Marco Mv Vastano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3986429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzymatic Degradation of Aromatic and Aliphatic Polyesters by P. pastoris Expressed Cutinase 1 from Thermobifida cellulosilytica. Frontiers in Microbiology, 2017, 8, 938.	3.5	62
2	Safer bio-based solvents to replace toluene and tetrahydrofuran for the biocatalyzed synthesis of polyesters. Green Chemistry, 2019, 21, 1686-1694.	9.0	50
3	Conversion of no/low value waste frying oils into biodiesel and polyhydroxyalkanoates. Scientific Reports, 2019, 9, 13751.	3.3	37
4	Polymer Chemistry Applications of Cyrene and its Derivative Cygnet 0.0 as Safer Replacements for Polar Aprotic Solvents. ChemSusChem, 2021, 14, 3367-3381.	6.8	28
5	Effect of Cultivation Parameters on Fermentation and Hydrogen Production in the Phylum Thermotogae. International Journal of Molecular Sciences, 2021, 22, 341.	4.1	20
6	Enzymatic production of clickable and PEGylated recombinant polyhydroxyalkanoates. Green Chemistry, 2017, 19, 5494-5504.	9.0	17
7	Hisâ€Tag Immobilization of Cutinase 1 From Thermobifida cellulosilytica for Solventâ€Free Synthesis of Polyesters. Biotechnology Journal, 2017, 12, 1700322.	3.5	16
8	Sustainable Galactarateâ€Based Polymers: Multiâ€Enzymatic Production of Pectinâ€Derived Polyesters. Macromolecular Rapid Communications, 2019, 40, e1900361.	3.9	14
9	Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae. Resources, 2021, 10, 34.	3.5	13
10	Characterization of Alginate from Sargassum duplicatum and the Antioxidant Effect of Alginate–Okra Fruit Extracts Combination for Wound Healing on Diabetic Mice. Applied Sciences (Switzerland), 2020, 10, 6082.	2.5	12
11	Production of medium chain length polyhydroxyalkanoates from waste oils by recombinant <i>Escherichia coli</i> . Engineering in Life Sciences, 2015, 15, 700-709.	3.6	10
12	Wound Healing and Antioxidant Evaluations of Alginate from Sargassum ilicifolium and Mangosteen Rind Combination Extracts on Diabetic Mice Model. Applied Sciences (Switzerland), 2021, 11, 4651.	2.5	10
13	CO2-Induced Transcriptional Reorganization: Molecular Basis of Capnophillic Lactic Fermentation in Thermotoga neapolitana. Frontiers in Microbiology, 2020, 11, 171.	3.5	9
14	Improvement of CO2 and Acetate Coupling into Lactic Acid by Genetic Manipulation of the Hyperthermophilic Bacterium Thermotoga neapolitana. Microorganisms, 2021, 9, 1688.	3.6	4
15	PRODUCTION OF BIOPLASTIC FROM WASTE OILS BY RECOMBINANT Escherichia coli: A PIT-STOP IN WASTE FRYING OIL TO BIO-DIESEL CONVERSION RACE. Environmental Engineering and Management Journal, 2016, 15, 2003-2010.	0.6	4
16	New clues to design cell factories for tailor-made biopolymer production: Bacillus cereus as a source of polyhydroxyalkanoates biosynthetic proteins. New Biotechnology, 2014, 31, S177.	4.4	0
17	Production of poly 3-hydroxyhexanoate near homo-polymer from fatty acids containing feedstocks by recombinant Escherichia coli. New Biotechnology, 2016, 33, S194-S195.	4.4	0
18	Turning Wastes into Resources: Exploiting Microbial Potential for the Conversion of Food Wastes into Polyhydroxyalkanoates. Environmental and Microbial Biotechnology, 2021, , 133-168.	0.7	0