Bei Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985917/publications.pdf

Version: 2024-02-01

159585 168389 3,136 57 30 53 citations h-index g-index papers 59 59 59 3866 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature, 2019, 575, 505-511.	27.8	493
2	Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut, 2019, 68, 1504-1515.	12.1	202
3	Gut Microbiome Response to Sucralose and Its Potential Role in Inducing Liver Inflammation in Mice. Frontiers in Physiology, 2017, 8, 487.	2.8	184
4	The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 2017, 12, e0178426.	2.5	175
5	Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways. Chemical Research in Toxicology, 2017, 30, 996-1005.	3.3	141
6	Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food and Chemical Toxicology, 2017, 107, 530-539.	3.6	129
7	Intestinal Virome Signature Associated With Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology, 2020, 159, 1839-1852.	1.3	103
8	The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome. Toxicological Sciences, 2017, 160, 193-204.	3.1	101
9	Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. Environmental Health Perspectives, 2017, 125, 198-206.	6.0	96
10	Intestinal permeability, microbial translocation, changes in duodenal and fecal microbiota, and their associations with alcoholic liver disease progression in humans. Gut Microbes, 2020, 12, 1782157.	9.8	83
11	${\sf ROR}\hat{\sf I}^3$ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype. Nature Communications, 2019, 10, 4621.	12.8	81
12	Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules, 2018, 23, 367.	3.8	75
13	Intestinal Virome in Patients With Alcoholic Hepatitis. Hepatology, 2020, 72, 2182-2196.	7.3	74
14	Gut microbial and metabolomic profiles after fecal microbiota transplantation in pediatric ulcerative colitis patients. FEMS Microbiology Ecology, 2018, 94, .	2.7	73
15	Metabolic Reprogramming by MYCN Confers Dependence on the Serine-Glycine-One-Carbon Biosynthetic Pathway. Cancer Research, 2019, 79, 3837-3850.	0.9	68
16	Nicotine Alters the Gut Microbiome and Metabolites of Gut–Brain Interactions in a Sex-Specific Manner. Chemical Research in Toxicology, 2017, 30, 2110-2119.	3.3	66
17	Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics, 2020, 8, 19.	3.7	66
18	Sex-Specific Effects of Arsenic Exposure on the Trajectory and Function of the Gut Microbiome. Chemical Research in Toxicology, 2016, 29, 949-951.	3.3	63

#	Article	IF	CITATIONS
19	An Introduction to Next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules, 2021, 11, 530.	4.0	62
20	Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients. Gut Microbes, 2020, 12, 1785251.	9.8	60
21	Serum Metabolomics Identifies Altered Bioenergetics, Signaling Cascades in Parallel with Exposome Markers in Crohn's Disease. Molecules, 2019, 24, 449.	3.8	55
22	Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicology and Applied Pharmacology, 2017, 331, 142-153.	2.8	54
23	Characterization of the Functional Changes in Mouse Gut Microbiome Associated with Increased <i>Akkermansia muciniphila</i> Population Modulated by Dietary Black Raspberries. ACS Omega, 2018, 3, 10927-10937.	3.5	49
24	Adapterama II: universal amplicon sequencing on Illumina platforms (TaggiMatrix). PeerJ, 2019, 7, e7786.	2.0	47
25	Integrated Serum and Fecal Metabolomics Study of Collagen-Induced Arthritis Rats and the Therapeutic Effects of the Zushima Tablet. Frontiers in Pharmacology, 2018, 9, 891.	3.5	40
26	Profound perturbation induced by triclosan exposure in mouse gut microbiome: a less resilient microbial community with elevated antibiotic and metal resistomes. BMC Pharmacology & Emp; Toxicology, 2017, 18, 46.	2.4	37
27	The Carbamate Aldicarb Altered the Gut Microbiome, Metabolome, and Lipidome of C57BL/6J Mice. Chemical Research in Toxicology, 2019, 32, 67-79.	3.3	37
28	Serum and Fecal Oxylipins in Patients with Alcohol-Related Liver Disease. Digestive Diseases and Sciences, 2019, 64, 1878-1892.	2.3	35
29	Tracking Polymicrobial Metabolism in Cystic Fibrosis Airways: Pseudomonas aeruginosa Metabolism and Physiology Are Influenced by Rothia mucilaginosa-Derived Metabolites. MSphere, 2018, 3, .	2.9	34
30	Editorâ∈™s Highlight: Organophosphate Diazinon Altered Quorum Sensing, Cell Motility, Stress Response, and Carbohydrate Metabolism of Gut Microbiome. Toxicological Sciences, 2017, 157, 354-364.	3.1	33
31	The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system. Toxicology Letters, 2018, 283, 52-57.	0.8	28
32	Individual susceptibility to arsenic-induced diseases: the role of host genetics, nutritional status, and the gut microbiome. Mammalian Genome, 2018, 29, 63-79.	2.2	27
33	Multi-Omics Analyses Detail Metabolic Reprogramming in Lipids, Carnitines, and Use of Glycolytic Intermediates between Prostate Small Cell Neuroendocrine Carcinoma and Prostate Adenocarcinoma. Metabolites, 2019, 9, 82.	2.9	27
34	Improved Microbial Community Characterization of 16S rRNA via Metagenome Hybridization Capture Enrichment. Frontiers in Microbiology, 2021, 12, 644662.	3.5	23
35	Subchronic low-dose 2,4-D exposure changed plasma acylcarnitine levels and induced gut microbiome perturbations in mice. Scientific Reports, 2019, 9, 4363.	3.3	22
36	Functional Microbiomics Reveals Alterations of the Gut Microbiome and Host Coâ€Metabolism in Patients With Alcoholic Hepatitis. Hepatology Communications, 2020, 4, 1168-1182.	4.3	22

