Justus Notholt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3987637/publications.pdf Version: 2024-02-01

	30070	39675
12,831	54	94
citations	h-index	g-index
221	221	7005
331	331	/085
docs citations	times ranked	citing authors
	12,831 citations 331 docs citations	12,831 citations54 h-index331 docs citations331 times ranked

#	Article	IF	CITATIONS
1	Long-Term Observations of Atmospheric Constituents at the First Ground-Based High-Resolution Fourier-Transform Spectrometry Observation Station in China. Engineering, 2023, 22, 201-214.	6.7	5
2	Side by side measurements of CO ₂ by ground-based Fourier transform spectrometry (FTS). Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 749.	1.6	84
3	Global Atmospheric OCS Trend Analysis From 22 NDACC Stations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	12
4	An 11-year record of XCO ₂ estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. Earth System Science Data, 2022, 14, 325-360.	9.9	17
5	Satellite Observations Reveal a Large CO Emission Discrepancy From Industrial Point Sources Over China. Geophysical Research Letters, 2022, 49, .	4.0	7
6	Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment. Remote Sensing, 2022, 14, 1810.	4.0	0
7	A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017. Earth System Science Data, 2022, 14, 2767-2784.	9.9	2
8	Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm. Atmospheric Measurement Techniques, 2022, 15, 3401-3437.	3.1	10
9	CO ₂ emissions from peat-draining rivers regulated by water pH. Biogeosciences, 2022, 19, 2855-2880.	3.3	2
10	First retrievals of peroxyacetyl nitrate (PAN) from ground-based FTIR solar spectra recorded at remote sites, comparison with model and satellite data. Elementa, 2021, 9, .	3.2	7
11	Characterization and potential for reducing optical resonances in Fourier transform infrared spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC). Atmospheric Measurement Techniques, 2021, 14, 1239-1252.	3.1	9
12	COVIDâ€19 Crisis Reduces Free Tropospheric Ozone Across the Northern Hemisphere. Geophysical Research Letters, 2021, 48, e2020GL091987.	4.0	51
13	Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier transform infrared observation and GEOS-Chem model simulation. Atmospheric Chemistry and Physics, 2021, 21, 6365-6387.	4.9	20
14	XCO ₂ retrieval for GOSAT and GOSAT-2 based on the FOCAL algorithm. Atmospheric Measurement Techniques, 2021, 14, 3837-3869.	3.1	15
15	The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison. Atmosphere, 2021, 12, 625.	2.3	5
16	Model simulations of chemical effects of sprites in relation with observed HO ₂ enhancements over sprite-producing thunderstorms. Atmospheric Chemistry and Physics, 2021, 21, 7579-7596.	4.9	2
17	Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 2021, 21, 9201-9222.	4.9	10
18	Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH ₄ data with weak-constraint four-dimensional variational data assimilation. Atmospheric Chemistry and Physics, 2021, 21, 9545-9572.	4.9	14

#	Article	IF	CITATIONS
19	The Adaptable 4A Inversion (5AI): description and first <i>X</i> _{CO₂&am retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations. Atmospheric Measurement Techniques, 2021, 14, 4689-4706.}	1p;]t;/sub&	.amp;gt;
20	The reduction in C ₂ H ₆ from 2015 to 2020 over Hefei, eastern China, points to air quality improvement in China. Atmospheric Chemistry and Physics, 2021, 21, 11759-11779.	4.9	12
21	Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations. Atmospheric Measurement Techniques, 2021, 14, 6249-6304.	3.1	57
22	Spatial distributions of <i>X</i> _{CO₂&am seasonal cycle amplitude and phase over northern high-latitude regions. Atmospheric Chemistry and Physics, 2021, 21, 16661-16687.}	ıp;lt;/sub& 4:9	.amp;gt; 10;gt;
23	Assessing the feasibility of using a neural network to filter Orbiting Carbon ObservatoryÂ2 (OCO-2) retrievals at northern high latitudes. Atmospheric Measurement Techniques, 2021, 14, 7511-7524.	3.1	4
24	The drivers and health risks of unexpected surface ozone enhancements over the Sichuan Basin, China, in 2020. Atmospheric Chemistry and Physics, 2021, 21, 18589-18608.	4.9	12
25	Bias Correction of the Ratio of Total Column CH4 to CO2 Retrieved from GOSAT Spectra. Remote Sensing, 2020, 12, 3155.	4.0	2
26	Toward High Precision XCO ₂ Retrievals From TanSat Observations: Retrieval Improvement and Validation Against TCCON Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032794.	3.3	25
27	Diagnosing Mixing Properties in Model Simulations for CH ₄ in the Stratosphere. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032524.	3.3	2
28	Observed Hemispheric Asymmetry in Stratospheric Transport Trends From 1994 to 2018. Geophysical Research Letters, 2020, 47, e2020GL088567.	4.0	13
29	Validation of Carbon Trace Gas Profile Retrievals from the NOAA-Unique Combined Atmospheric Processing System for the Cross-Track Infrared Sounder. Remote Sensing, 2020, 12, 3245.	4.0	23
30	A New Remote Sensing Method to Estimate River to Ocean DOC Flux in Peatland Dominated Sarawak Coastal Regions, Borneo. Remote Sensing, 2020, 12, 3380.	4.0	7
31	Impact of Molecular Spectroscopy on Carbon Monoxide Abundances from TROPOMI. Remote Sensing, 2020, 12, 3486.	4.0	3
32	Spectral sizing of a coarse-spectral-resolution satellite sensor for XCO ₂ . Atmospheric Measurement Techniques, 2020, 13, 731-745.	3.1	3
33	Fourier transform infrared time series of tropospheric HCN in eastern China: seasonality, interannual variability, and source attribution. Atmospheric Chemistry and Physics, 2020, 20, 5437-5456.	4.9	17
34	Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications. Atmospheric Measurement Techniques, 2020, 13, 789-819.	3.1	22
35	Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem. Atmospheric Chemistry and Physics, 2020, 20, 12813-12851.	4.9	26
36	TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmospheric Measurement Techniques, 2020, 13, 3751-3767.	3.1	66

