel </i> <io 2010,="" 518,="" and="" astronomy="" astrophysics,="" l31.<="" td=""><td>5.1</td><td>190</td></io>	5.1	190
280	PEP: First < i>Herschel < /i> probe of dusty galaxy evolution up to z \sim 3. Astronomy and Astrophysics, 2010, 518, L27.	5.1	65
281	The first <i>Herschel</i> view of the mass-SFR link in high- <i>z</i> galaxies. Astronomy and Astrophysics, 2010, 518, L25.	5.1	222
282	<i>Herschel</i> unveils a puzzling uniformity of distant dusty galaxies. Astronomy and Astrophysics, 2010, 518, L29.	5.1	182
283	A FIRST GLIMPSE INTO THE FAR-IR PROPERTIES OF HIGH- <i>z</i> UV-SELECTED GALAXIES: <i>HERSCHEL</i> /PACS OBSERVATIONS OF <i>z</i> â^1/4 3 LBGS. Astrophysical Journal Letters, 2010, 720, L185-L189.	8.3	36
284	VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN $\langle i \rangle z \langle i \rangle = 1.5$ DISK GALAXIES. Astrophysical Journal, 2010, 713, 686-707.	4.5	748
285	DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS. Astrophysical Journal Letters, 2010, 714, L118-L122.	8.3	600
286	A MULTI-WAVELENGTH VIEW OF THE STAR FORMATION ACTIVITY AT <i>z</i> f>â^1/4 3. Astrophysical Journal, 2010, 714, 1740-1745.	4.5	64
287	A WIDE AREA SURVEY FOR HIGH-REDSHIFT MASSIVE GALAXIES. II. NEAR-INFRARED SPECTROSCOPY OF < i > BzK < /i > -SELECTED MASSIVE STAR-FORMING GALAXIES. Astrophysical Journal, 2010, 715, 385-405.	4.5	27
288	UNVEILING FAR-INFRARED COUNTERPARTS OF BRIGHT SUBMILLIMETER GALAXIES USING PACS IMAGING. Astrophysical Journal Letters, 2010, 720, L144-L148.	8.3	15

#	Article	IF	CITATIONS
289	Evolution of dust temperature of galaxies through cosmic time as seen by Herschelâ* Monthly Notices of the Royal Astronomical Society, 2010, 409, 75-82.	4.4	145
290	High-redshift elliptical galaxies: are they (all) really compact?. Monthly Notices of the Royal Astronomical Society, 2010, 401, 933-940.	4.4	100
291	Star formation rates and masses of zâ ¹ ¼ 2 galaxies from multicolour photometry. Monthly Notices of the Royal Astronomical Society, 2010, 407, 830-845.	4.4	246
292	The WIRCAM Deep Infrared Cluster Survey. Astronomy and Astrophysics, 2010, 523, A66.	5.1	40
293	Far-infrared properties of submillimeter and optically faint radio galaxies. Astronomy and Astrophysics, 2010, 518, L28.	5.1	75
294	The dust content of high- <i>z</i> submillimeter galaxies revealed by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L154.	5.1	74
295	Dissecting the cosmic infra-red background with <i>Herschel </i> /i>/PEP. Astronomy and Astrophysics, 2010, 518, L30.	5.1	106
296	<i>Herschel</i> FIR counterparts of selected Ly <i>\hat{l}±</i> emitters at <i>z</i> ~ 2.2. Astronomy and Astrophysics, 2010, 519, L4.	5.1	16
297	Star formation in AGN hosts in GOODS-N. Astronomy and Astrophysics, 2010, 518, L26.	5.1	149
298	The star-formation rates of 1.5 < z < 2.5 massive galaxies. Astronomy and Astrophysics, 2010, 518, L24.	5.1	99
299	<i>Herschel</i> deep far-infrared counts through AbellÂ2218 cluster-lens. Astronomy and Astrophysics, 2010, 518, L17.	5.1	19
300	The Antarctic Submillimetre Telescope. EAS Publications Series, 2010, 40, 269-273.	0.3	1
301	TWO BRIGHT SUBMILLIMETER GALAXIES IN A <i>>z</i>)= 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS. Astrophysical Journal, 2009, 694, 1517-1538.	4.5	298
302	INFRARED SPECTROGRAPH SPECTROSCOPY AND MULTI-WAVELENGTH STUDY OF LUMINOUS STAR-FORMING GALAXIES AT < i>z < /i> \hat{a} % f 1.9. Astrophysical Journal, 2009, 700, 183-198.	4.5	56
303	GMASS ultradeep spectroscopy of galaxies at $z\sim2$. Astronomy and Astrophysics, 2009, 499, 69-85.	5.1	87
