
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3986067/publications.pdf Version: 2024-02-01



YONG-CUI ZHOU

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | <scp>Copper atalyzed</scp> Si—H Bond Insertion Polymerization for Synthesis of Optically Active<br>Polyesters Containing Silicon. Chinese Journal of Chemistry, 2022, 40, 21-27.                                                                           | 4.9  | 13        |
| 2  | A facile synthesis of pyrrolo[2,3â€ <i>j</i> ]phenanthridines via the cascade reaction of indoleanilines and aldehydes. Journal of Heterocyclic Chemistry, 2022, 59, 1116-1122.                                                                            | 2.6  | 4         |
| 3  | Transfer-catalyst-free biomimetic asymmetric reduction of 3-sulfonyl coumarins with a regenerable NAD(P)H model. Chemical Communications, 2022, 58, 3973-3976.                                                                                             | 4.1  | 5         |
| 4  | Recent advances in transition-metal-catalyzed carbene insertion to C–H bonds. Chemical Society<br>Reviews, 2022, 51, 2759-2852.                                                                                                                            | 38.1 | 120       |
| 5  | Chiral-Phosphoric-Acid-Catalyzed C6-Selective Pictet–Spengler Reactions for Construction of<br>Polycyclic Indoles Containing Spiro Quaternary Stereocenters. Organic Letters, 2022, 24, 1727-1731.                                                         | 4.6  | 8         |
| 6  | Copper-Catalyzed [4 + 1] Annulation of Enaminothiones with Indoline-Based Diazo Compounds. Journal of Organic Chemistry, 2022, 87, 4424-4437.                                                                                                              | 3.2  | 6         |
| 7  | Asymmetric Transfer Hydrogenation of 2,3-Disubstituted Flavanones through Dynamic Kinetic<br>Resolution Enabled by Retro-Oxa-Michael Addition: Construction of Three Contiguous Stereogenic<br>Centers. Journal of Organic Chemistry, 2022, 87, 7521-7530. | 3.2  | 6         |
| 8  | Kinetic Resolution of [2.2]Paracyclophane-Derived Cyclic <i>N</i> -Sulfonylimines via<br>Palladium-Catalyzed Addition of Arylboronic Acids. Journal of Organic Chemistry, 2021, 86, 1262-1272.                                                             | 3.2  | 9         |
| 9  | Synthesis of chiral piperazin-2-ones through palladium-catalyzed asymmetric hydrogenation of pyrazin-2-ols. Organic Chemistry Frontiers, 2021, 8, 6273-6278.                                                                                               | 4.5  | 5         |
| 10 | Enantioselective Synthesis of Indole-Fused Bicyclo[3.2.1]octanes via Palladium(II)-Catalyzed Cascade<br>Reaction. Organic Letters, 2021, 23, 802-807.                                                                                                      | 4.6  | 29        |
| 11 | Chiral phosphoric acid-catalyzed regioselective synthesis of spiro aminals with quaternary stereocenters. Tetrahedron Letters, 2021, 65, 152793.                                                                                                           | 1.4  | 5         |
| 12 | Chiral Phosphoric Acid-Catalyzed C6 Functionalization of 2,3-Disubstituted Indoles for Synthesis of<br>Heterotriarylmethanes. Organic Letters, 2021, 23, 2393-2398.                                                                                        | 4.6  | 18        |
| 13 | Biomimetic reduction of imines and heteroaromatics with chiral and regenerable<br>[2.2]Paracyclophane-Based NAD(P)H model CYNAM. Tetrahedron, 2021, 83, 131968.                                                                                            | 1.9  | 10        |
| 14 | Chiral Phosphoric Acid-Catalyzed Pictet–Spengler Reactions for Synthesis of<br>5â€2,11â€2-Dihydrospiro[indoline-3,6â€2-indolo[3,2- <i>c</i> ]qui-nolin]-2-ones Containing Quaternary<br>Stereocenters. Journal of Organic Chemistry, 2021, 86, 6897-6906.  | 3.2  | 20        |
| 15 | Nickel-Catalyzed Asymmetric Hydrogenation for Kinetic Resolution of [2.2]Paracyclophane-Derived<br>Cyclic <i>N</i> -Sulfonylimines. Journal of Organic Chemistry, 2021, 86, 10788-10798.                                                                   | 3.2  | 13        |
| 16 | Palladium-Catalyzed Fluoroalkylation via C(sp <sup>3</sup> )–S Bond Cleavage of Vinylsulfonium Salts.<br>Organic Letters, 2021, 23, 6110-6114.                                                                                                             | 4.6  | 16        |
| 17 | Diboron-mediated palladium-catalyzed asymmetric transfer hydrogenation using the proton of alcohols as hydrogen source. Science China Chemistry, 2021, 64, 1743-1749.                                                                                      | 8.2  | 6         |
| 18 | Biomimetic Asymmetric Reduction of Tetrasubstituted Olefin 2,3-Disubstituted Inden-1-ones with Chiral and Regenerable NAD(P)H Model CYNAM. Organic Letters, 2021, 23, 7166-7170.                                                                           | 4.6  | 7         |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Construction of three stereocenters via hydrogenative desymmetrization of 2,2,5-trisubstituted cyclohexane-1,3-diones. Science China Chemistry, 2021, 64, 232-237.                                                                                            | 8.2  | 10        |
| 20 | Asymmetric hydrogenation of O-/N-functional group substituted arenes. Chemical Communications, 2021, 57, 12741-12753.                                                                                                                                         | 4.1  | 11        |
| 21 | Dynamic Kinetic Resolution of Flavonoids via Asymmetric Allylic Alkylation: Construction of Two<br>Contiguous Stereogenic Centers on Nucleophiles. ACS Catalysis, 2021, 11, 12859-12863.                                                                      | 11.2 | 14        |
| 22 | Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of β-Substituted α-Oxobutyrolactones.<br>Journal of Organic Chemistry, 2021, 86, 17453-17461.                                                                                                           | 3.2  | 4         |
| 23 | Enantioselective Synthesis of 2-Functionalized Tetrahydroquinolines through Biomimetic Reduction.<br>Organic Letters, 2021, 23, 9112-9117.                                                                                                                    | 4.6  | 12        |