#	Article	IF	CITATIONS
37	Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO ₂ , CH ₄ , and CO. Atmospheric Measurement Techniques, 2020, 13, 4791-4839.	3.1	28
38	A decade of GOSAT Proxy satellite CH ₄ observations. Earth System Science Data, 2020, 12, 3383-3412.	9.9	53
39	Characterizing model errors in chemical transport modeling of methane: impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model. Geoscientific Model Development, 2020, 13, 3839-3862.	3.6	27
40	Ground-based millimetre-wave measurements of middle-atmospheric carbon monoxide above Ny-Ålesund (78.9° N, 11.9° E). Atmospheric Measurement Techniques, 2019, 12, 4077-4089.	3.1	1
41	Impact of peatlands on carbon dioxide (CO ₂) emissions from the Rajang River and Estuary, Malaysia. Biogeosciences, 2019, 16, 17-32.	3.3	17
42	Emissions of methane in Europe inferred by total column measurements. Atmospheric Chemistry and Physics, 2019, 19, 3963-3980.	4.9	10
43	An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model. Atmospheric Measurement Techniques, 2019, 12, 1393-1408.	3.1	17
44	Evaluation and Analysis of the Seasonal Cycle and Variability of the Trend from GOSAT Methane Retrievals. Remote Sensing, 2019, 11, 882.	4.0	17
45	Evaluation of MOPITT VersionÂ7 joint TIR–NIR X _{CO} retrievals with TCCON. Atmospheric Measurement Techniques, 2019, 12, 5547-5572.	3.1	21
46	A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor. Atmospheric Measurement Techniques, 2019, 12, 6771-6802.	3.1	71
47	FTIR time series of stratospheric NO ₂ over Hefei, China, and comparisons with OMI and GEOS-Chem model data. Optics Express, 2019, 27, A1225.	3.4	32
48	Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors. Atmospheric Chemistry and Physics, 2018, 18, 1457-1474.	4.9	18
49	Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 2018, 11, 6539-6576.	3.1	188
50	Ozone seasonal evolution and photochemical production regime in the polluted troposphere in eastern China derived from high-resolution Fourier transform spectrometry (FTS) observations. Atmospheric Chemistry and Physics, 2018, 18, 14569-14583.	4.9	42
51	NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. Atmospheric Measurement Techniques, 2018, 11, 5049-5073.	3.1	37
52	Carbon dioxide retrieval from OCO-2 satellite observations using the RemoTeC algorithm and validation with TCCON measurements. Atmospheric Measurement Techniques, 2018, 11, 3111-3130.	3.1	45
53	The influence of instrumental line shape degradation on NDACC gas retrievals: total column and profile. Atmospheric Measurement Techniques, 2018, 11, 2879-2896.	3.1	21
54	Global land mapping of satellite-observed CO ₂ total columns using spatio-temporal geostatistics. International Journal of Digital Earth, 2017, 10, 426-456.	3.9	33

#	Article	IF	CITATIONS
55	EOF-based regression algorithm for the fast retrieval of atmospheric CO2 total column amount from the COSAT observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189, 258-266.	2.3	9
56	Diel variation in isotopic composition of soil respiratory CO 2 fluxes: The role of non-steady state conditions. Agricultural and Forest Meteorology, 2017, 234-235, 95-105.	4.8	11
57	Application of the automatic seep location estimator (ASLE) with the use of contextual information for estimating offshore oil seeps. Remote Sensing Applications: Society and Environment, 2017, 5, 16-26.	1.5	1
58	Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set. Remote Sensing of Environment, 2017, 203, 276-295.	11.0	52
59	Validation of GOSAT SWIR XCO ₂ and XCH ₄ Retrieved by PPDF-S Method and Comparison with Full Physics Method. Scientific Online Letters on the Atmosphere, 2017, 13, 168-173.	1.4	6
60	Contributions of the troposphere and stratosphere to CH ₄ model biases. Atmospheric Chemistry and Physics, 2017, 17, 13283-13295.	4.9	7
61	Study of the footprints of short-term variation in XCO ₂ observed by TCCON sites using NIES and FLEXPART atmospheric transport models. Atmospheric Chemistry and Physics, 2017, 17, 143-157.	4.9	10
62	Technical note: Sensitivity of instrumental line shape monitoring for the ground-based high-resolution FTIR spectrometer with respect to different optical attenuators. Atmospheric Measurement Techniques, 2017, 10, 989-997.	3.1	13
63	The arctic seasonal cycle of total column CO ₂ and CH ₄ from ground-based solar and lunar FTIR absorption spectrometry. Atmospheric Measurement Techniques, 2017, 10, 2397-2411.	3.1	4
64	Comparison of the GOSAT TANSO-FTS TIR CH ₄ volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations. Atmospheric Measurement Techniques, 2017, 10, 3697-3718.	3.1	10
65	Validation of the CrIS fast physical NH ₃ retrieval with ground-based FTIR. Atmospheric Measurement Techniques, 2017, 10, 2645-2667.	3.1	52
66	Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) <i>X</i> _{CO₂& measurements with TCCON. Atmospheric Measurement Techniques, 2017, 10, 2209-2238.}	; 3t;/ sub&a	napæt;
67	Investigating the performance of a greenhouse gas observatory in Hefei, China. Atmospheric Measurement Techniques, 2017, 10, 2627-2643.	3.1	44
68	Tropospheric water vapour isotopologue data (H ₂ ¹⁶ O,) Tj ETQq0 0 0 rgB	T /Overloo 9.9	ck 10 Tf 50 2 26
69	Earth System Science Data, 2017, 9, 15-29. Strato-mesospheric carbon monoxide profiles above Kiruna, Sweden (67.8 °â€⁻N, 20.4 °â€⁻E), since 2008. Earth System Science Data, 2017, 9, 77-89.	9.9	5
70	Retrieval of xCO ₂ from ground-based mid-infrared (NDACC) solar absorption spectra and comparison to TCCON. Atmospheric Measurement Techniques, 2016, 9, 577-585.	3.1	18
71	Fate of terrestrial organic carbon and associated CO ₂ and CO emissions from two Southeast Asian estuaries. Biogeosciences, 2016, 13, 691-705.	3.3	23
72	Bias corrections of GOSAT SWIR XCO ₂ and XCH ₄ with TCCON data and their evaluation using aircraft measurement data. Atmospheric Measurement Techniques, 2016, 9, 3491-3512.	3.1	40

