
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3984055/publications.pdf

Version: 2024-02-01

WENWAN ZHONC

#	Article	IF	CITATIONS
1	Recent (2018–2020) development in capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2022, 414, 115-130.	3.7	31
2	Combining Excellent Selectivity with Broad Target Scope: Biosensing with Arrayed Deep Cavitand Hosts. Accounts of Chemical Research, 2022, 55, 1035-1046.	15.6	11
3	Applications of Synthetic Receptors in Bioanalysis and Drug Transport. Bioconjugate Chemistry, 2022, 33, 2245-2253.	3.6	3
4	Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nature Cell Biology, 2022, 24, 954-967.	10.3	35
5	Biological Impacts of Reduced Graphene Oxide Affected by Protein Corona Formation. Chemical Research in Toxicology, 2022, 35, 1244-1256.	3.3	11
6	Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds. Nature Biotechnology, 2022, 40, 1855-1861.	17.5	34
7	Selective discrimination and classification of G-quadruplex structures with a host–guest sensing array. Nature Chemistry, 2021, 13, 488-495.	13.6	48
8	Machine Learning Aids Classification and Discrimination of Noncanonical DNA Folding Motifs by an Arrayed Host:Guest Sensing System. Journal of the American Chemical Society, 2021, 143, 12791-12799.	13.7	31
9	Calibration-free analysis of surface proteins on single extracellular vesicles enabled by DNA nanostructure. Biosensors and Bioelectronics, 2021, 192, 113502.	10.1	18
10	Introduction to advanced separation. Analytical Methods, 2021, 13, 4708-4709.	2.7	0
11	Extraction of by Titanium Dioxide. Methods in Molecular Biology, 2021, 2170, 117-124.	0.9	0
12	Enantioselective sensing of insect pheromones in water. Chemical Communications, 2021, 57, 13341-13344.	4.1	4
13	Lipid and protein corona of food-grade TiO2 nanoparticles in simulated gastrointestinal digestion. NanoImpact, 2020, 20, 100272.	4.5	32
14	Selective sensing of THC and related metabolites in biofluids by host:guest arrays. Chemical Communications, 2020, 56, 4352-4355.	4.1	19
15	Physical and chemical template-blocking strategies in the exponential amplification reaction of circulating microRNAs. Analytical and Bioanalytical Chemistry, 2020, 412, 2399-2412.	3.7	10
16	Monitoring the crosstalk between methylation and phosphorylation on histone peptides with host-assisted capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2020, 412, 6189-6198.	3.7	7
17	Prediction of protein corona on nanomaterials by machine learning using novel descriptors. NanoImpact, 2020, 17, 100207.	4.5	62
18	Asymmetrical Flow Field Flow Fractionation Coupled to Nanoparticle Tracking Analysis for Rapid Online Characterization of Nanomaterials. Analytical Chemistry, 2020, 92, 7071-7078.	6.5	19

