List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3985333/publications.pdf

Version: 2024-02-01

YIL-PING ZENG

#	Article	IF	CITATIONS
1	Fabrication and characterization of cordierite-bonded porous SiC ceramics. Ceramics International, 2009, 35, 597-602.	4.8	91
2	Fabrication of Mullite Ceramics With Ultrahigh Porosity by Gel Freeze Drying. Journal of the American Ceramic Society, 2007, 90, 2276-2279.	3.8	89
3	Thermal shock resistance of in situ reaction bonded porous silicon carbide ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 425, 326-329.	5.6	86
4	Dielectric and mechanical properties of porous Si3N4 ceramics prepared via low temperature sintering. Ceramics International, 2009, 35, 1699-1703.	4.8	78
5	Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Materials Science and Engineering C, 2010, 30, 283-287.	7.3	76
6	Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 2012, 33, 98-103.	5.1	75
7	Synthesis and growth mechanism of Cr-doped ZnO single-crystalline nanowires. Solid State Communications, 2007, 143, 308-312.	1.9	64
8	Mechanical properties and thermal conductivity of Si3N4 ceramics with YF3 and MgO as sintering additives. Ceramics International, 2016, 42, 15679-15686.	4.8	62
9	Mechanical and dielectric properties of porous Si3N4 ceramics using PMMA as pore former. Ceramics International, 2011, 37, 3775-3779.	4.8	54
10	Fabrication of Gradient Pore TiO ₂ Sheets by a Novel Freeze–Tape asting Process. Journal of the American Ceramic Society, 2007, 90, 3001-3004.	3.8	52
11	Fabrication of porous SiC ceramics through a modified gelcasting and solid state sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 292-297.	5.6	51
12	In2O3–SnO2 nano-toasts and nanorods: Precipitation preparation, formation mechanism, and gas sensitive properties. Sensors and Actuators B: Chemical, 2009, 137, 630-636.	7.8	48
13	Fabrication, microstructural characterization and gas permeability behavior of porous silicon nitride ceramics with controllable pore structures. Journal of the European Ceramic Society, 2019, 39, 2855-2861.	5.7	45
14	Fabrication of porous Si 3 N 4 ceramics through a novel gelcasting method. Materials Letters, 2014, 133, 190-192.	2.6	43
15	The effect of fabrication parameters on the mechanical properties of sintered reaction bonded porous Si3N4 ceramics. Journal of the European Ceramic Society, 2014, 34, 3461-3467.	5.7	43
16	Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes. Electrochimica Acta, 2020, 352, 136452.	5.2	39
17	Fabrication porous Si3N4 ceramics via starch consolidation–freeze drying process. Materials Letters, 2012, 68, 75-77.	2.6	38
18	The improved photocatalytic properties of P-type NiO loaded porous TiO2 sheets prepared via freeze tape-casting. Solid State Sciences, 2010, 12, 138-143.	3.2	37