#	Article	IF	CITATIONS
73	Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmospheric Measurement Techniques, 2016, 9, 683-709.	3.1	80
74	Nitrous oxide and methane in two tropical estuaries in a peat-dominated region of northwestern Borneo. Biogeosciences, 2016, 13, 2415-2428.	3.3	30
75	Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network. Remote Sensing, 2016, 8, 414.	4.0	20
76	Stratospheric aerosol-Observations, processes, and impact on climate. Reviews of Geophysics, 2016, 54, 278-335.	23.0	265
77	Seasonal variability of stratospheric methane: implications for constraining tropospheric methane budgets using total column observations. Atmospheric Chemistry and Physics, 2016, 16, 14003-14024.	4.9	24
78	Towards understanding the variability in biospheric CO ₂ Âfluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO&:lt:sub>2<:/sub> Atmospheric Chemistry and Physics, 2016, 16, 2123-2138	4.9	20
79	An evaluation of IASI-NH ₃ with ground-based Fourier transform infrared spectroscopy measurements. Atmospheric Chemistry and Physics, 2016, 16, 10351-10368.	4.9	56
80	How increasing CO ₂ leads to an increased negative greenhouse effect in Antarctica. Geophysical Research Letters, 2015, 42, 10,422.	4.0	20
81	Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmospheric Chemistry and Physics, 2015, 15, 2915-2933.	4.9	76
82	Retrieval of ammonia from ground-based FTIR solar spectra. Atmospheric Chemistry and Physics, 2015, 15, 12789-12803.	4.9	32
83	Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmospheric Chemistry and Physics, 2015, 15, 7049-7069.	4.9	225
84	The role of photo- and thermal degradation for CO ₂ and CO fluxes in an arid ecosystem. Biogeosciences, 2015, 12, 4161-4174.	3.3	26
85	Lateral carbon fluxes and CO ₂ outgassing from a tropical peat-draining river. Biogeosciences, 2015, 12, 5967-5979.	3.3	59
86	Assessing 5 years of GOSAT Proxy XCH ₄ data and associated uncertainties. Atmospheric Measurement Techniques, 2015, 8, 4785-4801.	3.1	64
87	Using XCO ₂ retrievals for assessing the long-term consistency of NDACC/FTIR data sets. Atmospheric Measurement Techniques, 2015, 8, 1555-1573.	3.1	39
88	Validation of SCIAMACHY HDO/H ₂ O measurements using the TCCON and NDACC-MUSICA networks. Atmospheric Measurement Techniques, 2015, 8, 1799-1818.	3.1	17
89	The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sensing of Environment, 2015, 162, 344-362.	11.0	112
90	A model study of the plasma chemistry of stratospheric Blue Jets. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 122, 75-85.	1.6	22