#	Article	IF	CITATIONS
19	Analysis of circulating non-coding RNAs in a non-invasive and cost-effective manner. TrAC - Trends in Analytical Chemistry, 2019, 117, 242-262.	11.4	18
20	A supramolecular sensor array for selective immunoglobulin deficiency analysis. Chemical Communications, 2019, 55, 11563-11566.	4.1	10
21	Mapping Molecular Structure of Protein Locating on Nanoparticles with Limited Proteolysis. Analytical Chemistry, 2019, 91, 4204-4212.	6.5	10
22	A DNA aptamer for binding and inhibition of DNA methyltransferase 1. Nucleic Acids Research, 2019, 47, 11527-11537.	14.5	13
23	Sensing of citrulline modifications in histone peptides by deep cavitand hosts. Chemical Communications, 2019, 55, 13259-13262.	4.1	8
24	Rapid Enrichment and Detection of Extracellular Vesicles Enabled by CuS-Enclosed Microgels. Analytical Chemistry, 2019, 91, 15951-15958.	6.5	22
25	Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Analytical Chemistry, 2019, 91, 482-504.	6.5	99
26	Selective Arrayâ€Based Sensing of Anabolic Steroids in Aqueous Solution by Host–Guest Reporter Complexes. Chemistry - A European Journal, 2019, 25, 1740-1745.	3.3	12
27	Open-Channel Separation Techniques for the Characterization of Nanomaterials and Their Bioconjugates for Drug Delivery Applications. , 2019, , 113-150.		0
28	Alkyne–DNA-Functionalized Alloyed Au/Ag Nanospheres for Ratiometric Surface-Enhanced Raman Scattering Imaging Assay of Endonuclease Activity in Live Cells. Analytical Chemistry, 2018, 90, 3898-3905.	6.5	65
29	Highly Efficient Exosome Isolation and Protein Analysis by an Integrated Nanomaterial-Based Platform. Analytical Chemistry, 2018, 90, 2787-2795.	6.5	65
30	Separation of Methylated Histone Peptides via Host-Assisted Capillary Electrophoresis. Analytical Chemistry, 2018, 90, 1881-1888.	6.5	29
31	Encapsulation of ionic nanoparticles produces reactive oxygen species (ROS)-responsive microgel useful for molecular detection. Chemical Communications, 2018, 54, 4329-4332.	4.1	11
32	Extraction of microRNAs from biological matrices with titanium dioxide nanofibers. Analytical and Bioanalytical Chemistry, 2018, 410, 1053-1060.	3.7	17
33	Metal-assisted selective recognition of biothiols by a synthetic receptor array. Chemical Communications, 2018, 54, 13147-13150.	4.1	10
34	A Single Extracellular Vesicle (EV) Flow Cytometry Approach to Reveal EV Heterogeneity. Angewandte Chemie - International Edition, 2018, 57, 15675-15680.	13.8	107
35	A Single Extracellular Vesicle (EV) Flow Cytometry Approach to Reveal EV Heterogeneity. Angewandte Chemie, 2018, 130, 15901-15906.	2.0	5
36	Selective Sensing of Phosphorylated Peptides and Monitoring Kinase and Phosphatase Activity with a Supramolecular Tandem Assay. Journal of the American Chemical Society, 2018, 140, 13869-13877.	13.7	39

WENWAN ZHONG

#	Article	IF	CITATIONS
37	Analytical developments in advancing safety in nanotechnology. Analytical and Bioanalytical Chemistry, 2018, 410, 6037-6039.	3.7	1
38	Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410, 6155-6164.	3.7	43
39	Cobalt oxyhydroxide nanoflakes with intrinsic peroxidase catalytic activity and their application to serum glucose detection. Analytical and Bioanalytical Chemistry, 2017, 409, 4225-4232.	3.7	53
40	Photochemical Bionanoreactor for Efficient Visible-Light-Driven in Vitro Drug Metabolism. Analytical Chemistry, 2017, 89, 7365-7372.	6.5	11
41	Site selective reading of epigenetic markers by a dual-mode synthetic receptor array. Chemical Science, 2017, 8, 3960-3970.	7.4	30
42	Enhancement of the Intrinsic Peroxidase-Like Activity of Graphitic Carbon Nitride Nanosheets by ssDNAs and Its Application for Detection of Exosomes. Analytical Chemistry, 2017, 89, 12327-12333.	6.5	208
43	Fluorescamine Labeling for Assessment of Protein Conformational Change and Binding Affinity in Protein–Nanoparticle Interaction. Analytical Chemistry, 2017, 89, 12160-12167.	6.5	23
44	Selective Heavy Element Sensing with a Simple Host–Guest Fluorescent Array. Analytical Chemistry, 2017, 89, 11113-11121.	6.5	33
45	Rapid Enrichment and Sensitive Detection of Multiple Metal Ions Enabled by Macroporous Graphene Foam. Analytical Chemistry, 2017, 89, 11758-11764.	6.5	34
46	Site-Selective Sensing of Histone Methylation Enzyme Activity via an Arrayed Supramolecular Tandem Assay. Journal of the American Chemical Society, 2017, 139, 10964-10967.	13.7	57
47	Analysis of the Distribution Profiles of Circulating MicroRNAs by Asymmetrical Flow Field Flow Fractionation. Methods in Molecular Biology, 2017, 1509, 161-168.	0.9	2
48	Self-Aggregating Deep Cavitand Acts as a Fluorescence Displacement Sensor for Lysine Methylation. Journal of the American Chemical Society, 2016, 138, 10746-10749.	13.7	68
49	Breast-cancer-secreted miR-122 reprograms glucoseÂmetabolism in premetastatic niche toÂpromoteÂmetastasis. Nature Cell Biology, 2015, 17, 183-194.	10.3	895
50	High-Throughput Profiling of Nanoparticle–Protein Interactions by Fluorescamine Labeling. Analytical Chemistry, 2015, 87, 2213-2219.	6.5	22
51	A novel AgNP/DNA/TPdye conjugate-based two-photon nanoprobe for GSH imaging in cell apoptosis of cancer tissue. Chemical Communications, 2015, 51, 16810-16812.	4.1	28
52	ZrO ₂ Nanofiber as a Versatile Tool for Protein Analysis. ACS Applied Materials & Interfaces, 2015, 7, 26414-26420.	8.0	32
53	Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer. Soft Matter, 2014, 10, 9651-9656.	2.7	13
54	Protein binding for detection of small changes on a nanoparticle surface. Analyst, The, 2014, 139, 1364-1371.	3.5	12