#	Article	IF	CITATIONS
19	High-strength porous Si 3 N 4 ceramics prepared by freeze casting and silicon powder nitridation process. Materials Letters, 2014, 133, 285-288.	2.6	37
20	Hydrothermal synthesis and optical properties of Pb2+ doped ZnO nanorods. Materials Letters, 2006, 60, 2783-2785.	2.6	36
21	Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride. Ceramics International, 2011, 37, 3071-3076.	4.8	32
22	ZrSi ₂ –MgO as novel additives for high thermal conductivity of β‣i ₃ N ₄ ceramics. Journal of the American Ceramic Society, 2020, 103, 2090-2100.	3.8	31
23	A two step approach for making super capacitors from waste wood. Journal of Cleaner Production, 2021, 279, 123786.	9.3	30
24	The mechanical and dielectric properties of Si3N4-based sandwich ceramics. Materials & Design, 2012, 35, 770-773.	5.1	29
25	The high porosity silicon nitride foams prepared by the direct foaming method. Ceramics International, 2019, 45, 2124-2130.	4.8	29
26	Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics. Journal of the European Ceramic Society, 2020, 40, 5316-5323.	5.7	29
27	The Microstructure and Mechanical Properties of Porous Silicon Nitride Ceramics Prepared via Novel Aqueous Gelcasting. International Journal of Applied Ceramic Technology, 2015, 12, 932-938.	2.1	28
28	Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics. Ceramics International, 2020, 46, 12942-12947.	4.8	27
29	Improved mechanical properties of Cu matrix composites reinforced with β-Si3N4 whiskers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 287-293.	5.6	26
30	Effect of cooling rate and polyvinyl alcohol on the morphology of porous hydroxyapatite ceramics. Materials & Design, 2010, 31, 3090-3094.	5.1	24
31	The Effects of BN Addition on the Mechanical Properties of Porous Si ₃ N ₄ /BN Ceramics Prepared Via Nitridation of Silicon Powder. Journal of the American Ceramic Society, 2011, 94, 666-670.	3.8	22
32	High temperature mechanical properties of porous Si3N4 prepared via SRBSN. Ceramics International, 2018, 44, 11966-11971.	4.8	21
33	Fabrication and mechanical properties of porous Si3N4 ceramics prepared via SHS. Ceramics International, 2019, 45, 14867-14872.	4.8	21
34	Effect of organic additives on the zeta potential of PLZST and rheological properties of PLZST slurries. Journal of the European Ceramic Society, 2008, 28, 2597-2604.	5.7	20
35	The effect of oxidation on the mechanical properties and dielectric properties of porous Si 3 N 4 ceramics. Ceramics International, 2017, 43, 5517-5523.	4.8	20
36	Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite. Ceramics International, 2011, 37, 407-410.	4.8	19

#	Article	IF	CITATIONS
37	Porous Si3N4 ceramics prepared via partial nitridation and SHS. Journal of the European Ceramic Society, 2013, 33, 371-374.	5.7	19
38	Porous Si3N4 fabrication via volume-controlled foaming and their sound absorption properties. Journal of Alloys and Compounds, 2017, 727, 163-167.	5.5	19
39	Tailoring the microstructure of high porosity Si ₃ N ₄ foams by direct foaming with mixed surfactants. Journal of the American Ceramic Society, 2019, 102, 6827-6836.	3.8	19
40	Effect of the binary nonoxide additives on the densification behavior and thermal conductivity of Si ₃ N ₄ ceramics. Journal of the American Ceramic Society, 2020, 103, 5891-5899.	3.8	19
41	Controlled growth and properties of Pb2+ doped ZnO nanodisks. Materials Research Bulletin, 2007, 42, 814-819.	5.2	18
42	The relationship between microstructure and flexural strength of pressureless liquid phase sintered SiC ceramics oxidized at elevated temperatures. Ceramics International, 2016, 42, 13256-13261.	4.8	18
43	High porosity Ca-α-SiAlON ceramics with rod-like grains fabricated by freeze casting and pressureless sintering. Journal of the European Ceramic Society, 2019, 39, 2036-2041.	5.7	18
44	Microstructure and gas permeation performance of porous silicon nitride ceramics with unidirectionally aligned channels. Journal of the American Ceramic Society, 2020, 103, 6565-6574.	3.8	18
45	Improved thermal conductivity of βâ€Si ₃ N ₄ ceramics by lowering SiO ₂ /Y ₂ O ₃ ratio using YH ₂ as sintering additive. Journal of the American Ceramic Society, 2020, 103, 5567-5572.	3.8	18
46	Mechanical Properties of Solid‧intered Porous Silicon Carbide Ceramics. Advanced Engineering Materials, 2013, 15, 491-495.	3.5	17
47	Highly dispersible silicon nitride whiskers in asymmetric porous separators for high-performance lithium-ion battery. Journal of Membrane Science, 2021, 621, 119001.	8.2	17
48	Effects of pore structures on the capillary and thermal performance of porous silicon nitride as novel loop heat pipe wicks. International Journal of Heat and Mass Transfer, 2021, 169, 120985.	4.8	17
49	Gradient porous silicon nitride prepared via vacuum foaming and freeze drying. Materials Letters, 2015, 141, 138-140.	2.6	16
50	The effects of vacuum pyrolysis conditions on wood biochar monoliths for electrochemical capacitor electrodes. Journal of Materials Science, 2021, 56, 8588-8599.	3.7	16
51	Porous SiC ceramics fabricated by quick freeze casting and solid state sintering. Progress in Natural Science: Materials International, 2017, 27, 380-384.	4.4	15
52	Microstructure and mechanical properties of aluminum matrix composites reinforced with pre-oxidized β-Si3N4 whiskers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 723, 109-117.	5.6	15
53	Enhanced thermal conductivity in Si3N4 ceramics prepared by using ZrH2 as an oxygen getter. Journal of Alloys and Compounds, 2021, 855, 157451.	5.5	15
54	Novel silicothermic reduction method to obtain Si3N4 ceramics with enhanced thermal conductivity and fracture toughness. Journal of the European Ceramic Society, 2021, 41, 1735-1738.	5.7	15