#	Article	IF	CITATIONS
91	The Use of FTIR-Spectrometry in Combination with Different Biosphere-Atmosphere Flux Measurement Techniques. Springer Earth System Sciences, 2015, , 77-84.	0.2	0
92	The impact of spectral resolution on satellite retrieval accuracy of CO ₂ and CH ₄ . Atmospheric Measurement Techniques, 2014, 7, 1105-1119.	3.1	6
93	Derivation of tropospheric methane from TCCON CH ₄ and HF total column observations. Atmospheric Measurement Techniques, 2014, 7, 2907-2918.	3.1	28
94	The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO ₂ and CH ₄ retrieval algorithm products with measurements from the TCCON. Atmospheric Measurement Techniques; 2014; 7, 1723-1744, O and LD in atmospheric water	3.1	70
95	vapour from ground-based near-infrared FTIR retrievals of H ₂ ¹⁶ O, H ₂ ¹⁸ O, and HD&:lt:sup>:16&:lt:/sup>O. Atmospheric Measurement Techniques, 2014, 7.	3.1	19
96	Retrieval of tropospheric column-averaged CH ₄ mole fraction by solar absorption FTIR-spectrometry using N ₂ O as a proxy. Atmospheric Measurement Techniques, 2014, 7, 3295-3305.	3.1	23
97	Tropospheric CH ₄ signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements. Atmospheric Measurement Techniques, 2014, 7, 2337-2360.	3.1	38
98	Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 2014, 515, 104-107.	27.8	110
99	Intertidal Topographic Maps and Morphological Changes in the German Wadden Sea between 1996–1999 and 2006–2009 from the Waterline Method and SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3210-3224.	4.9	24
100	The chemistry of daytime sprite streamers – a model study. Atmospheric Chemistry and Physics, 2014, 14, 3545-3556.	4.9	18
101	Constraints for the photolysis rate and the equilibrium constant of ClOâ€dimer from airborne and balloonâ€borne measurements of chlorine compounds. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6916-6937.	3.3	1
102	A tropical West Pacific OH minimum and implications for stratospheric composition. Atmospheric Chemistry and Physics, 2014, 14, 4827-4841.	4.9	60
103	On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER. Atmospheric Chemistry and Physics, 2014, 14, 10193-10210.	4.9	12
104	Satellite-inferred European carbon sink larger than expected. Atmospheric Chemistry and Physics, 2014, 14, 13739-13753.	4.9	83
105	A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmospheric Chemistry and Physics, 2014, 14, 3991-4012.	4.9	106
106	Drivers of column-average CO ₂ variability at Southern Hemispheric Total Carbon Column Observing Network sites. Atmospheric Chemistry and Physics, 2014, 14, 9883-9901.	4.9	18
107	Corrigendum to "A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements" published in Atmos. Chem. Phys., 14, 3991–4012, 2014. Atmospheric Chemistry and Physics, 2014, 14, 10961-10962.	4.9	1
108	Urban mercury pollution in the City of Paramaribo, Suriname. Air Quality, Atmosphere and Health, 2013, 6, 205-213.	3.3	11

#	Article	IF	CITATIONS
109	A model study of the negative chlorine ion chemistry in the Earth's mesosphere. Advances in Space Research, 2013, 51, 2342-2352.	2.6	3
110	Simultaneous retrieval of atmospheric CO ₂ and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites. Applied Optics, 2013, 52, 1339.	1.8	15
111	Improvement of the retrieval algorithm for GOSAT SWIR XCO ₂ and XCH ₄ and their validation using TCCON data. Atmospheric Measurement Techniques, 2013, 6, 1533-1547.	3.1	261
112	HDO/H ₂ O ratio retrievals from GOSAT. Atmospheric Measurement Techniques, 2013, 6, 599-612.	3.1	45
113	Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO ₂ retrievals over TCCON sites. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1493-1512.	3.3	46
114	The topography comparsion between the year 1999 and 2006 of German tidal flat wadden sea analyzing SAR images with waterline method. , 2013, , .		1
115	The covariation of Northern Hemisphere summertime CO ₂ with surface temperature in boreal regions. Atmospheric Chemistry and Physics, 2013, 13, 9447-9459.	4.9	42
116	Simulations of column-averaged CO ₂ and CH ₄ using the NIES TM with a hybrid sigma-isentropic (Ïf-Î,) vertical coordinate. Atmospheric Chemistry and Physics, 2013, 13, 1713-1732.	4.9	42
117	Influence of Solar Radiation on the Diurnal and Seasonal Variability of O3 and H2O in the Stratosphere and Lower Mesosphere, Based on Continuous Observations in the Tropics and the High Arctic. Springer Atmospheric Sciences, 2013, , 125-147.	0.3	5
118	Remote Sensing and Modelling of Atmospheric Chemistry and Sea Ice Parameters. SpringerBriefs in Earth System Sciences, 2013, , 9-56.	0.1	0
119	SCIAMACHY WFM-DOAS <i>X</i> CO ₂ : reduction of scattering related errors. Atmospheric Measurement Techniques, 2012, 5, 2375-2390.	3.1	23
120	Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation. Atmospheric Measurement Techniques, 2012, 5, 1965-1972.	3.1	54
121	Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA. Atmospheric Measurement Techniques, 2012, 5, 3007-3027.	3.1	69
122	Validation of IASI FORLI carbon monoxide retrievals using FTIR data from NDACC. Atmospheric Measurement Techniques, 2012, 5, 2751-2761.	3.1	45
123	Remote sensing of CO ₂ and CH ₄ using solar absorption spectrometry with a low resolution spectrometer. Atmospheric Measurement Techniques, 2012, 5, 1627-1635.	3.1	23
124	The ACOS CO ₂ retrieval algorithm – Part II: Global X _{CO₂} data characterization. Atmospheric Measurement Techniques, 2012, 5, 687-707.	3.1	320
125	Topographic mapping of Wadden Sea, with SAR images and waterlevel model data. , 2012, , .		1
126	Automated ground-based remote sensing measurements of greenhouse gases at the BiaÅ,ystok site in comparison with collocated in situ measurements and model data. Atmospheric Chemistry and Physics, 2012, 12, 6741-6755.	4.9	25