| 24 | Partially biobased polymers: The synthesis of polysilylethers via dehydrocoupling catalyzed by an anionic iridium complex. Chinese Chemical Letters, 2020, 31, 1197-1200.                                                                                     | 9.0  | 13        |
| 25 | Reversal of diastereoselectivity in palladium-arene interaction directed hydrogenative desymmetrization of 1,3-diketones. Science China Chemistry, 2020, 63, 215-221.                                                                                         | 8.2  | 15        |
| 26 | Chiral and Regenerable NAD(P)H Models Enabled Biomimetic Asymmetric Reduction: Design, Synthesis,<br>Scope, and Mechanistic Studies. Journal of Organic Chemistry, 2020, 85, 2355-2368.                                                                       | 3.2  | 34        |
| 27 | Copper-Catalyzed Annulative Coupling of S,S-Disubstituted Enones with Diazo Compounds to Access<br>Highly Functionalized Thiophene Derivatives. Journal of Organic Chemistry, 2020, 85, 1044-1053.                                                            | 3.2  | 16        |
| 28 | Assembled Multinuclear Ruthenium(II)–NNNN Complexes: Synthesis, Catalytic Properties, and DFT<br>Calculations. Organometallics, 2020, 39, 93-104.                                                                                                             | 2.3  | 9         |
| 29 | Copper(II)-Catalyzed C–H Nitrogenation/Annulation Cascade of Ketene <i>N</i> , <i>S</i> -Acetals with<br>Aryldiazonium Salts: A Direct Access to <i>N</i> <sup>2</sup> -Substituted Triazole and Triazine<br>Derivatives. Organic Letters, 2020, 22, 310-315. | 4.6  | 30        |
| 30 | Cobalt-catalyzed selective dehydrocoupling polymerization of prochiral silanes and diols. European<br>Polymer Journal, 2020, 134, 109832.                                                                                                                     | 5.4  | 15        |
| 31 | Recent Advances in Reductive Desymmetrization of Diketones. Asian Journal of Organic Chemistry, 2020, 9, 1942-1952.                                                                                                                                           | 2.7  | 18        |
| 32 | Enantioselective Synthesis of Tetrahydroquinolines <i>via</i> <scp>Oneâ€Pot</scp> Cascade Biomimetic<br>Reduction <sup>â€</sup> . Chinese Journal of Chemistry, 2020, 38, 1691-1695.                                                                          | 4.9  | 10        |
| 33 | Design and synthesis of chiral and regenerable [2.2]paracyclophane-based NAD(P)H models and application in biomimetic reduction of flavonoids. Chemical Science, 2020, 11, 10220-10224.                                                                       | 7.4  | 29        |
| 34 | Transition-metal mediated carbon–sulfur bond activation and transformations: an update. Chemical<br>Society Reviews, 2020, 49, 4307-4359.                                                                                                                     | 38.1 | 197       |
| 35 | Biomimetic asymmetric reduction of benzoxazinones and quinoxalinones using ureas as transfer catalysts. Chemical Communications, 2020, 56, 7309-7312.                                                                                                         | 4.1  | 22        |
| 36 | Synthesis of Chiral Poly(silyl ether)s via CuH-Catalyzed Asymmetric Hydrosilylation Polymerization of<br>Diketones with Silanes. ACS Macro Letters, 2020, 9, 969-973.                                                                                         | 4.8  | 20        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Photoinduced, Copper-Catalyzed Three-Component Annulation of <i>gem</i> -Dialkylthio Enynes.<br>Organic Letters, 2020, 22, 5202-5206.                                                                                                 | 4.6  | 26        |
| 38 | Synthesis of <i>cis</i> βâ€Hydroxy Ketones by Desymmetrization of 1,3 yclopentanediones through<br>Ruthenium atalyzed Hydrogen Transfer. Asian Journal of Organic Chemistry, 2020, 9, 753-756.                                        | 2.7  | 10        |
| 39 | Biomimetic Asymmetric Reduction of Quinazolinones with Chiral and Regenerable NAD (P)H Models.<br>Chinese Journal of Chemistry, 2020, 38, 714-718.                                                                                    | 4.9  | 13        |
| 40 | ZnCl <sub>2</sub> â€Catalyzed [4+1] Annulation of Alkylthioâ€Substituted Enaminones and Enaminothiones with Sulfur Ylides. Chemistry - A European Journal, 2020, 26, 4941-4946.                                                       | 3.3  | 19        |
| 41 | Palladium-catalyzed asymmetric hydrogenation of 2-aryl cyclic ketones for the synthesis of<br><i>trans</i> cycloalkanols through dynamic kinetic resolution under acidic conditions. Chemical<br>Communications, 2020, 56, 5815-5818. | 4.1  | 12        |
| 42 | Chiral BrÃ,nsted acid-catalyzed conjugate addition of indoles to azadienes: Enantioselective synthesis<br>of hetero-triarylmethanes. Chinese Journal of Catalysis, 2019, 40, 1566-1575.                                               | 14.0 | 21        |
| 43 | Rhodium(III)-Catalyzed Annulative Coupling of Sulfoxonium Ylides and Allenoates: An Arene C–H<br>Activation/Cyclopropanation Cascade. Organic Letters, 2019, 21, 9217-9222.                                                           | 4.6  | 53        |
| 44 | Copper-Catalyzed Alkynylation/Cyclization/Isomerization Cascade for Synthesis of<br>1,2-Dihydrobenzofuro[3,2- <i>b</i> ]pyridines and Benzofuro[3,2- <i>b</i> ]pyridines. Journal of Organic<br>Chemistry, 2019, 84, 15498-15507.     | 3.2  | 19        |
| 45 | Highly Regioselective C–H Alkylation of Alkenes Through an Aryl to Vinyl 1,4-Palladium Migration/C–C<br>Cleavage Cascade. ACS Catalysis, 2019, 9, 11669-11675.                                                                        | 11.2 | 51        |
| 46 | Facile synthesis of chiral ε-sultams <i>via</i> an organocatalytic aza-Friedel–Crafts reaction. Organic<br>and Biomolecular Chemistry, 2019, 17, 6364-6368.                                                                           | 2.8  | 21        |