WENWAN ZHONG

#	Article	IF	CITATIONS
55	Exponential Strand-Displacement Amplification for Detection of MicroRNAs. Analytical Chemistry, 2014, 86, 336-339.	6.5	160
56	Size and Surface Functionalization of Iron Oxide Nanoparticles Influence the Composition and Dynamic Nature of Their Protein Corona. ACS Applied Materials & Interfaces, 2014, 6, 15412-15419.	8.0	88
57	Probing and quantifying DNA–protein interactions with asymmetrical flow field-flow fractionation. Journal of Chromatography A, 2014, 1358, 217-224.	3.7	30
58	Distribution Profiling of Circulating MicroRNAs in Serum. Analytical Chemistry, 2014, 86, 9343-9349.	6.5	54
59	Two-Photon Graphene Oxide/Aptamer Nanosensing Conjugate for <i>In Vitro</i> or <i>In Vivo</i> Molecular Probing. Analytical Chemistry, 2014, 86, 3548-3554.	6.5	101
60	Carbon Nanotubes: Mechanistic Study on the Reduction of SWCNT-induced Cytotoxicity by Albumin Coating (Part. Part. Syst. Charact. 12/2014). Particle and Particle Systems Characterization, 2014, 31, 1196-1196.	2.3	0
61	Mechanistic Study on the Reduction of SWCNTâ€induced Cytotoxicity by Albumin Coating. Particle and Particle Systems Characterization, 2014, 31, 1244-1251.	2.3	8
62	Tagging the rolling circle products with nanocrystal clusters for cascade signal increase in the detection of miRNA. Analyst, The, 2013, 138, 3121.	3.5	21
63	Dissociation-Based Screening of Nanoparticle–Protein Interaction via Flow Field-Flow Fractionation. Analytical Chemistry, 2013, 85, 7494-7501.	6.5	54
64	Aptamer–protein binding detected by asymmetric flow field flow fractionation. Journal of Chromatography A, 2013, 1295, 107-113.	3.7	20
65	The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nature Immunology, 2012, 13, 1155-1161.	14.5	363
66	Impact of carrier fluid composition on recovery of nanoparticles and proteins in flow field flow fractionation. Journal of Chromatography A, 2012, 1264, 72-79.	3.7	32
67	Automatic extraction and processing of small RNAs on a multi-well/multi-channel (M&M) chip. Analyst, The, 2012, 137, 5546-5552.	3.5	6
68	Detection of Femtomolar Proteins by Nonfluorescent ZnS Nanocrystal Clusters. Analytical Chemistry, 2012, 84, 1645-1652.	6.5	25
69	Advances in field-flow fractionation for the analysis of biomolecules: instrument design and hyphenation. Analytical and Bioanalytical Chemistry, 2012, 404, 1151-1158.	3.7	13
70	Enhanced enzyme activity through electron transfer between single-walled carbon nanotubes and horseradish peroxidase. Carbon, 2012, 50, 1303-1310.	10.3	23
71	Exploration of Possible Binding Sites of Nanoparticles on Protein by Cross-Linking Chemistry Coupled with Mass Spectrometry. Analytical Chemistry, 2011, 83, 6929-6934.	6.5	15
72	Cation Exchange in ZnSe Nanocrystals for Signal Amplification in Bioassays. Analytical Chemistry, 2011, 83, 402-408.	6.5	36