#	Article	IF	CITATIONS
127	Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results. Atmospheric Chemistry and Physics, 2012, 12, 1527-1540.	4.9	86
128	Technical Note: Latitude-time variations of atmospheric column-average dry air mole fractions of CO ₂ , CH ₄ and N ₂ O. Atmospheric Chemistry and Physics, 2012, 12, 7767-7777.	4.9	25
129	Ship-borne FTIR measurements of CO and O ₃ in the Western Pacific from 43° N to 35° S: an evaluation of the sources. Atmospheric Chemistry and Physics, 2012, 12, 815-828.	4.9	19
130	CO at 40–80 km above Kiruna observed by the ground-based microwave radiometer KIMRA and simulated by the Whole Atmosphere Community Climate Model. Atmospheric Chemistry and Physics, 2012, 12, 3261-3271.	4.9	18
131	Observed and simulated time evolution of HCl, ClONO ₂ , and HF total column abundances. Atmospheric Chemistry and Physics, 2012, 12, 3527-3556.	4.9	72
132	Sources of atmospheric mercury in the tropics: continuous observations at a coastal site in Suriname. Atmospheric Chemistry and Physics, 2012, 12, 7391-7397.	4.9	30
133	Calibration of column-averaged CH ₄ over European TCCON FTS sites with airborne in-situ measurements. Atmospheric Chemistry and Physics, 2012, 12, 8763-8775.	4.9	55
134	Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDFâ€based CO ₂ retrievals from GOSAT. Journal of Geophysical Research, 2012, 117, .	3.3	42
135	Processâ€evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. Journal of Geophysical Research, 2012, 117, .	3.3	114
136	Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with groundâ€based TCCON observations and GEOS hem model calculations. Journal of Geophysical Research, 2012, 117, .	3.3	139
137	The imprint of surface fluxes and transport on variations in total column carbon dioxide. Biogeosciences, 2012, 9, 875-891.	3.3	98
138	Retrieval of atmospheric CO ₂ with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results. Journal of Geophysical Research, 2011, 116, .	3.3	153
139	Methane observations from the Greenhouse Gases Observing SATellite: Comparison to groundâ€based TCCON data and model calculations. Geophysical Research Letters, 2011, 38, .	4.0	211
140	Toward accurate CO ₂ and CH ₄ observations from GOSAT. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	355
141	Global CO ₂ fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO ₂ total column. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	85
142	Arctic ozone depletion in 2002-2003 measured by ASUR and comparison with POAM observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	7
143	Correction to "Conversion of mesospheric HCl into active chlorine during the solar proton event in July 2000 in the northern polar regionâ€: Journal of Geophysical Research, 2011, 116, .	3.3	6
144	Calibration of TCCON column-averaged CO ₂ : the first aircraft campaign over European TCCON sites. Atmospheric Chemistry and Physics, 2011, 11, 10765-10777.	4.9	120

#	Article	IF	CITATIONS
145	A method for evaluating bias in global measurements of CO ₂ total columns from space. Atmospheric Chemistry and Physics, 2011, 11, 12317-12337.	4.9	279
146	Carbon monoxide (CO) and ethane (C ₂ H ₆) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the EMEP model. Atmospheric Chemistry and Physics, 2011, 11, 9253-9269.	4.9	53
147	Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 2011, 11, 1989-2013.	4.9	266
148	Sea-ice minimum is not a one-off. Nature, 2011, 478, 188-188.	27.8	0
149	The Total Carbon Column Observing Network. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2087-2112.	3.4	884
150	Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmospheric Measurement Techniques, 2011, 4, 1061-1076.	3.1	217
151	Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra. Atmospheric Measurement Techniques, 2011, 4, 1045-1051.	3.1	6
152	Observation of strato-mesospheric CO above Kiruna with ground-based microwave radiometry – retrieval and satellite comparison. Atmospheric Measurement Techniques, 2011, 4, 2389-2408.	3.1	30
153	First ground-based FTIR observations of methane in the inner tropics over several years. Atmospheric Chemistry and Physics, 2010, 10, 7231-7239.	4.9	27
154	Trend in ice moistening the stratosphere – constraints from isotope data of water and methane. Atmospheric Chemistry and Physics, 2010, 10, 201-207.	4.9	15
155	Integrated water vapor above Ny Ãlesund, Spitsbergen: a multi-sensor intercomparison. Atmospheric Chemistry and Physics, 2010, 10, 1215-1226.	4.9	48
156	Co-located column and in situ measurements of CO ₂ in the tropics compared with model simulations. Atmospheric Chemistry and Physics, 2010, 10, 5593-5599.	4.9	10
157	The importance of transport model uncertainties for the estimation of CO ₂ sources and sinks using satellite measurements. Atmospheric Chemistry and Physics, 2010, 10, 9981-9992.	4.9	98
158	Aircraft measurements and model simulations of stratospheric ozone and N2O: implications for chemistry and transport processes in the models. Journal of Atmospheric Chemistry, 2010, 66, 41-64.	3.2	3
159	Validation of five years (2003–2007) of SCIAMACHY CO total column measurements using ground-based spectrometer observations. Atmospheric Measurement Techniques, 2010, 3, 1457-1471.	3.1	31
160	The ground-based MW radiometer OZORAM on Spitsbergen – description and status of stratospheric and mesospheric O ₃ -measurements. Atmospheric Measurement Techniques, 2010, 3, 1533-1545.	3.1	37
161	Simulations of microwave brightness temperatures at AMSU-B frequencies over a 3D convective cloud system. International Journal of Remote Sensing, 2010, 31, 1781-1800.	2.9	3
162	Topographic Mapping of the German Tidal Flats Analyzing SAR Images With the Waterline Method. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 1019-1030.	6.3	77

