
Donald C Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985989/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of the Aggregation Pheromone of the Brown Marmorated Stink Bug (<i>Halyomorpha) Tj ETQq1 1 0.78 Products, 2014, 77, 1708-1717.</i>	34314 rgB 3.0	Г /Overlock 162
2	Indigenous arthropod natural enemies of the invasive brown marmorated stink bug in North America and Europe. Journal of Pest Science, 2017, 90, 1009-1020.	3.7	137
3	Synergy of Aggregation Pheromone With Methyl (<l>E,E,Z</l>)-2,4,6-Decatrienoate in Attraction of <l>Halyomorpha halys</l> (Hemiptera: Pentatomidae). Journal of Economic Entomology, 2014, 107, 1061-1068.	1.8	131
4	Coccinellidae as predators of mites: Stethorini in biological control. Biological Control, 2009, 51, 268-283.	3.0	124
5	Assessing the trophic ecology of the Coccinellidae: Their roles as predators and as prey. Biological Control, 2009, 51, 199-214.	3.0	115
6	The detectability halfâ€life in arthropod predator–prey research: what it is, why we need it, how to measure it, and how to use it. Molecular Ecology, 2014, 23, 3799-3813.	3.9	102
7	Attack and Success of Native and Exotic Parasitoids on Eggs of Halyomorpha halys in Three Maryland Habitats. PLoS ONE, 2016, 11, e0150275.	2.5	98
8	Attraction of the Invasive Halyomorpha halys (Hemiptera: Pentatomidae) to Traps Baited with Semiochemical Stimuli Across the United States. Environmental Entomology, 2015, 44, 746-756.	1.4	86
9	Choosing natural enemies for conservation biological control: use of the prey detectability halfâ€life to rank key predators of Colorado potato beetle. Entomologia Experimentalis Et Applicata, 2010, 136, 97-107.	1.4	83
10	Detection of Predation Using qPCR: Effect of Prey Quantity, Elapsed Time, Chaser Diet, and Sample Preservation on Detectable Quantity of Prey DNA. Journal of Insect Science, 2009, 9, 1-12.	1.5	82
11	Chemical ecology of Halyomorpha halys: discoveries and applications. Journal of Pest Science, 2017, 90, 989-1008.	3.7	75
12	Biological control of sentinel egg masses of the exotic invasive stink bug Halyomorpha halys (Stål) in Mid-Atlantic USA ornamental landscapes. Biological Control, 2016, 103, 11-20.	3.0	62
13	Ovipositional and Flight Behavior of Overwintered Colorado Potato Beetle (Coleoptera:) Tj ETQq1 1 0.784314 rgl	3T ₁ ,Overloo	ახ <mark>ე1</mark> 0 Tf 50 (
14	Behavioral Responses of the Invasive Halyomorpha halys (Stål) to Traps Baited with Stereoisomeric Mixtures of 10,11-Epoxy-1-bisabolen-3-OL. Journal of Chemical Ecology, 2015, 41, 418-429.	1.8	43
15	De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8634-E8641.	7.1	43
16	Unnecessary roughness? Testing the hypothesis that predators destined for molecular gutâ€content analysis must be handâ€collected to avoid crossâ€contamination. Molecular Ecology Resources, 2011, 11, 286-293.	4.8	38
17	Special issue on the brown marmorated stink bug, Halyomorpha halys: an emerging pest of global concern. Journal of Pest Science, 2017, 90, 987-988.	3.7	38
18	Changes in digestive rate of a predatory beetle over its larval stage: Implications for dietary breadth. Journal of Insect Physiology, 2010, 56, 431-437.	2.0	34