304	On the nature of red galaxies: the Chandra perspective. Astronomy and Astrophysics, 2009, 501, 485-494.	5.1	6
305	STAR FORMATION AND DUST OBSCURATION AT <i>z</i> â‰^ 2: GALAXIES AT THE DAWN OF DOWNSIZING. Astrophysical Journal, 2009, 698, L116-L120.	4.5	311
306	LOW MILKY-WAY-LIKE MOLECULAR GAS EXCITATION OF MASSIVE DISK GALAXIES AT <i>z</i> $\hat{a}^{1}/4$ 1.5. Astrophysical Journal, 2009, 698, L178-L182.	4.5	137

#	Article	IF	CITATIONS
307	The great observatories origins deep survey. Astronomy and Astrophysics, 2009, 494, 443-460.	5.1	204
308	DESTRUCTION OF MOLECULAR GAS RESERVOIRS IN EARLY-TYPE GALAXIES BY ACTIVE GALACTIC NUCLEUS FEEDBACK. Astrophysical Journal, 2009, 690, 1672-1680.	4.5	73
309	THE SINS SURVEY: MODELING THE DYNAMICS OF < i>z < /i> $\hat{a}^{-1}/4$ 2 GALAXIES AND THE HIGH- < i>z < /i> TULLY-FISHER RELATION. Astrophysical Journal, 2009, 697, 115-132.	4.5	239
310	A CO EMISSION LINE FROM THE OPTICAL AND NEAR-IR UNDETECTED SUBMILLIMETER GALAXY GN10. Astrophysical Journal, 2009, 695, L176-L180.	4.5	124
311	EARLY-TYPE GALAXIES IN THE PEARS SURVEY: PROBING THE STELLAR POPULATIONS AT MODERATE REDSHIFT. Astrophysical Journal, 2009, 706, 158-169.	4.5	44
312	Searching for massive galaxies at <i>z â%¥</i> 3.5 in GOODS-North. Astronomy and Astrophysics, 2009, 500, 705-723.	5.1	58
313	THE SINS SURVEY: BROAD EMISSION LINES IN HIGH-REDSHIFT STAR-FORMING GALAXIES. Astrophysical Journal, 2009, 701, 955-963.	4.5	63
314	DYNAMICAL MASSES OF EARLY-TYPE GALAXIES AT <i>> $2 < i$ a^1/4 2: ARE THEY TRULY SUPERDENSE?. Astrophysical Journal, 2009, 704, L34-L39.</i>	4.5	141
315	THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF <i>z < /i> â^1/4 2 STAR-FORMING GALAXIES. Astrophysical Journal, 2009, 706, 1364-1428.</i>	4.5	887
316	SPACE: the spectroscopic all-sky cosmic explorer. Experimental Astronomy, 2009, 23, 39-66.	3.7	54
317	A search for neutral carbon towards two <i>z</i> = 4.05 submillimetre galaxies, GN���²ï¿½²20 and GN���nonthly Notices of the Royal Astronomical Society, 2009, 400, 670-676.	/ ₂ 20.2.	14
318	A surprisingly high pair fraction for extremely massive galaxies at $\langle i \rangle z \langle i \rangle$ â $^1/4$ 3 in the GOODS NICMOS survey. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 394, L51-L55.	3.3	68
319	DEEP <i>U</i> BAND AND <i>R</i> IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS,. Astrophysical Journal, Supplement Series, 2009, 183, 244-260.	7.7	147
320	GMASS ultradeep spectroscopy of galaxies at $\langle i \rangle z \langle i \rangle \sim 2$. Astronomy and Astrophysics, 2009, 504, 331-346.	5.1	89
321	The spatial clustering of X-ray selected AGN in the XMM-COSMOS field. Astronomy and Astrophysics, 2009, 494, 33-48.	5.1	90
322	Rates, progenitors and cosmic mix of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2008, 388, 829-837.	4.4	50
323	Submm/FIR Astronomy in Antarctica: Potential for a large telescope facility. EAS Publications Series, 2008, 33, 21-40.	0.3	7
324	From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at <i>z</i> $\hat{a}^{-1}/4$ 2 from Integral Field Spectroscopy in the SINS Survey. Astrophysical Journal, 2008, 687, 59-77.	4.5	536

#	Article	IF	CITATIONS
325	The search for Population III stars. Proceedings of the International Astronomical Union, 2008, 4, 75-78.	0.0	2
326	Vigorous Star Formation with Low Efficiency in Massive Disk Galaxies at $\langle i \rangle z \langle i \rangle = 1.5$. Astrophysical Journal, 2008, 673, L21-L24.	4.5	187
327	Kinemetry of SINS Highâ€Redshift Starâ€Forming Galaxies: Distinguishing Rotating Disks from Major Mergers. Astrophysical Journal, 2008, 682, 231-251.	4.5	220