#	Article	IF	CITATIONS
163	Passive Polarimetric Microwave Signatures Observed Over Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 1059-1075.	6.3	24
164	Dynamic Processes Governing Lower-Tropospheric HDO/H ₂ O Ratios as Observed from Space and Ground. Science, 2009, 325, 1374-1377.	12.6	187
165	Inner-tropical ozone measurements at the Mérida Atmospheric Research Station (MARS) using ground-based microwave radiometry. International Journal of Remote Sensing, 2009, 30, 4019-4032.	2.9	2
166	Tropospheric trace gases at Bremen measured with FTIR spectrometry. Journal of Environmental Monitoring, 2009, 11, 1529.	2.1	2
167	Conversion of mesospheric HCl into active chlorine during the solar proton event in July 2000 in the northern polar region. Journal of Geophysical Research, 2009, 114, .	3.3	37
168	Validation of version-4.61 methane and nitrous oxide observed by MIPAS. Atmospheric Chemistry and Physics, 2009, 9, 413-442.	4.9	50
169	Long-term tropospheric formaldehyde concentrations deduced from ground-based fourier transform solar infrared measurements. Atmospheric Chemistry and Physics, 2009, 9, 7131-7142.	4.9	49
170	Total Column Carbon Observing Network (TCCON). , 2009, , .		41
171	First groundâ€based FTIR observations of the seasonal variation of carbon monoxide in the tropics. Geophysical Research Letters, 2008, 35, .	4.0	19
172	Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long timescales. Journal of Geophysical Research, 2008, 113, .	3.3	45
173	An upper tropospheric humidity data set from operational satellite microwave data. Journal of Geophysical Research, 2008, 113, .	3.3	50
174	Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT. Geophysical Research Letters, 2008, 35, .	4.0	199
175	Interannual to Diurnal Variations in Tropical and Subtropical Deep Convective Clouds and Convective Overshooting from Seven Years of AMSU-B Measurements. Journal of Climate, 2008, 21, 4168-4189.	3.2	43
176	Validation of NO ₂ and NO from the Atmospheric Chemistry Experiment (ACE). Atmospheric Chemistry and Physics, 2008, 8, 5801-5841.	4.9	64
177	A framework for comparing remotely sensed and in-situ CO ₂ concentrations. Atmospheric Chemistry and Physics, 2008, 8, 2555-2568.	4.9	18
178	Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 1: Carbon dioxide. Atmospheric Chemistry and Physics, 2008, 8, 3827-3853.	4.9	146
179	Validation of ACE-FTS N ₂ O measurements. Atmospheric Chemistry and Physics, 2008, 8, 4759-4786.	4.9	76
180	Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl ₃ F and CCl ₂ F ₂ using space-, balloon- and ground-based instrument observations. Atmospheric Chemistry and Physics, 2008, 8, 6199-6221.	4.9	91

#	Article	IF	CITATIONS
181	Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments. Atmospheric Chemistry and Physics, 2008, 8, 6719-6727.	4.9	109
182	Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations. Atmospheric Chemistry and Physics, 2008, 8, 6865-6886.	4.9	95
183	Annual variation of strato-mesospheric carbon monoxide measured by ground-based Fourier transform infrared spectrometry. Atmospheric Chemistry and Physics, 2007, 7, 1305-1312.	4.9	34
184	Corrigendum to "First direct observation of the atmospheric CO ₂ year-to-year increase from space" published in Atmos. Chem. Phys., 7, 4249–4256, 2007. Atmospheric Chemistry and Physics, 2007, 7, 5341-5342.	4.9	9
185	A cloud filtering method for microwave upper tropospheric humidity measurements. Atmospheric Chemistry and Physics, 2007, 7, 5531-5542.	4.9	44
186	Validation of MIPAS ClONO ₂ measurements. Atmospheric Chemistry and Physics, 2007, 7, 257-281.	4.9	65
187	First direct observation of the atmospheric CO ₂ year-to-year increase from space. Atmospheric Chemistry and Physics, 2007, 7, 4249-4256.	4.9	108
188	Intercomparison of ozone profile measurements from ASUR, SCIAMACHY, MIPAS, OSIRIS, and SMR. Journal of Geophysical Research, 2007, 112, .	3.3	16
189	Seasonal and latitudinal variation of atmospheric methane: A ground-based and ship-borne solar IR spectroscopic study. Geophysical Research Letters, 2006, 33, .	4.0	19
190	Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH ₄ , CO ₂ and N ₂ O. Atmospheric Chemistry and Physics, 2006, 6, 1953-1976.	4.9	103
191	Spectral line finding program for atmospheric remote sensing using full radiation transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 97, 112-125.	2.3	13
192	Increased Northern Hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 detected from the ground and from space. Atmospheric Chemistry and Physics, 2005, 5, 563-573.	4.9	131
193	Rapid meridional transport of tropical airmasses to the Arctic during the major stratospheric warming in January 2003. Atmospheric Chemistry and Physics, 2005, 5, 1291-1299.	4.9	13
194	Intercomparison of O ₃ profiles observed by SCIAMACHY and ground based microwave instruments. Atmospheric Chemistry and Physics, 2005, 5, 2091-2098.	4.9	15
195	Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models. Atmospheric Chemistry and Physics, 2005, 5, 941-962.	4.9	238
196	Shipborne solar absorption measurements of CO ₂ , CH ₄ , N ₂ O and CO and comparison with SCIAMACHY WFM-DOAS retrievals. Atmospheric Chemistry and Physics, 2005, 5, 2029-2034.	4.9	22
197	Starting long-term stratospheric observations with RAMAS at Summit, Greenland. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 1022-1027.	6.3	4
198	The exploitation of ground-based Fourier transform infrared observations for the evaluation of tropospheric trends of greenhouse gases over Europe. Journal of Integrative Environmental Sciences, 2005, 2, 283-293.	0.8	12

