
Cristina Lorenzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3987290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of <i>CLOCK</i> gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. American Journal of Medical Genetics Part A, 2003, 123B, 23-26.	2.4	272
2	Genetic dissection of psychopathological symptoms: Insomnia in mood disorders and <i>CLOCK</i> gene polymorphism. American Journal of Medical Genetics Part A, 2003, 121B, 35-38.	2.4	228
3	A glycogen synthase kinase 3-β promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neuroscience Letters, 2004, 368, 123-126.	2.1	189
4	Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-β â^'50 T/C SNP. Neuroscience Letters, 2005, 376, 51-55.	2.1	184
5	Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 631-635.	1.7	179
6	A single nucleotide polymorphism in glycogen synthase kinase 3-Î ² promoter gene influences onset of illness in patients affected by bipolar disorder. Neuroscience Letters, 2004, 355, 37-40.	2.1	156
7	Lithium and GSK3-β Promoter Gene Variants Influence White Matter Microstructure in Bipolar Disorder. Neuropsychopharmacology, 2013, 38, 313-327.	5.4	149
8	The C(–1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. International Journal of Neuropsychopharmacology, 2004, 7, 453-460.	2.1	119
9	Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. European Neuropsychopharmacology, 2001, 11, 375-380.	0.7	103
10	New Antipsychotics and Schizophrenia: A Review on Efficacy and Side Effects. Current Medicinal Chemistry, 2004, 11, 343-358.	2.4	102
11	Neural and Genetic Correlates of Antidepressant Response to Sleep Deprivation. Archives of General Psychiatry, 2007, 64, 179.	12.3	97
12	Analysis of COMT gene (Val 158 Met polymorphism) in the clinical response to SSRIs in depressive patients of European origin. Journal of Affective Disorders, 2006, 90, 251-256.	4.1	93
13	Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. International Journal of Neuropsychopharmacology, 2002, 5, 27-35.	2.1	91
14	SSRIs antidepressant activity is influenced by GÎ ² 3 variants. European Neuropsychopharmacology, 2003, 13, 117-122.	0.7	88
15	Antidepressant effects of light therapy combined with sleep deprivation are influenced by a functional polymorphism within the promoter of the serotonin transporter gene. Biological Psychiatry, 2003, 54, 687-692.	1.3	83
16	Tryptophan hydroxylase gene and response to lithium prophylaxis in mood disorders11This work was partially supported by the BIOMED 2 grant BMH4-CT97-2307 Journal of Psychiatric Research, 1999, 33, 371-377.	3.1	82
17	Gene–environment interaction in psychiatric disorders as indicated by season of birth variations in tryptophan hydroxylase (TPH), serotonin transporter (5-HTTLPR) and dopamine receptor (DRD4) gene polymorphisms. Psychiatry Research, 2003, 119, 99-111.	3.3	76
18	Temperament and Character in Mood Disorders: Influence of DRD4, SERTPR, TPH and MAO-A Polymorphisms. Neuropsychobiology, 2006, 53, 9-16.	1.9	75

#	Article	IF	CITATIONS
19	Dopamine receptor D2 and D4 genes, GABAA alpha-1 subunit gene and response to lithium prophylaxis in mood disorders. Psychiatry Research, 1999, 87, 7-19.	3.3	66
20	Serotonin receptor 2A, 2C, 1A genes and response to lithium prophylaxis in mood disorders. Journal of Psychiatric Research, 2000, 34, 89-98.	3.1	66
21	Acute antidepressant response to sleep deprivation combined with light therapy is influenced by the catechol-O-methyltransferase Val(108/158)Met polymorphism. Journal of Affective Disorders, 2010, 121, 68-72.	4.1	62
22	DRD4 exon 3 variants associated with delusional symptomatology in major psychoses: A study on 2,011 affected subjects. American Journal of Medical Genetics Part A, 2001, 105, 283-290.	2.4	60
23	Clock genes associate with white matter integrity in depressed bipolar patients. Chronobiology International, 2017, 34, 212-224.	2.0	59