328	Submillimeter Galaxies at <i>>z</i> a^¹¼ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and COâ€H ₂ Conversion Factor. Astrophysical Journal, 2008, 680, 246-262.	4.5	603
329	Toward a large telescope facility for submm/FIR astronomy at Dome C. Proceedings of SPIE, 2008, , .	0.8	4
330	Observations and modeling of a clumpy galaxy at <i>z</i> \hat{A} = \hat{A} 1.6. Astronomy and Astrophysics, 2008, 486, 741-753.	5.1	109
331	GMASS ultradeep spectroscopy of galaxies at <i>z</i> ~ 2. Astronomy and Astrophysics, 2008, 482, 21-42.	5.1	430
332	GMASS ultradeep spectroscopy of galaxies at <i>>z</i> à€‰~ 2. Astronomy and Astrophysics, 2008, 479, 417-425.	5.1	55
333	GMASS ultradeep spectroscopy of galaxies at <i>z</i> \$mathsf{sim2}\$. Astronomy and Astrophysics, 2008, 483, L39-L42.	5.1	70
334	Reliable Identification of Comptonâ€thick Quasars at <i>>z</i> â‰^2: <i>Spitzer</i> Midâ€Infrared Spectroscopy of HDFâ€oMD49. Astrophysical Journal, 2008, 687, 835-847.	4.5	116
335	New spectroscopic redshifts from the CDFS and a test of the cosmological relevance of the GOODS-South field. Astronomy and Astrophysics, 2007, 465, 1099-1108.	5.1	109
336	COSMOS: <i>Hubble Space Telescope</i> Observations. Astrophysical Journal, Supplement Series, 2007, 172, 38-45.	7.7	392
337	zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < <i>z</i> < 3 in the COSMOS Field. Astrophysical Journal, Supplement Series, 2007, 172, 70-85.	7.7	775
338	The Redshift Evolution of Earlyâ€Type Galaxies in COSMOS: Do Massive Earlyâ€Type Galaxies Form by Dry Mergers?. Astrophysical Journal, Supplement Series, 2007, 172, 494-510.	7.7	127
339	Multiwavelength Study of Massive Galaxies at <i>z</i> â^1/42. I. Star Formation and Galaxy Growth. Astrophysical Journal, 2007, 670, 156-172.	4.5	1,276
340	NICMOS Imaging of DRGs in the HDFâ€6: A Relation between Star Formation and Size atzâ^¼ 2.5. Astrophysical Journal, 2007, 656, 66-72.	4.5	166
341	Redshifts of Emission-Line Objects in the Hubble Ultra Deep Field. Astronomical Journal, 2007, 134, 169-178.	4.7	31
342	Sâ€COSMOS: The <i>Spitzer</i> Legacy Survey of the <i>Hubble Space Telescope</i> ACS 2 deg ² COSMOS Field I: Survey Strategy and First Analysis. Astrophysical Journal, Supplement Series, 2007, 172, 86-98.	7.7	503

#	Article	IF	CITATIONS
343	Multiwavelength Study of Massive Galaxies at <i>>z</i> àꀉâ^¼â€‰2. II. Widespread Comptonâ€thick Active Gala Nuclei and the Concurrent Growth of Black Holes and Bulges. Astrophysical Journal, 2007, 670, 173-189.	actic 4.5	289
344	Dynamical Properties of <i>>z</i> >â^¼ 2 Starâ€forming Galaxies and a Universal Star Formation Relation. Astrophysical Journal, 2007, 671, 303-309.	4.5	215
345	Morphological properties of massive galaxies at highâ^'z from GOODS. Proceedings of the International Astronomical Union, 2007, 3, 407-410.	0.0	1
346	The reversal of the star formation-density relation in the distant universe. Astronomy and Astrophysics, 2007, 468, 33-48.	5.1	1,253
347	The spatial clustering of mid-IRÂselected star forming galaxies atÂ <i>z</i> ~ 1 in the GOODS fields. Astronomy and Astrophysics, 2007, 475, 83-99.	5.1	33
348	A Search for Emission Line Galaxies at zÂ=Â6.5. Globular Clusters - Guides To Galaxies, 2006, , 406-407.	0.1	0
349	Mass downsizing and "top-down―assembly of early-type galaxies. Astronomy and Astrophysics, 2006, 453, L29-L33.	5.1	226
350	The Deepest Near-Infrared View of the Universe. Globular Clusters - Guides To Galaxies, 2006, , 179-184.	0.1	0
351	A Wide Area Survey for Highâ€Redshift Massive Galaxies. I. Number Counts and Clustering of BzKs and EROs. Astrophysical Journal, 2006, 638, 72-87.	4.5	128