#	Article	IF	CITATIONS
199	Seasonal and latitudinal variations of column averaged volume-mixing ratios of atmospheric CO2. Geophysical Research Letters, 2005, 32, .	4.0	35
200	Influence of tropospheric SO2emissions on particle formation and the stratospheric humidity. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	38
201	Latitude and altitude variability of carbon monoxide in the Atlantic detected from ship-borne Fourier transform spectrometry, model, and satellite data. Journal of Geophysical Research, 2005, 110, .	3.3	22
202	Denitrification in the Arctic mid-winter 2004/2005 observed by airborne submillimeter radiometry. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	21
203	Direct thermal radiative forcing of tropospheric aerosol in the Arctic measured by ground based infrared spectrometry. Geophysical Research Letters, 2005, 32, .	4.0	28
204	Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry. Geophysical Research Letters, 2004, 31, .	4.0	202
205	A quantitative assessment of the 1998 carbon monoxide emission anomaly in the Northern Hemisphere based on total column and surface concentration measurements. Journal of Geophysical Research, 2004, 109, .	3.3	82
206	Summertime low-ozone episodes at northern high latitudes. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 3265-3275.	2.7	22
207	The moon as light source for atmospheric trace gas observations: measurement technique and analysis method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 76, 435-445.	2.3	8
208	Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization. Journal of Geophysical Research, 2003, 108, .	3.3	86
209	Enhanced Upper Tropical Tropospheric COS: Impact on the Stratospheric Aerosol Layer. Science, 2003, 300, 307-310.	12.6	98
210	Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. Journal of Geophysical Research, 2002, 107, AAC 6-1-AAC 6-13.	3.3	138
211	Ground-based FTIR observations of chlorine activation and ozone depletion inside the Arctic vortex during the winter of 1999/2000. Journal of Geophysical Research, 2002, 107, SOL 6-1.	3.3	23
212	Properties of coastal Antarctic aerosol from combined FTIR spectrometer and sun photometer measurements. Geophysical Research Letters, 2002, 29, 46-1-46-4.	4.0	15
213	Ground-based infrared spectroscopic measurements of carbonyl sulfide: Free tropospheric trends from a 24-year time series of solar absorption measurements. Journal of Geophysical Research, 2002, 107, ACH 24-1.	3.3	37
214	Variations of CH2O and C2H2 determined from ground-based FTIR measurements and comparison with model results. Advances in Space Research, 2002, 29, 1713-1718.	2.6	9
215	Variations in the tropical uplift following the Pinatubo eruption studied by infrared solar absorption spectrometry. Geophysical Research Letters, 2000, 27, 2609-2612.	4.0	3
216	Intercomparison and validation of FTIR measurements with the Sun, the Moon and emission in the Arctic. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 65, 779-786.	2.3	6

#	Article	IF	CITATIONS
217	Arctic and Antarctic ozone layer observations: chemical and dynamical aspects of variability and long-term changes in the polar stratosphere. Polar Research, 2000, 19, 193-204.	1.6	14
218	Atmospheric hydrogen cyanide (HCN): Biomass burning source, ocean sink?. Geophysical Research Letters, 2000, 27, 357-360.	4.0	159
219	Comparison of stratus cloud properties derived from coincident airborne visible and ground-based infrared spectrometer measurements. Geophysical Research Letters, 2000, 27, 2641-2644.	4.0	2
220	Latitudinal variations of trace gas concentrations in the free troposphere measured by solar absorption spectroscopy during a ship cruise. Journal of Geophysical Research, 2000, 105, 1337-1349.	3.3	56
221	Tropospheric aerosol measurements in the Arctic by FTIR-emission and star photometer extinction spectroscopy. Geophysical Research Letters, 1999, 26, 1711-1714.	4.0	9
222	Pacific Exploratory Mission-Tropics carbon monoxide measurements in historical context. Journal of Geophysical Research, 1999, 104, 26195-26207.	3.3	15
223	Ground-based observations of Arctic O3loss during spring and summer 1997. Journal of Geophysical Research, 1999, 104, 26497-26510.	3.3	41
224	Ground-based infrared solar spectroscopic measurements of carbon monoxide during 1994 Measurement of Air Pollution From Space flights. Journal of Geophysical Research, 1998, 103, 19317-19325.	3.3	23
225	<title>Measurements of stratospheric OH at 308 nm with the sun as light source using a Fourier transform spectrometer</title> . , 1997, , .		Ο
226	<title>Ground-based FTIR emission spectroscopy of the polar atmosphere during the wintertime</title> . , 1997, , .		2
227	An uncertainty budget for ground-based Fourier transform infrared column measurements of HCl, HF, N2O, and HNO3deduced from results of side-by-side instrument intercomparisons. Journal of Geophysical Research, 1997, 102, 8867-8873.	3.3	30
228	Seasonal variations of atmospheric trace gases in the high Arctic at 79°N. Journal of Geophysical Research, 1997, 102, 12855-12861.	3.3	58
229	Comparison of Arctic and Antarctic trace gas column abundances from ground-based Fourier transform infrared spectrometry. Journal of Geophysical Research, 1997, 102, 12863-12869.	3.3	34
230	Solar absorption measurements of stratospheric OH in the UV with a Fourier-transform spectrometer. Applied Optics, 1997, 36, 6076.	2.1	11
231	On the use of HF as a reference for the comparison of stratospheric observations and models. Journal of Geophysical Research, 1997, 102, 12901-12919.	3.3	35
232	Prolonged stratospheric ozone loss in the 1995–96 Arctic winter. Nature, 1997, 389, 835-838.	27.8	216
233	Stratospheric Trace Gas Measurements in the Near-UV and Visible Spectral Range with the Sun as a Light Source Using a Fourier Transform Spectrometer. Applied Spectroscopy, 1996, 50, 583-587.	2.2	4
234	A DOAS study on the origin of nitrous acid at urban and non-urban sites. Atmospheric Environment, 1996, 30, 175-180.	4.1	79