24	Familyâ€based association study of 5â€HTTLPR, TPH, MAOâ€A, and DRD4 polymorphisms in mood disorders. American Journal of Medical Genetics Part A, 2002, 114, 361-369.	2.4	57
25	Factors affecting cognitive remediation response in schizophrenia: The role of COMT gene and antipsychotic treatment. Psychiatry Research, 2014, 217, 9-14.	3.3	57
26	How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. European Neuropsychopharmacology, 2007, 17, 587-594.	0.7	55
27	A Homer 1 gene variant influences brain structure and function, lithium effects on white matter, and antidepressant response in bipolar disorder: A multimodal genetic imaging study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 88-95.	4.8	55
28	No association between dopamine D2 and D4 receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatry Research, 2001, 104, 195-203.	3.3	54
29	Cognitive dysfunction and glutamate reuptake: Effect of EAAT2 polymorphism in schizophrenia. Neuroscience Letters, 2012, 522, 151-155.	2.1	53
30	Pharmacogenetics of lithium prophylaxis in mood disorders: Analysis of COMT, MAOâ€A, and Gβ3 variants. American Journal of Medical Genetics Part A, 2002, 114, 370-379.	2.4	50
31	Tryptophan hydroxylase gene and major psychoses. Psychiatry Research, 2001, 103, 79-86.	3.3	48
32	Serotonin transporter gene-linked polymorphic region: possible pharmacogenetic implications of rare variants. Psychiatric Genetics, 2006, 16, 153-158.	1.1	48
33	Association between catechol-O-methyltransferase Val(108/158)Met polymorphism and psychotic features of bipolar disorder. Journal of Affective Disorders, 2010, 125, 341-344.	4.1	48
34	Association study of MAOâ€A, COMT, 5â€HT2A, DRD2, and DRD4 polymorphisms with illness time course in mood disorders. American Journal of Medical Genetics Part A, 2002, 114, 380-390.	2.4	47
35	Role of COMT, 5-HT1A, and SERT genetic polymorphisms on antidepressant response to transcranial magnetic stimulation. Depression and Anxiety, 2011, 28, 568-573.	4.1	47
36	Role of serotonergic gene polymorphisms on response to transcranial magnetic stimulation in depression. European Neuropsychopharmacology, 2007, 17, 651-657.	0.7	46

#	Article	IF	CITATIONS
37	Dopamine receptor D3 gene and response to lithium prophylaxis in mood disorders. International Journal of Neuropsychopharmacology, 1998, 1, 125-129.	2.1	45
38	Tardive dyskinesia and DRD2, DRD3, DRD4, 5-HT2A variants in schizophrenia: an association study with repeated assessment. International Journal of Neuropsychopharmacology, 2004, 7, 489-493.	2.1	45
39	Serotonin transporter gene influences the time course of improvement of "core―depressive and somatic anxiety symptoms during treatment with SSRIs for recurrent mood disorders. Psychiatry Research, 2007, 149, 185-193.	3.3	45
40	Gene–gene interaction of glycogen synthase kinase 3-β and serotonin transporter on human antidepressant response to sleep deprivation. Journal of Affective Disorders, 2012, 136, 514-519.	4.1	45
41	Genetic features of antidepressant induced mania and hypo-mania in bipolar disorder. Psychopharmacology, 2004, 174, 504-11.	3.1	42
42	Association between GSK-3β -50T/C polymorphism and personality and psychotic symptoms in mood disorders. Psychiatry Research, 2008, 158, 132-140.	3.3	41
43	Influence of 5-HTTLPR and TPH variants on illness time course in mood disorders. Journal of Psychiatric Research, 2001, 35, 217-223.	3.1	40
44	<i>COMT</i> Val158Met and <i>5-HT1A-R</i> -1019 C/G polymorphisms: effects on the negative symptom response to clozapine. Pharmacogenomics, 2015, 16, 35-44.	1.3	37
45	A Clutamate Transporter EAAT1 Gene Variant Influences Amygdala Functional Connectivity in Bipolar Disorder. Journal of Molecular Neuroscience, 2018, 65, 536-545.	2.3	37
46	White Matter Microstructure in Bipolar Disorder Is Influenced by the Interaction between a Glutamate Transporter EAAT1 Gene Variant and Early Stress. Molecular Neurobiology, 2019, 56, 702-710.	4.0	37