352	Evidence for TPâ€AGB Stars in Highâ€Redshift Galaxies, and Their Effect on Deriving Stellar Population Parameters. Astrophysical Journal, 2006, 652, 85-96.	4.5	317
353	MAMBO 1.2 mm Observations of B z K -selected Star-forming Galaxies at z \sim 2. Astrophysical Journal, 2006, 637, L5-L8.	4.5	12
354	The Hubble Deep Field-North SCUBA Super-map - IV. Characterizing submillimetre galaxies using deep Spitzer imaging. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1185-1207.	4.4	298
355	The rapid formation of a large rotating disk galaxy three billion years after the Big Bang. Nature, 2006, 442, 786-789.	27.8	393
356	The Structure and Star Formation History of Earlyâ€Type Galaxies in the Ultra Deep Field/GRAPES Survey. Astrophysical Journal, 2006, 636, 115-133.	4.5	33
357	SpitzerObservations of Massive, Red Galaxies at High Redshift. Astrophysical Journal, 2006, 640, 92-113.	4.5	279
358	IRAC Mid-Infrared Imaging of the Hubble Deep Field-South: Star Formation Histories and Stellar Masses of Red Galaxies at z  > 2. Astrophysical Journal, 2005, 624, L81-L84.	4.5	300
359	Passively Evolving Early‶ype Galaxies at 1.4 ≲z≲ 2.5 in the Hubble Ultra Deep Field. Astrophysical Journal, 2005, 626, 680-697.	4.5	737
360	A Redshiftzâ‰^ 5.4 Lyα Emitting Galaxy with Linear Morphology in the GRAPES/Hubble Ultra Deep Field. Astrophysical Journal, 2005, 621, 582-586.	4.5	24

#	Article	IF	CITATIONS
361	An Overdensity of Galaxies atz= 5.9 + 0.2 in the Hubble Ultra Deep Field Confirmed Using the ACS Grism. Astrophysical Journal, 2005, 626, 666-679.	4.5	125
362	The evolution of the galaxyB-band rest-frame morphology to $z\hat{a}^{-1}/4$ 2: new clues from the K20/GOODS sample. Monthly Notices of the Royal Astronomical Society, 2005, 357, 903-917.	4.4	96
363	The K20 survey. Astronomy and Astrophysics, 2005, 437, 883-897.	5.1	195
364	The spatial clustering of X-ray selected AGN and galaxies in the Chandra Deep Field South and North. Astronomy and Astrophysics, 2005, 430, 811-825.	5.1	90
365	The Population of B z K -selected ULIRGs at z \sim 2. Astrophysical Journal, 2005, 631, L13-L16.	4.5	148
366	XMM-Newtonobservations of Extremely Red Objects and the link with luminous, X-ray obscured quasars. Astronomy and Astrophysics, 2005, 432, 69-81.	5.1	77
367	The evolution of early-type galaxies at z â^¼â€‰1 from the K20 survey. Astronomy and Astrophysics, 2005, 4 125-136.	442, 5.1'	97
368	The K20 survey. Astronomy and Astrophysics, 2004, 424, 23-42.	5.1	294
369	A Lyman αemitter atz= 6.5 found with slitless spectroscopy. Astronomy and Astrophysics, 2004, 422, L13-L17.	5.1	43
370	Old galaxies in the young Universe. Nature, 2004, 430, 184-187.	27.8	331
371	Near-Infrared Bright Galaxies at z 2. Entering the Spheroid Formation Epoch?. Astrophysical Journal, 2004, 600, L127-L130.	4.5	155
372	A New Photometric Technique for the Joint Selection of Starâ€forming and Passive Galaxies at 1.4 ≲z≲ 2.5. Astrophysical Journal, 2004, 617, 746-764.	4.5	584
373	The Redshift Distribution of Near-Infrared-selected Galaxies in the Great Observatories Origins Deep Survey as a Test of Galaxy Formation Scenarios. Astrophysical Journal, 2004, 600, L135-L138.	4.5	79
374	Metal Enrichment in Near-Infrared Luminous Galaxies at z  ~ 2: Signatures of Proto-elliptical Galaxies?. Astrophysical Journal, 2004, 608, L29-L32.	4.5	20
375	Photometric Redshifts for Galaxies in the GOODS Southern Field. Astrophysical Journal, 2004, 600, L167-L170.	4.5	98
376	The Luminosityâ€Size and Massâ€Size Relations of Galaxies out tozâ^¼ 3. Astrophysical Journal, 2004, 604, 521-533.	4.5	127