#	Article	IF	CITATIONS
55	Improved thermal conductivity of \hat{I}^2 -Si3N4 ceramics through the modification of the liquid phase by using CdH2 as a sintering additive. Ceramics International, 2021, 47, 5631-5638.	4.8	15
56	The improved mechanical properties of \hat{l}^2 -CaSiO 3 bioceramics with Si 3 N 4 addition. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 120-126.	3.1	14
57	A novel method for preparing Si 3 N 4 ceramics with unidirectional oriented pores from silicon aqueous slurries. Journal of the European Ceramic Society, 2017, 37, 3285-3291.	5.7	14
58	Gas permeation performance of porous silicon nitride ceramics with controllable pore structures. Ceramics International, 2019, 45, 22351-22356.	4.8	14
59	YB2C2: A new additive for fabricating Si3N4 ceramics with superior mechanical properties and medium thermal conductivity. Ceramics International, 2020, 46, 5239-5243.	4.8	14
60	Enhanced thermal conductivity of Cu matrix composites reinforced with Ag-coated β-Si3N4 whiskers. Materials & Design, 2014, 60, 282-288.	5.1	13
61	Joining of dense Si3N4 ceramics with tape cast Lu-Al-Si-O-N interlayer. Ceramics International, 2018, 44, 4824-4828.	4.8	13
62	The effect of annealing temperature on flexural strength, dielectric loss and thermal conductivity of Si3N4 ceramics. Journal of Alloys and Compounds, 2020, 813, 152203.	5.5	13
63	Microstructure and Mechanical Properties of Cu Matrix Composites Reinforced by TiB2/TiN Ceramic Reinforcements. Acta Metallurgica Sinica (English Letters), 2020, 33, 1609-1617.	2.9	13
64	Highly Connective Spongy Polyimide Separators Blended with Inorganic Whiskers for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 2011-2023.	5.1	13
65	The sintering behavior and mechanical properties of CaSiO3 bioceramics with B2O3 addition. Ceramics International, 2016, 42, 9222-9226.	4.8	12
66	The application of Lu-Al-Si-O-N oxynitride glass in transparent AlON ceramics joining. Ceramics International, 2019, 45, 2591-2595.	4.8	10
67	Solution-Based, High-Yield Synthesis of Cobalt-Doped Zinc Oxide Nanorods. Journal of the American Ceramic Society, 2007, 90, 2269-2272.	3.8	9
68	Structural, optical, and magnetic properties of Fe-doped In ₂ O ₃ nanocubes. Journal of Materials Research, 2008, 23, 2597-2601.	2.6	9
69	High Flexural Strength Porous Silicon Nitride Prepared <i>via</i> Nitridation of Silicon Powdernitridation; porous silicon nitride; flexural strength; porosity. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 422-426.	1.3	9
70	Effects of silica sol on the microstructure and mechanical properties of CaSiO3 bioceramics. Materials Science and Engineering C, 2016, 64, 336-340.	7.3	8
71	The sound absorption performance of the highly porous silica ceramics prepared using freeze casting method. Journal of the American Ceramic Society, 2020, 103, 5990-5998.	3.8	8
72	Self-propagating high temperature synthesis (SHS) of porous Si3N4-based ceramics with considerable dimensions and study on mechanical properties and oxidation behavior. Journal of the European Ceramic Society, 2021, 41, 4452-4461.	5.7	8