| 47 | Chiral Phosphoric Acid-Catalyzed Synthesis of Fluorinated<br>5,6-Dihydroindolo[1,2- <i>c</i> )quinazolines with Quaternary Stereocenters. Journal of Organic<br>Chemistry, 2019, 84, 8300-8308.                                       | 3.2  | 14        |
| 48 | Enantioselective Carbene Insertion into O–H of Phenols with Chiral Palladium/2,2′-Biimidazole<br>Complexes. Organometallics, 2019, 38, 3902-3905.                                                                                     | 2.3  | 17        |
| 49 | A Condensation/Reductive Alkylation/Hydrogenation Cascade for Facile Synthesis of Chiral 2,3â€Disubstituted Indolines. Asian Journal of Organic Chemistry, 2019, 8, 1118-1121.                                                        | 2.7  | 3         |
| 50 | Iridium-catalyzed asymmetric hydrogenation of quinazolinones. Organic Chemistry Frontiers, 2019, 6, 2250-2253.                                                                                                                        | 4.5  | 11        |
| 51 | Synthesis of chiral seven-membered cyclic sulfonamides through palladium-catalyzed arylation of cyclic imines. Organic Chemistry Frontiers, 2019, 6, 1572-1576.                                                                       | 4.5  | 23        |
| 52 | A highly stable neutral viologen/bromine aqueous flow battery with high energy and power density.<br>Chemical Communications, 2019, 55, 4801-4804.                                                                                    | 4.1  | 78        |
| 53 | Preparation of Axially Chiral 2,2′-Biimidazole Ligands through Remote Chirality Delivery and Their<br>Application in Asymmetric Carbene Insertion into N–H of Carbazoles. Organic Letters, 2019, 21,<br>2712-2717.                    | 4.6  | 28        |
| 54 | Enantioselective Synthesis of 3,4-Dihydropyrimidin-2(1 <i>H</i> )-ones through Organocatalytic<br>Transfer Hydrogenation of 2-Hydroxypyrimidines. Journal of Organic Chemistry, 2019, 84, 4435-4442.                                  | 3.2  | 24        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Construction of Multiple-Substituted Chiral Cyclohexanes through Hydrogenative Desymmetrization of 2,2,5-Trisubstituted 1,3-Cyclohexanediones. Organic Letters, 2019, 21, 9401-9404.                                                 | 4.6  | 15        |
| 56 | Synthesis of paracyclophanes with planar and central chirality: kinetic resolution of<br>[2.2]paracyclophane aldimines via palladium-catalyzed addition of arylboronic acids. Organic<br>Chemistry Frontiers, 2019, 6, 3956-3960.    | 4.5  | 7         |
| 57 | Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable<br>NAD(P)H Models. Angewandte Chemie, 2019, 131, 1827-1831.                                                                        | 2.0  | 7         |
| 58 | Catalytic Biomimetic Asymmetric Reduction of Alkenes and Imines Enabled by Chiral and Regenerable<br>NAD(P)H Models. Angewandte Chemie - International Edition, 2019, 58, 1813-1817.                                                 | 13.8 | 51        |
| 59 | Facile Synthesis of Chiral Cyclic Ureas through Hydrogenation of<br>2â€Hydroxypyrimidine/Pyrimidinâ€2(1 <i>H</i> )â€one Tautomers. Angewandte Chemie, 2018, 130, 5955-5959.                                                          | 2.0  | 5         |
| 60 | Facile Synthesis of Chiral Cyclic Ureas through Hydrogenation of<br>2â€Hydroxypyrimidine/Pyrimidinâ€2(1 <i>H</i> )â€one Tautomers. Angewandte Chemie - International Edition,<br>2018, 57, 5853-5857.                                | 13.8 | 43        |
| 61 | Synthesis of chiral $\hat{I}^3$ -aminophosphonates through the organocatalytic hydrophosphonylation of azadienes with phosphites. Organic Chemistry Frontiers, 2018, 5, 1148-1151.                                                   | 4.5  | 45        |
| 62 | Ruthenium-Catalyzed Hydrogenation of Carbocyclic Aromatic Amines: Access to Chiral Exocyclic Amines. Organic Letters, 2018, 20, 1094-1097.                                                                                           | 4.6  | 35        |
| 63 | Synthesis of chiral sultams with two adjacent stereocenters <i>via</i> palladium-catalyzed dynamic kinetic resolution. Organic Chemistry Frontiers, 2018, 5, 1113-1117.                                                              | 4.5  | 17        |
| 64 | Iridiumâ€catalyzed Asymmetric Hydrogenation of Polycyclic Pyrrolo/Indolo[1,2â€ <i>a</i> ]quinoxalines<br>and Phenanthridines. Advanced Synthesis and Catalysis, 2018, 360, 1334-1339.                                                | 4.3  | 24        |
| 65 | Enantioselective palladium-catalyzed C–H functionalization of pyrroles using an axially chiral 2,2′-bipyridine ligand. Organic Chemistry Frontiers, 2018, 5, 611-614.                                                                | 4.5  | 26        |
| 66 | Iridium-Catalyzed Asymmetric Hydrogenation of 4,6-Disubstituted 2-Hydroxypyrimidines. Organic<br>Letters, 2018, 20, 6415-6419.                                                                                                       | 4.6  | 28        |
| 67 | C2-Symmetric Hindered "Sandwich―Chiral N-Heterocyclic Carbene Precursors and Their Transition<br>Metal Complexes: Expedient Syntheses, Structural Authentication, and Catalytic Properties.<br>Organometallics, 2018, 37, 3756-3769. | 2.3  | 11        |
| 68 | Synthesis of Benzofuranâ€fused 1,4â€Dihydropyridines <i>via</i> Bifunctional Squaramideâ€catalyzed<br>Formal [4+2] Cycloaddition of Azadienes with Malononitrile. Chinese Journal of Chemistry, 2018, 36,<br>1130-1134.              | 4.9  | 37        |
| 69 | Catalytic Asymmetric Conjugate Addition of Tritylthiol to Azadienes with a Bifunctional<br>Organocatalyst. Asian Journal of Organic Chemistry, 2018, 7, 1561-1564.                                                                   | 2.7  | 34        |
| 70 | Synthesis of Poly(silyl ethers) via Iridium-Catalyzed Dehydrocoupling Polymerization.<br>Organometallics, 2018, 37, 2342-2347.                                                                                                       | 2.3  | 13        |
| 71 | Facile synthesis of chiral indolines through asymmetric hydrogenation of <i>in situ</i> generated indoles. Organic Chemistry Frontiers, 2018, 5, 2805-2809.                                                                          | 4.5  | 24        |
| 72 | Synthesis of electron-deficient ( Sa,R,R )-(CF 3 ) 2 -C 3 -TunePhos and its applications in asymmetric hydrogenation of α-iminophosphonates. Tetrahedron Letters, 2018, 59, 2960-2964.                                               | 1.4  | 9         |