#	Article	IF	CITATIONS
37	Butyrate producing microbiota are reduced in chronic kidney diseases. Scientific Reports, 2021, 11, 23530.	3.3	17
38	Intestinal $\hat{l}\pm 1$ -2-Fucosylation Contributes to Obesity and Steatohepatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 293-320.	4.5	14
39	The selective PPAR-delta agonist seladelpar reduces ethanol-induced liver disease by restoring gut barrier function and bile acid homeostasis in mice. Translational Research, 2021, 227, 1-14.	5.0	13
40	Microbial Products and Metabolites Contributing to Alcoholâ€Related Liver Disease. Molecular Nutrition and Food Research, 2021, 65, e2000023.	3.3	13
41	A Pilot Study on the Effect of Prebiotic on Host-Microbial Co-metabolism in Peritoneal Dialysis Patients. Kidney International Reports, 2020, 5, 1309-1315.	0.8	12
42	Fungi–Bacteria Correlation in Alcoholic Hepatitis Patients. Toxins, 2021, 13, 143.	3.4	12
43	Transcriptomic Profiling Identifies Novel Hepatic and Intestinal Genes Following Chronic Plus Binge Ethanol Feeding in Mice. Digestive Diseases and Sciences, 2020, 65, 3592-3604.	2.3	11
44	Functional Microbial Responses to Alcohol Abstinence in Patients With Alcohol Use Disorder. Frontiers in Physiology, 2020, 11, 370.	2.8	11
45	Deficiency of Intestinal α1â€2â€Fucosylation Exacerbates Ethanolâ€Induced Liver Disease in Mice. Alcoholism: Clinical and Experimental Research, 2020, 44, 1842-1851.	2.4	11
46	Metabolite Profiling of the Gut Microbiome in Mice with Dietary Administration of Black Raspberries. ACS Omega, 2020, 5, 1318-1325.	3.5	10
47	Serum Acylcarnitines Associated with High Short-Term Mortality in Patients with Alcoholic Hepatitis. Biomolecules, 2021, 11, 281.	4.0	7
48	Dietary administration of black raspberries modulates arsenic biotransformation and reduces urinary 8-oxo-2′-deoxyguanosine in mice. Toxicology and Applied Pharmacology, 2019, 377, 114633.	2.8	6
49	Machine Learning Applied to Omics Datasets Predicts Mortality in Patients with Alcoholic Hepatitis. Metabolites, 2022, 12, 41.	2.9	6
50	Lipidomics for the Prediction of Progressive Liver Disease in Patients with Alcohol Use Disorder. Metabolites, 2022, 12, 433.	2.9	6
51	Comparing Stable Isotope Enrichment by Gas Chromatography with Time-of-Flight, Quadrupole Time-of-Flight, and Quadrupole Mass Spectrometry. Analytical Chemistry, 2021, 93, 2174-2182.	6.5	4
52	Gut Microbiota and Host Cometabolism Are Altered by Patiromer-Induced Changes in Serum and Stool Potassium. Kidney International Reports, 2021, 6, 821-829.	0.8	4
53	RTP: One Effective Platform to Probe Reactive Compound Transformation Products and Its Applications for a Reactive Plasticizer BADGE. Environmental Science & Environmental Science & 2021, 55, 16034-16043.	10.0	4
54	A Black Raspberry-Rich Diet Protects From Dextran Sulfate Sodium-Induced Intestinal Inflammation and Host Metabolic Perturbation in Association With Increased Aryl Hydrocarbon Receptor Ligands in the Gut Microbiota of Mice. Frontiers in Nutrition, 0, 9, .	3.7	4

#	Article	IF	CITATION
55	Integrative Analysis of Metabolome and Microbiome in Patients with Progressive Alcohol-Associated Liver Disease. Metabolites, 2021, 11, 766.	2.9	3
56	Untargeted Metabolomics Reveal Parenteral Nutrition-Associated Alterations in Pediatric Patients with Short Bowel Syndrome. Metabolites, 2022, 12, 600.	2.9	2
57	SO046REGULATION OF GUT MICROBIOTA AND HOST CO-METABOLISM BY POTASSIUM HOMEOSTASIS IN PATIENTS ON HEMODIALYSIS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0