DONALD C WEBER

#	Article	IF	CITATIONS
19	Attractiveness of Harlequin Bug, Murgantia histrionica, Aggregation Pheromone: Field Response to Isomers, Ratios, and Dose. Journal of Chemical Ecology, 2014, 40, 1251-1259.	1.8	32
20	Determination of the Stereochemistry of the Aggregation Pheromone of Harlequin Bug, Murgantia histrionica. Journal of Chemical Ecology, 2014, 40, 1260-1268.	1.8	30
21	An IDS-Type Sesquiterpene Synthase Produces the Pheromone Precursor (Z)-α-Bisabolene in Nezara viridula. Journal of Chemical Ecology, 2019, 45, 187-197.	1.8	30
22	Sugar feeding by coccinellids under field conditions: the effects of sugar sprays in soybean. BioControl, 2011, 56, 305-314.	2.0	26
23	Effect of prior diet on consumption and digestion of prey and non-prey food by adults of the generalist predator Coleomegilla maculata. Entomologia Experimentalis Et Applicata, 2011, 140, 146-152.	1.4	20
24	A Transcriptome Survey Spanning Life Stages and Sexes of the Harlequin Bug, Murgantia histrionica. Insects, 2017, 8, 55.	2.2	20
25	Semiochemistry of Pentatomoidea. , 2018, , 677-726.		20
26	Striped cucumber Beetle and Western Striped Cucumber Beetle (Coleoptera: Chrysomelidae). Journal of Integrated Pest Management, 2021, 12, .	2.0	17
27	Enhanced Response of Halyomorpha halys (Hemiptera: Pentatomidae) to Its Aggregation Pheromone with Ethyl Decatrienoate. Journal of Economic Entomology, 2018, 111, 495-499.	1.8	16
28	Trissolcus japonicus foraging behavior: Implications for host preference and classical biological control. Biological Control, 2021, 161, 104700.	3.0	15
29	Supercooling Points ofMurgantia histrionica(Hemiptera: Pentatomidae) and Field Mortality in the Mid-Atlantic United States Following Lethal Low Temperatures. Environmental Entomology, 2016, 45, 1294-1299.	1.4	11
30	Marking and retention of harlequin bug, Murgantia histrionica (Hahn) (Hemiptera: Pentatomidae), on pheromone-baited and unbaited plants. Journal of Pest Science, 2016, 89, 21-29.	3.7	11
31	Fooling the Harlequin Bug (Hemiptera: Pentatomidae) Using Synthetic Volatiles to Alter Host Plant Choice. Environmental Entomology, 2018, 47, 432-439.	1.4	8
32	Field Attraction of Striped Cucumber Beetles to a Synthetic Vittatalactone Mixture. Journal of Economic Entomology, 2018, 111, 2988-2991.	1.8	8
33	Parasitism and Predation on Sentinel Egg Masses of Three Stink Bug Species (Hemiptera: Pentatomidae) in Native and Exotic Ornamental Landscapes. Journal of Economic Entomology, 2021, 114, 590-596.	1.8	8
34	Lady beetle (Coleoptera: Coccinellidae) tracks deter oviposition by the goldeneyed lacewing, <i>Chrysopa oculata</i> . Biocontrol Science and Technology, 2008, 18, 727-731.	1.3	7
35	Avoiding Unwanted Vicinity Effects With Attract-and-Kill Tactics for Harlequin Bug, Murgantia histrionica (Hahn) (Hemiptera: Pentatomidae). Journal of Economic Entomology, 2018, 111, 1780-1787.	1.8	7
36	Transcriptome Sequencing of the Striped Cucumber Beetle, Acalymma vittatum (F.), Reveals Numerous Sex-Specific Transcripts and Xenobiotic Detoxification Genes. BioTech, 2020, 9, 21.	2.6	7

DONALD C WEBER

#	Article	IF	CITATIONS
37	Color Preference of Harlequin Bug (Heteroptera: Pentatomidae). Journal of Economic Entomology, 2017, 110, 2275-2277.	1.8	6
38	Trade-offs and synergies in management of two co-occurring specialist squash pests. Journal of Pest Science, 2022, 95, 327-338.	3.7	6
39	Biological Control of Potato Insect Pests. , 2013, , 399-437.		5
40	Both male―and femaleâ€produced pheromones influence Colorado potato beetle movement in the field. Pest Management Science, 2022, 78, 3795-3803.	3.4	4
41	Attractiveness of Pheromone Components With and Without the Synergist, Methyl (2E,4E,6Z)-2,4,6-Decatrienoate, to Brown Marmorated Stink Bug (Hemiptera: Pentatomidae). Journal of Economic Entomology, 2020, 113, 712-719.	1.8	3
42	Male Colorado potato beetles alter search behavior in response to prior female presence on potato plants. Journal of Pest Science, 2020, 93, 595-604.	3.7	3
43	Biological and behavioral control of potato insect pests. , 2022, , 231-276.		3
44	Trapping of Crucifer-Feeding Flea Beetles (<i>Phyllotreta</i> spp.) (Coleoptera: Chrysomelidae) With Pheromones and Plant Kairomones. Journal of Economic Entomology, 2022, 115, 748-756.	1.8	3
45	Expedient synthesis of bisabolenol stink bug pheromones via stereodefined cyclohex-2-enones. Tetrahedron Letters, 2017, 58, 2066-2068.	1.4	2
46	OUP accepted manuscript. Environmental Entomology, 2022, , .	1.4	2
47	Effect of Plastic Mulch Colors on <i>Anasa tristis</i> (Hemiptera: Coreidae) Population Dynamics in Summer Squash, <i>Cucurbita pepo</i> (Cucurbitales: Cucurbitaceae). Journal of Economic Entomology, 2022, , .	1.8	1
48	Trap Cropping Harlequin Bug: Distance of Separation Influences Female Movement and Oviposition. Journal of Economic Entomology, 2021, 114, 848-856.	1.8	0