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Synthesis of Tetrahydropyrrolo/indolo[1,2- <i>a</i> ]pyrazines by Enantioselective Hydrogenation of<br>Heterocyclic Imines. Acta Chimica Sinica, 2018, 76, 103.                                             | 1.4  | 11        |
| 74 | lridium-catalyzed asymmetric hydrogenation of cyclic iminium salts. Organic Chemistry Frontiers, 2017, 4, 1125-1129.                                                                                        | 4.5  | 24        |
| 75 | Regioselective αâ€Addition of Deconjugated Butenolides: Enantioselective Synthesis of<br>Dihydrocoumarins. Angewandte Chemie, 2017, 129, 4064-4068.                                                         | 2.0  | 17        |
| 76 | Regioselective αâ€Addition of Deconjugated Butenolides: Enantioselective Synthesis of<br>Dihydrocoumarins. Angewandte Chemie - International Edition, 2017, 56, 4006-4010.                                  | 13.8 | 95        |
| 77 | Bifunctional squaramide-catalyzed synthesis of chiral dihydrocoumarins via ortho-quinone methides generated from 2-(1-tosylalkyl)phenols. Chemical Communications, 2017, 53, 3531-3534.                     | 4.1  | 61        |
| 78 | Enantioselective synthesis of quaternary α-aminophosphonates by organocatalytic Friedel–Crafts<br>reactions of indoles with cyclic α-ketiminophosphonates. Chinese Journal of Catalysis, 2017, 38, 784-791. | 14.0 | 15        |
| 79 | Synthesis of chiral Î <sup>3</sup> -sultams through intramolecular reductive amination with sulfonylcarbamate as<br>N- source. Tetrahedron Letters, 2017, 58, 1528-1530.                                    | 1.4  | 5         |
| 80 | Synthesis of chiral sultams via palladium-catalyzed intramolecular asymmetric reductive amination.<br>Chemical Communications, 2017, 53, 1704-1707.                                                         | 4.1  | 44        |
| 81 | Asymmetric Hydrogenation of Isoquinolines and Pyridines Using Hydrogen Halide Generated in Situ as<br>Activator. Organic Letters, 2017, 19, 4988-4991.                                                      | 4.6  | 59        |
| 82 | Enantioselective Hydrogenation of Pyrrolo[1,2â€ <i>a</i> ]pyrazines, Heteroaromatics Containing Two<br>Nitrogen Atoms. Advanced Synthesis and Catalysis, 2017, 359, 2762-2767.                              | 4.3  | 19        |
| 83 | Electronically deficient ( Rax , S , S )-F 12 -C 3 -TunePhos and its applications in asymmetric 1,4-addition reactions. Tetrahedron Letters, 2016, 57, 1925-1929.                                           | 1.4  | 5         |
| 84 | Synthesis of Chiral Fluorinated Hydrazines via Pd-Catalyzed Asymmetric Hydrogenation. Organic<br>Letters, 2016, 18, 2676-2679.                                                                              | 4.6  | 36        |
| 85 | Asymmetric Hydrogenation of Heteroarenes with Multiple Heteroatoms. Synthesis, 2016, 48, 1769-1781.                                                                                                         | 2.3  | 55        |
| 86 | Copper-catalyzed enantioselective C–H functionalization of indoles with an axially chiral bipyridine<br>ligand. Organic and Biomolecular Chemistry, 2016, 14, 8237-8240.                                    | 2.8  | 41        |
| 87 | Enantioselective synthesis of quaternary α-aminophosphonates by Pd-catalyzed arylation of cyclic<br>α-ketiminophosphonates with arylboronic acids. Chemical Communications, 2016, 52, 10882-10885.          | 4.1  | 37        |
| 88 | Kinetic Resolution of Axially Chiral 5- or 8-Substituted Quinolines via Asymmetric Transfer<br>Hydrogenation. Journal of the American Chemical Society, 2016, 138, 10413-10416.                             | 13.7 | 112       |
| 89 | Synthesis of Chiral Fluorinated Propargylamines via Chemoselective Biomimetic Hydrogenation.<br>Organic Letters, 2016, 18, 4650-4653.                                                                       | 4.6  | 62        |
| 90 | A Hydrogenation/Oxidative Fragmentation Cascade for Synthesis of Chiral<br>4,5-Dihydro-1 <i>H</i> -benzo[ <i>d</i> ]azepin-1-ones. Organic Letters, 2016, 18, 5920-5923.                                    | 4.6  | 15        |

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Synthesis of Chiral Piperazines via Hydrogenation of Pyrazines Activated by Alkyl Halides. Organic<br>Letters, 2016, 18, 3082-3085.                                                                    | 4.6  | 42        |
| 92  | Solvent-promoted highly selective dehydrogenation of tetrahydroisoquinolines without catalyst and hydrogen acceptor. Tetrahedron Letters, 2016, 57, 747-749.                                           | 1.4  | 14        |
| 93  | Enantioselective Synthesis of α-Amino Phosphonates via Pd-Catalyzed Asymmetric Hydrogenation.<br>Organic Letters, 2016, 18, 692-695.                                                                   | 4.6  | 59        |
| 94  | Iridium-Catalyzed Asymmetric Hydrogenation of Heteroaromatics Bearing a Hydroxyl Group,<br>3-Hydroxypyridinium Salts. ACS Catalysis, 2016, 6, 2368-2371.                                               | 11.2 | 29        |
| 95  | Enantioselective palladium-catalyzed arylation of N-tosylarylimines with arylboronic acids using a chiral 2,2′-bipyridine ligand. Organic and Biomolecular Chemistry, 2016, 14, 55-58.                 | 2.8  | 22        |
| 96  | Enantioselective Palladiumâ€Catalyzed CH Functionalization of Indoles Using an Axially Chiral<br>2,2′â€Bipyridine Ligand. Angewandte Chemie - International Edition, 2015, 54, 11956-11960.           | 13.8 | 113       |
| 97  | Enantioselective synthesis of functionalized 2-amino-4H-chromenes via the o-quinone methides generated from 2-(1-tosylalkyl)phenols. Tetrahedron Letters, 2015, 56, 4334-4338.                         | 1.4  | 52        |
| 98  | C–H Oxidation/Michael Addition/Cyclization Cascade for Enantioselective Synthesis of Functionalized<br>2-Amino-4 <i>H</i> -chromenes. Organic Letters, 2015, 17, 6134-6137.                            | 4.6  | 81        |
| 99  | Formal Palladium-Catalyzed Asymmetric Hydrogenolysis of Racemic <i>N</i> -Sulfonyloxaziridines.<br>Organic Letters, 2015, 17, 190-193.                                                                 | 4.6  | 32        |