377	Stellar Populations and Kinematics of Red Galaxies atz > 2: Implications for the Formation of Massive Galaxies. Astrophysical Journal, 2004, 611, 703-724.	4.5	139
378	GRAPES, Grism Spectroscopy of the Hubble Ultra Deep Field: Description and Data Reduction. Astrophysical Journal, Supplement Series, 2004, 154, 501-508.	7.7	102

#	Article	IF	Citations
379	A Substantial Population of Red Galaxies atz > 2: Modeling of the Spectral Energy Distributions of an Extended Sample. Astrophysical Journal, 2004, 616, 40-62.	4.5	139
380	Proto-clusters and the clustering of distant galaxies and radio sources. New Astronomy Reviews, 2003, 47, 309-314.	12.8	18
381	The K20 survey: new light on the evolution of massive galaxies from deep VLT spectroscopic observations. , 2003, 4834, 183.		0
382	Large Disklike Galaxies at High Redshift. Astrophysical Journal, 2003, 591, L95-L98.	4.5	73
383	Tracing the Largeâ€Scale Structure in theChandraDeep Field South. Astrophysical Journal, 2003, 592, 721-727.	4.5	136
384	Detection of Strong Clustering of RedK-selected Galaxies at [FORMULA] [F]2 <z[inf][rm]phot[2003,="" 50-64.<="" 588,="" astrophysical="" deep="" f][="" field-south.="" formula]="" hubble="" in="" inf]<4[="" journal,="" rm][="" td="" the=""><td>4.5</td><td>103</td></z[inf][rm]phot[>	4.5	103
385	The Evolution of the Galaxy Luminosity Function in the Rest-Frame Blue Band up to z =3.5. Astrophysical Journal, 2003, 593, L1-L5.	4.5	61
386	The Restâ€Frame Optical Luminosity Density, Color, and Stellar Mass Density of the Universe fromz= 0 toz= 3. Astrophysical Journal, 2003, 599, 847-864.	4.5	239
387	A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies. Astrophysical Journal, 2003, 587, L79-L82.	4.5	395
388	Spectroscopic Confirmation of a Substantial Population of Luminous Red Galaxies at Redshifts z 2. Astrophysical Journal, 2003, 587, L83-L87.	4.5	116
389	The manifold spectra and morphologies of EROs. Astronomy and Astrophysics, 2003, 412, L1-L5.	5.1	57
390	The K20 survey. V. The evolution of the near-IR Luminosity Function. Astronomy and Astrophysics, 2003, 402, 837-848.	5.1	146
391	Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts. Astronomical Journal, 2003, 125, 1107-1123.	4.7	221
392	Extremely Red Objects: An X-Ray Dichotomy. Astrophysical Journal, 2002, 581, L89-L92.	4.5	27
393	The K20 survey. Astronomy and Astrophysics, 2002, 392, 395-406.	5.1	152
394	The K20 survey. Astronomy and Astrophysics, 2002, 381, L68-L72.	5.1	235
395	The K20 survey. Astronomy and Astrophysics, 2002, 384, L1-L5.	5.1	58
396	The K20 survey. Astronomy and Astrophysics, 2002, 391, L1-L5.	5.1	108

#	Article	IF	CITATIONS
397	Near-infrared template spectra of normal galaxies:k-corrections, galaxy models and stellar populations. Monthly Notices of the Royal Astronomical Society, 2001, 326, 745-758.	4.4	233
398	Is the deficit of Z > 1 field ellipticals real?. Astrophysics and Space Science, 2001, 277, 531-534.	1.4	0
399	The spatial clustering of distant, \$zsim1\$, early-type galaxies. Astronomy and Astrophysics, 2001, 376, 825-836.	5.1	60
400	VLT observations of high redshift extremely red galaxies. , 2000, 4005, 45.		1
401	EROs and the Large-Scale Structure of High-z Ellipticals. , 0, , 264-265.		O
402	The Masses of X-ray Emitting EROs., 0,, 126-127.		0
403	Tracing the Formation of Massive Spheroids from High-z Galaxy Clustering. , 0, , 257-262.		O
404	Merger driven star-formation activity in ClÂJ1449+0856 at z=1.99 as seen by ALMA and JVLA. Monthly Notices of the Royal Astronomical Society, $0,$	4.4	31
405	Constraining the Mass Assembly in Ellipticals from ERO Clustering. , 0, , 130-135.		O