47	Recurrence of bipolar mania is associated with catechol-O-methyltransferase Val(108/158)Met polymorphism. Journal of Affective Disorders, 2011, 132, 293-296.	4.1	36
48	Lithium and GSK-3β promoter gene variants influence cortical gray matter volumes in bipolar disorder. Psychopharmacology, 2015, 232, 1325-1336.	3.1	36
49	Lithium Overcomes the Influence of 5-HTTLPR Gene Polymorphism on Antidepressant Response to Sleep Deprivation. Journal of Clinical Psychopharmacology, 2008, 28, 249-251.	1.4	35
50	The serotonin transporter genotype modulates the relationship between early stress and adult suicidality in bipolar disorder. Bipolar Disorders, 2014, 16, 857-866.	1.9	35
51	A 5-HT1A receptor promoter polymorphism influences fronto-limbic functional connectivity and depression severity in bipolar disorder. Psychiatry Research - Neuroimaging, 2017, 270, 1-7.	1.8	31
52	Catechol-O-methyltransferase gene variants in mood disorders in the Italian population. Psychiatric Genetics, 2006, 16, 181-182.	1.1	29
53	Dopamine receptor D4 is not associated with antidepressant activity of sleep deprivation. Psychiatry Research, 1999, 89, 107-114.	3.3	28
54	Multicentre Italian family-based association study on tyrosine hydroxylase, catechol-O-methyl transferase and Wolfram syndrome 1 polymorphisms in mood disorders. Psychiatric Genetics, 2003, 13, 121-126.	1.1	26

#	Article	IF	CITATIONS
55	5-HT1A polymorphism and self-transcendence in mood disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 137B, 33-35.	1.7	26
56	Influence of an Interaction between Lithium Salts and a Functional Polymorphism in SLC1A2 on the History of Illness in Bipolar Disorder. Molecular Diagnosis and Therapy, 2012, 16, 303-309.	3.8	26
57	Sleep homeostatic pressure and PER3 VNTR gene polymorphism influence antidepressant response to sleep deprivation in bipolar depression. Journal of Affective Disorders, 2016, 192, 64-69.	4.1	26
58	Association of the C(â^1019)G 5-HT1A promoter polymorphism with exposure to stressors preceding hospitalization for bipolar depression. Journal of Affective Disorders, 2011, 132, 297-300.	4.1	25
59	Exploring effects of EAAT polymorphisms on cognitive functions in schizophrenia. Pharmacogenomics, 2014, 15, 925-932.	1.3	25
60	Higher baseline interleukin-1β and TNF-α hamper antidepressant response in major depressive disorder. European Neuropsychopharmacology, 2021, 42, 35-44.	0.7	25
61	Dopamine receptor D2 and D3 gene variants are not associated with the antidepressant effect of total sleep deprivation in bipolar depression. Psychiatry Research, 2003, 118, 241-247.	3.3	23
62	Effect of 5-HT1A-receptor functional polymorphism on Theory of Mind performances in schizophrenia. Psychiatry Research, 2011, 188, 187-190.	3.3	23
63	COMT and 5-HT1A-receptor genotypes potentially affect executive functions improvement after cognitive remediation in schizophrenia. Health Psychology and Behavioral Medicine, 2014, 2, 509-516.	1.8	19
64	Genetic bases of comorbidity between mood disorders and migraine: possible role of serotonin transporter gene. Neurological Sciences, 2010, 31, 387-391.	1.9	18
65	Effect of early stress on hippocampal gray matter is influenced by a functional polymorphism in EAAT2 in bipolar disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 51, 146-152.	4.8	18
66	Further evidence of MAO-A gene variants associated with bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 37-40.	1.7	17
67	The effect of childhood trauma on serum BDNF in bipolar depression is modulated by the serotonin promoter genotype. Neuroscience Letters, 2017, 656, 177-181.	2.1	17
68	Two new rare variants in the circadian "clock―gene may influence sleep pattern. Genetics in Medicine, 2005, 7, 455-457.	2.4	16
69	Catechol-O-methyltransferase (COMT) genotype biases neural correlates of empathy and perceived personal distress in schizophrenia. Comprehensive Psychiatry, 2013, 54, 181-186.	3.1	16