| 100 | Formal Asymmetric Catalytic Thiolation with a Bifunctional Catalyst at a Water–Oil Interface:<br>Synthesis of Benzyl Thiols. Angewandte Chemie - International Edition, 2015, 54, 4522-4526.           | 13.8 | 115       |
| 101 | Highly selective partial dehydrogenation of tetrahydroisoquinolines using modified Pd/C. Chinese<br>Journal of Catalysis, 2015, 36, 33-39.                                                             | 14.0 | 10        |
| 102 | Direct amination of 2-(1-tosylalkyl)phenols with aqueous ammonia: a metal-free synthesis of primary amines. Tetrahedron Letters, 2015, 56, 1135-1137.                                                  | 1.4  | 21        |
| 103 | Iridium-Catalyzed Selective Hydrogenation of 3-Hydroxypyridinium Salts: A Facile Synthesis of Piperidin-3-ones. Organic Letters, 2015, 17, 1640-1643.                                                  | 4.6  | 29        |
| 104 | Pd-catalyzed asymmetric hydrogenation of fluorinated aromatic pyrazol-5-ols via capture of active tautomers. Chemical Science, 2015, 6, 3415-3419.                                                     | 7.4  | 41        |
| 105 | Enantioselective synthesis of trifluoromethyl substituted piperidines with multiple stereogenic centers via hydrogenation of pyridinium hydrochlorides. Organic Chemistry Frontiers, 2015, 2, 586-589. | 4.5  | 38        |
| 106 | Concise Redox Deracemization of Secondary and Tertiary Amines with a Tetrahydroisoquinoline Core via a Nonenzymatic Process. Journal of the American Chemical Society, 2015, 137, 10496-10499.         | 13.7 | 89        |
| 107 | Synthesis of Chiral Trifluoromethyl-Substituted Hydrazines via Pd-Catalyzed Asymmetric Hydrogenation and Reductive Amination. ACS Catalysis, 2015, 5, 6086-6089.                                       | 11.2 | 55        |
| 108 | Enantioselective Metalâ€Free Hydrogenation Catalyzed by Chiral Frustrated Lewis Pairs. ChemCatChem, 2015, 7, 54-56.                                                                                    | 3.7  | 66        |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Asymmetric Hydrogenation of Aromatic Carbocyclic Rings and Thiophenes. Synlett, 2014, 25, 928-931.                                                                                                       | 1.8  | 18        |
| 110 | Asymmetric Transfer Hydrogenation of 3-(Trifluoromethyl)quinolines. Synthesis, 2014, 46, 2751-2756.                                                                                                      | 2.3  | 14        |
| 111 | A Streamlined Synthesis of 2,3â€Dihydrobenzofurans <i>via</i> the <i>ortho</i> â€Quinone Methides<br>Generated from 2â€Alkylâ€5ubstituted Phenols. Advanced Synthesis and Catalysis, 2014, 356, 383-387. | 4.3  | 52        |
| 112 | Homogenous Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles: Scope and Mechanistic Studies. Journal of the American Chemical Society, 2014, 136, 7688-7700.                                  | 13.7 | 169       |
| 113 | Synthesis of Fluorinated Heteroaromatics through Formal Substitution of a Nitro Group by Fluorine<br>under Transitionâ€Metalâ€Free Conditions. Chemistry - A European Journal, 2014, 20, 8343-8346.      | 3.3  | 11        |
| 114 | Chiral Phosphoric Acid-Catalyzed Asymmetric Transfer Hydrogenation of Quinolin-3-amines. Organic<br>Letters, 2014, 16, 2680-2683.                                                                        | 4.6  | 70        |
| 115 | The Concise Synthesis of Spiro-Cyclopropane Compounds via the Dearomatization of Indole Derivatives. Organic Letters, 2014, 16, 2578-2581.                                                               | 4.6  | 41        |
| 116 | Synthesis of Chiral Exocyclic Amines by Asymmetric Hydrogenation of Aromatic Quinolinâ€3â€amines.<br>Chemistry - A European Journal, 2014, 20, 7245-7248.                                                | 3.3  | 35        |
| 117 | A Concise Synthesis of 2â€(2â€Hydroxyphenyl)acetonitriles <i>via</i> the <i>o</i> â€Quinone Methides<br>Generated from 2â€(1â€Tosylalkyl)phenols. Chinese Journal of Chemistry, 2014, 32, 981-984.       | 4.9  | 15        |
| 118 | Asymmetric Hydrogenation via Capture of Active Intermediates Generated from Aza-Pinacol<br>Rearrangement. Journal of the American Chemical Society, 2014, 136, 15837-15840.                              | 13.7 | 30        |
| 119 | Facile construction of three contiguous stereogenic centers via dynamic kinetic resolution in asymmetric transfer hydrogenation of quinolines. Chemical Communications, 2014, 50, 12526-12529.           | 4.1  | 52        |
| 120 | Palladium-catalyzed asymmetric hydrogenation of 3-phthalimido substituted quinolines. Chemical<br>Communications, 2014, 50, 9588-9590.                                                                   | 4.1  | 65        |
| 121 | lridium-Catalyzed Asymmetric Hydrogenation of Pyrrolo[1,2- <i>a</i> ]pyrazinium Salts. Organic Letters, 2014, 16, 3324-3327.                                                                             | 4.6  | 43        |
| 122 | 4,5-Dihydropyrrolo[1,2- <i>a</i> ]quinoxalines: A Tunable and Regenerable Biomimetic Hydrogen Source.<br>Organic Letters, 2014, 16, 1406-1409.                                                           | 4.6  | 63        |
| 123 | Palladium atalyzed Asymmetric Hydrogenolysis of <i>N</i> ‧ulfonyl Aminoalcohols via Achiral<br>Enesulfonamide Intermediates. Angewandte Chemie - International Edition, 2013, 52, 13365-13368.           | 13.8 | 18        |
| 124 | Palladium-catalyzed asymmetric hydrogenation of fluorinated quinazolinones. Tetrahedron Letters, 2013, 54, 6161-6163.                                                                                    | 1.4  | 22        |
| 125 | An efficient route to chiral N-heterocycles bearing a C–F stereogenic center via asymmetric<br>hydrogenation of fluorinated isoquinolines. Chemical Communications, 2013, 49, 8537.                      | 4.1  | 41        |
| 126 | Homogeneous palladium-catalyzed asymmetric hydrogenation. Chemical Society Reviews, 2013, 42,<br>497-511.                                                                                                | 38.1 | 334       |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Enantioselective Iridiumâ€Catalyzed Hydrogenation of 1―and 3â€&ubstituted Isoquinolinium Salts.<br>Angewandte Chemie - International Edition, 2013, 52, 3685-3689.                                             | 13.8 | 123       |