#	Article	IF	CITATIONS
73	Porous <scp>S</scp> i ₃ <scp>N</scp> ₄ / <scp>S</scp> i <scp>C</scp> Ceramics Prepared via Nitridation of Si Powder with <scp>S</scp> i <scp>C</scp> Addition. International Journal of Applied Ceramic Technology, 2014, 11, 845-850.	2.1	7
74	Effect of Ni doping on the structure and properties of In2O3 nanocrystals prepared under magnetic field. Ceramics International, 2014, 40, 9121-9125.	4.8	7
75	Effects of different types of sintering additives and post-heat treatment (PHT) on the mechanical properties of SHS-fabricated Si3N4 ceramics. Ceramics International, 2021, 47, 22461-22467.	4.8	7
76	Fabrication and Properties of Porous Alumina-based Ceramic Core. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 239-244.	1.3	7
77	Porous Si ₃ N ₄ Ceramics Prepared via Nitridation of Si Powder with Si ₃ N ₄ Filler and Postsintering. International Journal of Applied Ceramic Technology, 2012, 9, 239-245.	2.1	6
78	Doped ions (Co2+, Fe3+) tuning morphologies and magnetic properties of indium oxide nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	6
79	Enhanced properties of Cu/Sn alloy matrix composites reinforced with β-silicon nitride whiskers. Journal of Materials Research, 2014, 29, 770-777.	2.6	6
80	A novel route for the fabrication of porous Si3N4 ceramics with unidirectionally aligned channels. Materials Letters, 2020, 276, 128264.	2.6	6
81	Microstructure evolution and high-temperature mechanical properties of porous Si3N4 ceramics prepared by SHS with a small amount of Y2O3 addition. Ceramics International, 2021, 47, 5656-5662.	4.8	6
82	Impacts of interface modification by Ni coating on the property of Cu matrix composites reinforced by β-Si3N4 whiskers. Journal of Alloys and Compounds, 2020, 823, 153734.	5.5	6
83	The effect of BaTiO 3 addition on the dielectric constant of Si 3 N 4 ceramics. International Journal of Applied Ceramic Technology, 2018, 15, 653-659.	2.1	5
84	Corrosion behavior of aluminaâ€based ceramic core materials in caustic alkali solutions. International Journal of Applied Ceramic Technology, 2019, 16, 335-345.	2.1	5
85	Thermal shock behavior of porous Si ₃ N ₄ ceramics with Nd ₂ O ₃ as sintering additive. International Journal of Applied Ceramic Technology, 2019, 16, 1390-1398.	2.1	5
86	Air activation of charcoal monoliths for capacitive energy storage. RSC Advances, 2021, 11, 15118-15130.	3.6	5
87	The synthesis of single-phase β-Sialon porous ceramics using self-propagating high-temperature processing. Ceramics International, 2022, 48, 4371-4375.	4.8	5
88	A simple solution route to control synthesis of Fe3O4 nanomaterials at low temperature and their magnetic properties. Science in China Series B: Chemistry, 2009, 52, 916-923.	0.8	4
89	Fabrication and properties of surfaceâ€modified β‣i ₃ N ₄ whiskers reinforced dental resin composites. Journal of Applied Polymer Science, 2013, 128, 41-46.	2.6	4
90	The microstructure and thermal conductivity of porous β-SiAlON ceramics fabricated by pressureless sintering with Y-α-SiAlON as the sintering additive. Ceramics International, 2022, 48, 6177-6184.	4.8	4

#	Article	IF	CITATIONS
91	High magnetic field inducing magnetic transitions of and doped nanocubes. Solid State Communications, 2011, 151, 1220-1223.	1.9	3
92	The mechanical properties of β‣i ₃ N ₄ whiskersâ€reinforced dental resin composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
93	The effect of silica addition on the microstructure and properties of polyethylene separators prepared by thermally induced phase separation. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
94	Effects of h-BN addition on microstructures and mechanical properties of β-CaSiO3 bioceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 275-281.	3.1	3
95	Effects of surfactant and particle size on the microstructure and strength of Si3N4 foams with high porosity. International Journal of Applied Ceramic Technology, 2021, 18, 830-837.	2.1	3
96	Effects of Y ₂ O ₃ /MgO ratio on mechanical properties and thermal conductivity of silicon nitride ceramics. International Journal of Applied Ceramic Technology, 0, , .	2.1	3
97	The effects of β-Si ₃ N ₄ whiskers and Fe–Cr–C alloy on the tribological properties of bronze matrix composites. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 952-962.	1.8	1