#	Article	IF	CITATIONS
235	Determination of the isotopic abundances of heavy O3as observed in Arctic ground-based FTIR-spectra. Geophysical Research Letters, 1996, 23, 551-554.	4.0	36
236	Comment on "A DOAS study on the origin of nitrous acid at urban and non-urban sites―by G. Lammel. Atmospheric Environment, 1996, 30, 4103.	4.1	2
237	Ground-based FTIR spectroscopic absorption measurements of stratospheric trace gases in the Arctic with the sun and the moon as light sources. Journal of Molecular Structure, 1995, 347, 407-416.	3.6	7
238	Total column densities of tropospheric and stratospheric trace gases in the undisturbed Arctic summer atmosphere. Journal of Atmospheric Chemistry, 1995, 20, 311-332.	3.2	28
239	Shipborne FT-IR Measurements of Atmospheric Trace Gases on a South (33°S) to North (53°N) Atlantic Traverse. Applied Spectroscopy, 1995, 49, 1525-1527.	2.2	8
240	Heterogeneous conversion of HCl and ClONO2during the Arctic winter 1992/1993 initiating ozone depletion. Journal of Geophysical Research, 1995, 100, 11269.	3.3	21
241	Ground-based FTIR measurements of CLONO2Vertical column amounts in the Arctic. Geophysical Research Letters, 1994, 21, 1359-1362.	4.0	8
242	Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen. Geophysical Research Letters, 1994, 21, 1355-1358.	4.0	15
243	The Moon as a light source for FTIR measurements of stratospheric trace gases during the polar night: Application for HNO3in the Arctic. Journal of Geophysical Research, 1994, 99, 3607.	3.3	35
244	FTIR measurements of HF, N2O and CFCs during the Arctic polar night with the Moon as light source, subsidence during winter 1992/93. Geophysical Research Letters, 1994, 21, 2385-2388.	4.0	19
245	Monitoring of stratospheric trace gases by high-resolution Fourier infrared spectroscopy. , 1994, 2205, 518.		Ο
246	stratospheric trace gas concentrations in the Arctic polar night derived by FTIRâ€spectroscopy with the Moon as IR light source. Geophysical Research Letters, 1993, 20, 2059-2062.	4.0	29
247	Simultaneous Long Path Field Measurements of HNO ₂ , CH ₂ O and Aerosol. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 290-293.	0.9	10
248	Formation of HNO2 on aerosol surfaces during foggy periods in the presence of NO and NO2. Atmospheric Environment Part A General Topics, 1992, 26, 211-217.	1.3	95
249	A spectroscopic study of the equilibrium NO2 + NO3 + M 2 N2O5 + M and the kinetics of the O3/N2O5/NO3/NO2/ air system. International Journal of Chemical Kinetics, 1992, 24, 51-65.	1.6	29
250	Measurements of the optical depth and retrieval of aerosol parametersin the polar regions. Journal of Aerosol Science, 1991, 22, S415-S418.	3.8	2
251	Absolute infrared band intensities and air broadening coefficient for spectroscopic measurements of formic acid in air. Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 477-483.	0.1	19
252	Test of in situ measurements of atmospheric aerosols and trace gases by long path transmission spectroscopy. Journal of Aerosol Science, 1990, 21, S193-S196.	3.8	14

#	Article	IF	CITATIONS
253	On the assignment of the central line (â‰^1025 cmâ^'1) in the SERS spectrum of aqueous pyridine solutions. Chemical Physics Letters, 1989, 154, 101-103.	2.6	6
254	The Influence of the Preparation Conditions on the Structure of Evaporated As2Se3 Layers. Physica Status Solidi A, 1989, 114, 207-213.	1.7	3
255	On the relative magnitudes of the electromagnetic and chemical enhancements to the SERS effect. Chemical Physics Letters, 1988, 143, 609-612.	2.6	3
256	Comment on size measurement of SERS-relevant silver colloid particles by photon correlation spectroscopy. The Journal of Physical Chemistry, 1987, 91, 2007-2008.	2.9	3
257	The greenhouse gas project of ESA's climate change initiative (GHG-CCI): overview, achievements and future plans. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 165-172.	0.2	1