| 128 | A mild method for generation of o-quinone methides under basic conditions. The facile synthesis of trans-2,3-dihydrobenzofurans. Chemical Communications, 2013, 49, 1660.                                      | 4.1  | 107       |
| 129 | Asymmetric Transfer Hydrogenation of 3â€Nitroquinolines: Facile Access to Cyclic Nitro Compounds with Two Contiguous Stereocenters. Chemistry - an Asian Journal, 2013, 8, 1381-1385.                          | 3.3  | 45        |
| 130 | Enantioselective Synthesis of Endocyclic β-Amino Acids with Two Contiguous Stereocenters via<br>Hydrogenation of 3-Alkoxycarbonyl-2-Substituted Quinolines. Synthesis, 2013, 45, 3239-3244.                    | 2.3  | 13        |
| 131 | Iridium-catalyzed asymmetric hydrogenation of dibenzo[b,f][1,4]thiazepines. Pure and Applied Chemistry, 2013, 85, 843-849.                                                                                     | 1.9  | 23        |
| 132 | Iridium Catalyzed Asymmetric Hydrogenation of Cyclic Imines of Benzodiazepinones and<br>Benzodiazepines. Organic Letters, 2012, 14, 3890-3893.                                                                 | 4.6  | 37        |
| 133 | Asymmetric hydrogenolysis of racemic tertiary alcohols, 3-substituted 3-hydroxyisoindolin-1-ones.<br>Chemical Communications, 2012, 48, 1698-1700.                                                             | 4.1  | 90        |
| 134 | Pd-Catalyzed asymmetric hydrogenation of 3-(toluenesulfonamidoalkyl)indoles. Organic and<br>Biomolecular Chemistry, 2012, 10, 1235-1238.                                                                       | 2.8  | 67        |
| 135 | Iridium atalyzed Asymmetric Hydrogenation of Pyridinium Salts. Angewandte Chemie - International Edition, 2012, 51, 10181-10184.                                                                               | 13.8 | 135       |
| 136 | A new electronically deficient atropisomeric diphosphine ligand (S)-CF3O-BiPhep and its application in asymmetric hydrogenation. Tetrahedron Letters, 2012, 53, 2556-2559.                                     | 1.4  | 33        |
| 137 | Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation. Journal of the American Chemical Society, 2012, 134, 2442-2448.                                     | 13.7 | 247       |
| 138 | Enantioselective Iridium atalyzed Hydrogenation of 3,4â€Disubstituted Isoquinolines. Angewandte<br>Chemie - International Edition, 2012, 51, 8286-8289.                                                        | 13.8 | 107       |
| 139 | Asymmetric Hydrogenation of Heteroarenes and Arenes. Chemical Reviews, 2012, 112, 2557-2590.                                                                                                                   | 47.7 | 938       |
| 140 | Enantioselective Pd-catalyzed hydrogenation of tetrasubstituted olefins of cyclic<br>β-(arylsulfonamido)acrylates. Tetrahedron Letters, 2012, 53, 2560-2563.                                                   | 1.4  | 42        |
| 141 | lridium atalyzed Asymmetric Hydrogenation of 3â€Substituted 2 <i>H</i> â€1,4â€Benzoxazines. Advanced Synthesis and Catalysis, 2012, 354, 483-488.                                                              | 4.3  | 51        |
| 142 | Dehydration triggered asymmetric hydrogenation of 3-(α-hydroxyalkyl)indoles. Chemical Science, 2011,<br>2, 803.                                                                                                | 7.4  | 157       |
| 143 | Enantioselective Pd-catalyzed hydrogenation of enesulfonamides. Chemical Communications, 2011, 47, 5052.                                                                                                       | 4.1  | 47        |
| 144 | Convergent Asymmetric Disproportionation Reactions: Metal/BrÃ,nsted Acid Relay Catalysis for<br>Enantioselective Reduction of Quinoxalines. Journal of the American Chemical Society, 2011, 133,<br>6126-6129. | 13.7 | 198       |

| #   | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Highly Enantioselective Partial Hydrogenation of Simple Pyrroles: A Facile Access to Chiral<br>1-Pyrrolines. Journal of the American Chemical Society, 2011, 133, 8866-8869.                            | 13.7 | 142       |
| 146 | Biomimetic Asymmetric Hydrogenation: In Situ Regenerable Hantzsch Esters for Asymmetric<br>Hydrogenation of Benzoxazinones. Journal of the American Chemical Society, 2011, 133, 16432-16435.           | 13.7 | 175       |
| 147 | Synthesis and enantioselective hydrogenation of seven-membered cyclic imines: substituted dibenzo[b,f][1,4]oxazepines. Chemical Communications, 2011, 47, 7845.                                         | 4.1  | 61        |
| 148 | Palladium atalyzed Asymmetric Hydrogenation of Simple Ketimines Using a BrÃ,nsted Acid as Activator.<br>Advanced Synthesis and Catalysis, 2011, 353, 84-88.                                             | 4.3  | 45        |
| 149 | Rhodium atalyzed Addition of Boronic Acids to Vinylogous Imines Generated <i>in situ</i> from<br>Sulfonylindoles. Advanced Synthesis and Catalysis, 2011, 353, 3352-3356.                               | 4.3  | 30        |
| 150 | An Enantioselective Approach to 2,3â€Disubstituted Indolines through Consecutive BrÃnsted<br>Acid/Pdâ€Complexâ€Promoted Tandem Reactions. Chemistry - A European Journal, 2011, 17, 7193-7197.          | 3.3  | 90        |
| 151 | Palladium-catalyzed asymmetric hydrogenation of simple ketones activated by BrÃ,nsted acids.<br>Tetrahedron Letters, 2011, 52, 2826-2829.                                                               | 1.4  | 34        |
| 152 | An efficient route to 2,3-disubstituted indoles via reductive alkylation using H2 as reductant.<br>Tetrahedron Letters, 2011, 52, 2837-2839.                                                            | 1.4  | 30        |
| 153 | Synthesis of Electronically Deficient Atropisomeric Bisphosphine Ligands and Their Application in Asymmetric Hydrogenation of Quinolines. Synthesis, 2011, 2011, 2796-2802.                             | 2.3  | 12        |
| 154 | Pd-Catalyzed Asymmetric Hydrogenation of C=C Bond of α,β-Unsaturated Ketones. Synlett, 2011, 2011, 947-950.                                                                                             | 1.8  | 5         |
| 155 | Adventure in Asymmetric Hydrogenation: Synthesis of Chiral Phosphorus Ligands and Asymmetric Hydrogenation of Heteroaromatics. Topics in Organometallic Chemistry, 2011, , 313-354.                     | 0.7  | 8         |
