
Petri-Jaan Lahtvee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3988776/publications.pdf Version: 2024-02-01

DETDI-IAANI LAHTVEE

#	Article	IF	CITATIONS
1	Development of a dedicated Golden Gate Assembly Platform (RtGGA) for Rhodotorula toruloides. Metabolic Engineering Communications, 2022, 15, e00200.	3.6	8
2	Benchmarking accuracy and precision of intensityâ€based absolute quantification of protein abundances in <i>Saccharomyces cerevisiae</i> . Proteomics, 2021, 21, e2000093.	2.2	13
3	Screening and Growth Characterization of Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Frontiers in Bioengineering and Biotechnology, 2021, 9, 659472.	4.1	14
4	Potassium and Sodium Salt Stress Characterization in the Yeasts Saccharomyces cerevisiae, Kluyveromyces marxianus, and <i>Rhodotorula toruloides</i> . Applied and Environmental Microbiology, 2021, 87, e0310020.	3.1	14
5	Metabolism Control in 3D-Printed Living Materials Improves Fermentation. ACS Applied Bio Materials, 2021, 4, 7195-7203.	4.6	11
6	Xylose Metabolism and the Effect of Oxidative Stress on Lipid and Carotenoid Production in Rhodotorula toruloides: Insights for Future Biorefinery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1008.	4.1	49
7	Physical Confinement Impacts Cellular Phenotypes within Living Materials. ACS Applied Bio Materials, 2020, 3, 4273-4281.	4.6	30
8	Cell‣aden Hydrogels for Multikingdom 3D Printing. Macromolecular Bioscience, 2020, 20, e2000121.	4.1	29
9	C/N ratio and carbon source-dependent lipid production profiling in Rhodotorula toruloides. Applied Microbiology and Biotechnology, 2020, 104, 2639-2649.	3.6	71
10	The yeast osmostress response is carbon source dependent. Scientific Reports, 2017, 7, 990.	3.3	55
11	Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast. Cell Systems, 2017, 4, 495-504.e5.	6.2	178
12	Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Applied Microbiology and Biotechnology, 2017, 101, 6969-6980.	3.6	57
13	Improving the phenotype predictions of a yeast genomeâ€scale metabolic model by incorporating enzymatic constraints. Molecular Systems Biology, 2017, 13, 935.	7.2	367
14	Adaptation to different types of stress converge on mitochondrial metabolism. Molecular Biology of the Cell, 2016, 27, 2505-2514.	2.1	59
15	Protein turnover forms one of the highest maintenance costs in Lactococcus lactis. Microbiology (United Kingdom), 2014, 160, 1501-1512.	1.8	37
16	Applications of computational modeling in metabolic engineering of yeast. FEMS Yeast Research, 2014, 15, n/a-n/a.	2.3	28
17	Systems Biology: Developments and Applications. , 2014, , 83-96.		3
18	Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates. Microbial Cell Factories, 2011, 10, 12.	4.0	61

Petri-Jaan Lahtvee

#	Article	IF	CITATIONS
19	Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Systems Biology, 2010, 4, 166.	3.0	184
20	Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures. Journal of Biotechnology, 2010, 145, 60-65.	3.8	83
21	Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures. Antonie Van Leeuwenhoek, 2009, 95, 219-226.	1.7	17
22	Steady state growth space study of Lactococcus lactis in D-stat cultures. Antonie Van Leeuwenhoek, 2009, 96, 487-496.	1.7	10