Aaron R Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3990389/publications.pdf

Version: 2024-02-01

567281 580821 26 703 15 25 citations h-index g-index papers 31 31 31 1228 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Impact of Oxidative Stress on Adipose Tissue Energy Balance. Frontiers in Physiology, 2019, 10, 1638.	2.8	113
2	Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. Diabetologia, 2015, 58, 1523-1531.	6.3	58
3	Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II:peptide complex modulate the progression of autoimmune diabetes. Journal of Autoimmunity, 2019, 96, 50-58.	6.5	56
4	Resolving Discrepant Findings on ANGPTL8 in \hat{I}^2 -Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE, 2016, 11, e0159276.	2.5	51
5	\hat{l}^2 Cells Persist in T1D Pancreata Without Evidence of Ongoing \hat{l}^2 -Cell Turnover or Neogenesis. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2647-2659.	3.6	49
6	Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood. Nature Communications, 2020, 11, 2316.	12.8	43
7	Highly Proliferative α-Cell–Related Islet Endocrine Cells in Human Pancreata. Diabetes, 2018, 67, 674-686.	0.6	34
8	Immune Cells Gate White Adipose Tissue Expansion. Endocrinology, 2019, 160, 1645-1658.	2.8	33
9	Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes. PLoS ONE, 2015, 10, e0129809.	2.5	32
10	Low-Level Insulin Content Within Abundant Non- \hat{l}^2 Islet Endocrine Cells in Long-standing Type 1 Diabetes. Diabetes, 2019, 68, 598-608.	0.6	32
11	Extreme obesity induces massive beta cell expansion in mice through self-renewal and does not alter the beta cell lineage. Diabetologia, 2016, 59, 1231-1241.	6.3	25
12	STAT1 Dissociates Adipose Tissue Inflammation From Insulin Sensitivity in Obesity. Diabetes, 2020, 69, 2630-2641.	0.6	24
13	Paracrine signaling in islet function and survival. Journal of Molecular Medicine, 2020, 98, 451-467.	3.9	24
14	Tamoxifen suppresses pancreatic \hat{l}^2 -cell proliferation in mice. PLoS ONE, 2019, 14, e0214829.	2.5	21
15	Incretin Therapies Do Not Expand Î ² -Cell Mass or Alter Pancreatic Histology in Young Male Mice. Endocrinology, 2017, 158, 1701-1714.	2.8	16
16	Acetyl-CoA and Metabolite Fluxes Regulate White Adipose Tissue Expansion. Trends in Endocrinology and Metabolism, 2021, 32, 320-332.	7.1	16
17	<i>miR-30a</i> targets gene networks that promote browning of human and mouse adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E667-E677.	3.5	14
18	Bisphenol AF promotes inflammation in human white adipocytes. American Journal of Physiology - Cell Physiology, 2020, 318, C63-C72.	4.6	12

#	Article	IF	CITATIONS
19	Constitutive loss of DNMT3A causes morbid obesity through misregulation of adipogenesis. ELife, 0, 11 , .	6.0	12
20	Deficiency of Stat1 in CD11c+ Cells Alters Adipose Tissue Inflammation and Improves Metabolic Dysfunctions in Mice Fed a High-Fat Diet. Diabetes, 2021, 70, 720-732.	0.6	10
21	Ube2i deletion in adipocytes causes lipoatrophy in mice. Molecular Metabolism, 2021, 48, 101221.	6.5	9
22	The bile acid induced hepatokine orosomucoid suppresses adipocyte differentiation. Biochemical and Biophysical Research Communications, 2021, 534, 864-870.	2.1	6
23	CD19+lgM+ cells demonstrate enhanced therapeutic efficacy in type 1 diabetes mellitus. JCI Insight, 2018, 3, .	5.0	5
24	HIV-1 Viral Protein R Couples Metabolic Inflexibility With White Adipose Tissue Thermogenesis. Diabetes, 2021, 70, 2014-2025.	0.6	3
25	Area IV Knockout Reveals How Pdx1 Is Regulated in Postnatal β-Cell Development. Diabetes, 2017, 66, 2738-2740.	0.6	2
26	SUN-104 The Anti-Rheumatic Drug Auranofin Improves The Metabolic Phenotype Of Obesity. Journal of the Endocrine Society, 2019, 3, .	0.2	0