| 156 | Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles Activated by BrÃ,nsted Acids. Journal of the American Chemical Society, 2010, 132, 8909-8911.                                              | 13.7 | 263       |
| 157 | Asymmetric Hydrogenation with Water/Silane as the Hydrogen Source. Chemistry - A European<br>Journal, 2010, 16, 1133-1136.                                                                              | 3.3  | 80        |
| 158 | Inhibiting deactivation of iridium catalysts with bulky substituents on coordination atoms.<br>Tetrahedron Letters, 2010, 51, 525-528.                                                                  | 1.4  | 49        |
| 159 | Asymmetric hydrogenation of quinolines activated by Brønsted acids. Tetrahedron Letters, 2010, 51, 3014-3017.                                                                                           | 1.4  | 79        |
| 160 | One-Pot Highly Diastereoselective Synthesis of <i>cis</i> -Vinylaziridines via the Sulfur Ylide-Mediated<br>Aziridination and Palladium(0)-Catalyzed Isomerization. Organic Letters, 2010, 12, 504-507. | 4.6  | 65        |
| 161 | Convenient Synthesis of Optically Pure 8-Methoxy-2-methyl-1,2,3,4-tetrahydroquinoline and 2-Methyl-1,2,3,4-tetrahydroquinoline. Heterocycles, 2010, 82, 887.                                            | 0.7  | 5         |
| 162 | Highly Effective and Diastereoselective Synthesis of Axially Chiral Bis-sulfoxide Ligands via Oxidative<br>Aryl Coupling. Organic Letters, 2010, 12, 1928-1931.                                         | 4.6  | 67        |

| #   | Article                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Bifunctional AgOAc-catalyzed asymmetric reactions. Chemical Communications, 2010, 46, 4043.                                                                                             | 4.1  | 48        |
| 164 | Enantioselective Pd-Catalyzed Hydrogenation of Fluorinated Imines: Facile Access to Chiral Fluorinated Amines. Organic Letters, 2010, 12, 5075-5077.                                    | 4.6  | 94        |
| 165 | Thieme Chemistry Journal Awardees - Where Are They Now? Bifunctional Silver Acetate Catalyzed Asymmetric Mannich-Type Reactions. Synlett, 2009, 2009, 2236-2241.                        | 1.8  | 5         |
| 166 | Highly enantioselective Ir-catalyzed hydrogenation of exocyclic enamines. Tetrahedron: Asymmetry, 2009, 20, 1040-1045.                                                                  | 1.8  | 31        |
| 167 | A simple and highly effective method for hydrogenation of arenes by [Rh(COD)Cl]2. Tetrahedron Letters, 2009, 50, 1282-1285.                                                             | 1.4  | 23        |
| 168 | AgOAc-catalyzed asymmetric amination of glycine Schiff bases with azodicarboxylates. Tetrahedron<br>Letters, 2009, 50, 6866-6868.                                                       | 1.4  | 14        |
| 169 | Highly Enantioselective Synthesis of Sultams via Pd-Catalyzed Hydrogenation. Journal of Organic<br>Chemistry, 2009, 74, 5633-5635.                                                      | 3.2  | 105       |
| 170 | Tandem Ring-Opening/Closing Reactions of N-Ts Aziridines and Aryl Propargyl Alcohols Promoted by t-BuOK. Organic Letters, 2009, 11, 1119-1122.                                          | 4.6  | 51        |
| 171 | Highly Enantioselective Iridium-Catalyzed Hydrogenation of 2-Benzylquinolines and 2-Functionalized and 2,3-Disubstituted Quinolines. Journal of Organic Chemistry, 2009, 74, 2780-2787. | 3.2  | 192       |
| 172 | Asymmetric tandem Michael addition–ylide olefination reaction for the synthesis of optically active cyclohexa-1,3-diene derivatives. Chemical Communications, 2009, , 3092.             | 4.1  | 39        |
| 173 | Iridium-catalyzed asymmetric hydrogenation of pyridine derivatives, 7,8-dihydro-quinolin-5(6H)-ones.<br>Tetrahedron Letters, 2008, 49, 4922-4924.                                       | 1.4  | 119       |
| 174 | Enantioselective Synthesis of Cyclic Sulfamidates via Pd-Catalyzed Hydrogenation. Organic Letters, 2008, 10, 2071-2074.                                                                 | 4.6  | 154       |
| 175 | Synthesis of Tunable Bisphosphine Ligands and Their Application in Asymmetric Hydrogenation of Quinolines. Journal of Organic Chemistry, 2008, 73, 5640-5642.                           | 3.2  | 117       |
| 176 | Hydrogen-Bonding Directed Reversal of Enantioselectivity. Journal of the American Chemical Society, 2007, 129, 750-751.                                                                 | 13.7 | 224       |
| 177 | Iron Porphyrin-Catalyzed Olefination of Ketenes with Diazoacetate for the Enantioselective Synthesis of Allenes. Journal of the American Chemical Society, 2007, 129, 1494-1495.        | 13.7 | 140       |
| 178 | Asymmetric Hydrogenation of Heteroaromatic Compounds. Accounts of Chemical Research, 2007, 40, 1357-1366.                                                                               | 15.6 | 605       |
| 179 | lridium-catalyzed asymmetric transfer hydrogenation of quinolines with Hantzsch esters.<br>Tetrahedron: Asymmetry, 2007, 18, 1103-1107.                                                 | 1.8  | 95        |
| 180 | Synthesis of chiral cyclohexane-backbone P,N-ligands derived from pyridine and their applications in asymmetric catalysis. Tetrahedron Letters, 2007, 48, 2101-2104.                    | 1.4  | 27        |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | AgOAc catalyzed asymmetric [3+2] cycloaddition of azomethine ylides with chiral ferrocene derived P,S ligands. Tetrahedron Letters, 2007, 48, 4619-4622.                                       | 1.4  | 78        |
| 182 | An efficient catalytic system for the hydrogenation of quinolines. Journal of Organometallic Chemistry, 2007, 692, 3065-3069.                                                                  | 1.8  | 37        |
| 183 | Highly Enantioselective Pd-Catalyzed Asymmetric Hydrogenation of Activated Imines. Journal of<br>Organic Chemistry, 2007, 72, 3729-3734.                                                       | 3.2  | 142       |
| 184 | Efficient catalytic asymmetric synthesis of α-substituted phenyloxyacetyloxy and aroyloxy phosphonates. Tetrahedron, 2006, 62, 11207-11217.                                                    | 1.9  | 64        |