70	Proinflammatory Cytokines Predict Brain Metabolite Concentrations in the Anterior Cingulate Cortex of Patients With Bipolar Disorder. Frontiers in Psychiatry, 2020, 11, 590095.	2.6	16
71	Interaction between the Tryptophan Hydroxylase Gene and the Serotonin Transporter Gene in Schizophrenia but Not in Bipolar or Unipolar Affective Disorders. Neuropsychobiology, 2005, 51, 3-9.	1.9	15
72	CLOCK gene variants associated with the discrepancy between subjective and objective severity in bipolar depression. Journal of Affective Disorders, 2017, 210, 14-18.	4.1	15

#	Article	IF	CITATIONS
73	Circulating inflammatory markers impact cognitive functions in bipolar depression. Journal of Psychiatric Research, 2021, 140, 110-116.	3.1	15
74	No association between serotonin-2A receptor gene polymorphism and psychotic symptomatology of mood disorders. Psychiatry Research, 1999, 86, 203-209.	3.3	14
75	Serotonin transporter and saitohin genes in risk of Alzheimer's disease and frontotemporal lobar dementia: preliminary findings. Neurological Sciences, 2010, 31, 741-749.	1.9	14
76	Sterol Regulatory Element Binding Transcription Factor-1 Gene Variation and Medication Load Influence White Matter Structure in Schizophrenia. Neuropsychobiology, 2015, 71, 112-119.	1.9	14
77	Genetic dissection of drug effects in clinical practice: CLOCK gene and clozapine-induced diurnal sleepiness. Neuroscience Letters, 2004, 367, 152-155.	2.1	13
78	Cortico-limbic functional connectivity mediates the effect of early life stress on suicidality in bipolar depressed 5-HTTLPR*s carriers. Journal of Affective Disorders, 2020, 263, 420-427.	4.1	13
79	COMT and STH polymorphisms interaction on cognition in schizophrenia. Neurological Sciences, 2015, 36, 215-220.	1.9	12
80	Neurobiology of cognitive remediation in schizophrenia: Effects of EAAT2 polymorphism. Schizophrenia Research, 2018, 202, 106-110.	2.0	12
81	No interaction between serotonin transporter gene and dopamine receptorD4 gene in symptomatology of major psychoses. , 1999, 88, 481-485.		11
82	Social adjustment could be associated with the serotonin transporter gene in remitted patients with mood disorders and healthy subjects. Psychiatry Research, 2005, 134, 191-194.	3.3	11
83	ADDing a piece to the puzzle of cognition in schizophrenia. European Journal of Medical Genetics, 2016, 59, 26-31.	1.3	11
84	Sexually divergent effect of COMT Val/met genotype on subcortical volumes in schizophrenia. Brain Imaging and Behavior, 2018, 12, 829-836.	2.1	10
85	Schizophrenia: genetics, prevention and rehabilitation. Acta Neuropsychiatrica, 2009, 21, 109-120.	2.1	9
86	Saitohin polymorphism and executive dysfunction in schizophrenia. Neurological Sciences, 2012, 33, 1051-1056.	1.9	8
87	Searching Susceptibility Loci for Bipolar Disorder: A Sib Pair Study on Chromosome 12. Neuropsychobiology, 2010, 61, 10-18.	1.9	6
88	DRD4 exon 3 variants are not associated with symptomatology of major psychoses in a German population. Neuroscience Letters, 2004, 368, 269-273.	2.1	5
89	Lack of genetic association between the phospholipase A2 gene and bipolar mood disorder in a European multicentre case–control study. Psychiatric Genetics, 2006, 16, 169-171.	1.1	5
90	Title is missing!. Psychiatric Genetics, 2003, 13, 121-126.	1.1	4

#	Article	IF	CITATIONS
91	Adiponectin predicts poor response to antidepressant drugs in major depressive disorder. Human Psychopharmacology, 2021, 36, e2793.	1.5	3
92	Effective Antidepressant Chronotherapeutics (Sleep Deprivation and Light Therapy) Normalize the IL-11²:IL-1ra Ratio in Bipolar Depression. Frontiers in Physiology, 2021, 12, 740686.	2.8	3
93	The Use of DNA Microarray in the Pharmacogenetics of Antidepressants: Guidelines for a Targeted Approach. Current Genomics, 2004, 5, 499-508.	1.6	2
94	Research Highlights: Highlights from the latest articles on the pharmacogenomics of neuropsychiatric disorders. Pharmacogenomics, 2014, 15, 735-738.	1.3	0