| 185 | Synthesis of tunable phosphinite–pyridine ligands and their applications in asymmetric hydrogenation.<br>Tetrahedron Letters, 2006, 47, 4733-4736.                                             | 1.4  | 35        |
| 186 | Asymmetric Hydrogenation of Quinolines and Isoquinolines Activated by Chloroformates.<br>Angewandte Chemie - International Edition, 2006, 45, 2260-2263.                                       | 13.8 | 305       |
| 187 | Highly Enantioselective Pd-Catalyzed Asymmetric Hydrogenation of N-Diphenylphosphinyl Ketimines.<br>Synlett, 2006, 2006, 1189-1192.                                                            | 1.8  | 7         |
| 188 | Palladium-Catalyzed Asymmetric Hydrogenation of Functionalized Ketones. Organic Letters, 2005, 7, 3235-3238.                                                                                   | 4.6  | 73        |
| 189 | Synthesis and Highly Enantioselective Hydrogenation of Exocyclic Enamides:<br>(Z)-3-Arylidene-4-acetyl-3,4-dihydro-2H-1,4-benzoxazines ChemInform, 2005, 36, no.                               | 0.0  | 0         |
| 190 | Palladium-Catalyzed Asymmetric Hydrogenation of Functionalized Ketones ChemInform, 2005, 36, no.                                                                                               | 0.0  | 0         |
| 191 | Synthesis and Highly Enantioselective Hydrogenation of Exocyclic Enamides:<br>(Z)-3-Arylidene-4-acetyl-3,4-dihydro-2H- 1,4-benzoxazines. Journal of Organic Chemistry, 2005, 70,<br>1679-1683. | 3.2  | 69        |
| 192 | Bifunctional AgOAc-Catalyzed Asymmetric [3 + 2] Cycloaddition of Azomethine Ylides. Organic Letters, 2005, 7, 5055-5058.                                                                       | 4.6  | 132       |
| 193 | Facile Preparation of β-Fluoro Amines by the Reaction of Aziridines with Potassium Fluoride Dihydrate in the Presence of Bu4NHSO4. Journal of Organic Chemistry, 2004, 69, 335-338.            | 3.2  | 53        |
| 194 | Asymmetric Hydrogenation of Quinolines Catalyzed by Iridium with Chiral Ferrocenyloxazoline<br>Derived N,P Ligands. Advanced Synthesis and Catalysis, 2004, 346, 909-912.                      | 4.3  | 163       |
| 195 | Highly Enantioselective Iridium-Catalyzed Hydrogenation of Heteroaromatic Compounds: Quinolines<br>ChemInform, 2004, 35, no.                                                                   | 0.0  | 0         |
| 196 | Facile Preparation of β-Fluoro Amines by the Reaction of Aziridines with Potassium Fluoride Dihydrate in the Presence of Bu4NHSO4 ChemInform, 2004, 35, no.                                    | 0.0  | 0         |
| 197 | The enantioselective total synthesis of alkaloid (â^')-galipeine. Tetrahedron: Asymmetry, 2004, 15,<br>1145-1149.                                                                              | 1.8  | 95        |
| 198 | Highly Enantioselective Iridium-Catalyzed Hydrogenation of Heteroaromatic Compounds, Quinolines.<br>Journal of the American Chemical Society, 2003, 125, 10536-10537.                          | 13.7 | 517       |

| #   | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Highly Enantioselective Reductive Amination of Simple Aryl Ketones Catalyzed by Ir—f-Binaphane in the Presence of Titanium(IV) Isopropoxide and Iodine ChemInform, 2003, 34, no.                                                                                   | 0.0  | 0         |
| 200 | Highly Enantioselective Reductive Amination of Simple Aryl Ketones Catalyzed by Irâ^'f-Binaphane in the<br>Presence of Titanium(IV) Isopropoxide and Iodine. Journal of Organic Chemistry, 2003, 68, 4120-4122.                                                    | 3.2  | 172       |
| 201 | Trans Effect of Different Coordinated Atoms of Planar Chiral Ferrocene Ligands with the Same<br>Backbone in Palladiumâ"Catalyzed Allylic Substitutions. Organometallics, 2003, 22, 1255-1265.                                                                      | 2.3  | 93        |
| 202 | Highly Effective Chiral Ortho-Substituted BINAPO Ligands (o-BINAPO):Â Applications in Ru-Catalyzed<br>Asymmetric Hydrogenations of β-Aryl-Substituted β-(Acylamino)acrylates and β-Keto Esters. Journal of the<br>American Chemical Society, 2002, 124, 4952-4953. | 13.7 | 203       |
| 203 | Synthesis of novel BINOL-derived chiral bisphosphorus ligands and their application in catalytic asymmetric hydrogenation. Chemical Communications, 2002, , 1124-1125.                                                                                             | 4.1  | 33        |
| 204 | Asymmetric synthesis of (2R,3S )-2,3-epoxyamides via camphor-derived sulfonium ylides. Journal of the<br>Chemical Society Perkin Transactions 1, 1999, , 77-80.                                                                                                    | 0.9  | 35        |
| 205 | Allylation of Imines with Allyltrimethylsilane and Experimental Evidences for a Fluoride-Triggered<br>Autocatalysis Mechanism of the Sakuraiâ^Hosomi Reaction. Journal of Organic Chemistry, 1999, 64,<br>4233-4237.                                               | 3.2  | 77        |
| 206 | Enantioselective palladium catalyzed allylic substitution with chiral thioether derivatives of ferrocenyl-oxazoline and the role of planar chirality in this reaction. Chemical Communications, 1998, , 2765-2766.                                                 | 4.1  | 73        |
| 207 | Highly Stereoselective Ylide Aziridination of N-Sulfonylimines with Sulfonium Propargylides:  A Simple<br>Way To Synthesize Scalemic Acetylenylaziridines. Journal of Organic Chemistry, 1998, 63, 4338-4348.                                                      | 3.2  | 68        |
| 208 | The aziridination of N-tosylimines with amide-stabilized sulfonium ylides: A simple and efficient preparation of aziridinyl carboxamides. Tetrahedron Letters, 1997, 38, 7225-7228.                                                                                | 1.4  | 29        |
| 209 | Asymmetric Aziridination over Ylides: Highly Stereoselective Synthesis of<br>Acetylenyl-N-sulfonylaziridines. Angewandte Chemie International Edition in English, 1997, 36, 1317-1319.                                                                             | 4.4  | 87        |
| 210 | Stereocontrolled synthesis of either trans- or cis-trimethylsilylvinyloxiranes via sulfonium ylides.<br>Chemical Communications, 1996, , 1353.                                                                                                                     | 4.1  | 23        |