#	Article	IF	CITATIONS
73	Combing DNAzyme with single-walled carbon nanotubes for detection of Pb(<scp>ii</scp>) in water. Analyst, The, 2011, 136, 764-768.	3.5	34
74	Pseudomonas syringae Type III Effector HopZ1 Targets a Host Enzyme to Suppress Isoflavone Biosynthesis and Promote Infection in Soybean. Cell Host and Microbe, 2011, 9, 177-186.	11.0	99
75	Selfâ€Assembled TiO ₂ Nanocrystal Clusters for Selective Enrichment of Intact Phosphorylated Proteins. Angewandte Chemie - International Edition, 2010, 49, 1862-1866.	13.8	134
76	Probing Nanoparticleâ^'Protein Interaction by Capillary Electrophoresis. Analytical Chemistry, 2010, 82, 7460-7466.	6.5	82
77	Oxidation Reactions Mediated by Single-Walled Carbon Nanotubes in Aqueous Solution. Environmental Science & Technology, 2010, 44, 6954-6958.	10.0	27
78	Nano Aptasensor for Protective Antigen Toxin of Anthrax. Analytical Chemistry, 2010, 82, 2042-2047.	6.5	95
79	Fluorescence Signal Amplification by Cation Exchange in Ionic Nanocrystals. Angewandte Chemie - International Edition, 2009, 48, 1588-1591.	13.8	60
80	Nanomaterials in fluorescence-based biosensing. Analytical and Bioanalytical Chemistry, 2009, 394, 47-59.	3.7	223
81	Stand-Alone Rolling Circle Amplification Combined with Capillary Electrophoresis for Specific Detection of Small RNA. Analytical Chemistry, 2009, 81, 4906-4913.	6.5	68
82	Capillary Electrophoresis-Assisted Identification of Peroxyl Radical Generated by Single-Walled Carbon Nanotubes in a Cell-Free System. Analytical Chemistry, 2009, 81, 5510-5516.	6.5	14
83	Detection of MicroRNA by Fluorescence Amplification Based on Cation-Exchange in Nanocrystals. Analytical Chemistry, 2009, 81, 9723-9729.	6.5	78
84	CE combined with rolling circle amplification for sensitive DNA detection. Electrophoresis, 2008, 29, 424-432.	2.4	15
85	A two-dimensional suspension array system by coupling field flow fractionation to flow cytometry. Journal of Chromatography A, 2008, 1183, 143-149.	3.7	11
86	Separation of miRNA and its methylation products by capillary electrophoresis. Journal of Chromatography A, 2008, 1202, 220-223.	3.7	18
87	Multiplexed Affinity-Based Protein Complex Purification. Analytical Chemistry, 2008, 80, 7068-7074.	6.5	15
88	A fluorescence detection scheme for ultra large molecules after gas phase separation. Talanta, 2007, 71, 2126-2128.	5.5	3
89	Typing of Multiple Single-Nucleotide Polymorphisms by a Microsphere-Based Rolling Circle Amplification Assay. Analytical Chemistry, 2007, 79, 9030-9038.	6.5	53
90	Laser ablation and ionization time-of-flight mass spectrometer with orthogonal sample introduction and axial field rf-only quadrupole cooling. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 220-224.	2.9	12

#	Article	IF	CITATIONS
91	Multiplexed Flow Cytometric Immunoassay for Influenza Virus Detection and Differentiation. Analytical Chemistry, 2005, 77, 7673-7678.	6.5	43
92	Separation of actinides at ultra-trace level from urine matrix using extraction chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19, 966.	3.0	50
93	High-Throughput Analysis of Total RNA Expression Profiles by Capillary Gel Electrophoresis. Analytical Chemistry, 2003, 75, 4415-4422.	6.5	12
94	Combinatorial enantiomeric separation of diverse compounds using capillary array electrophoresis. Electrophoresis, 2002, 23, 2996-3005.	2.4	35
95	Multiplexed on-column protein digestion and capillary electrophoresis for high-throughput comprehensive peptide mapping. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 782, 331-341.	2.3	22
96	Multiplexed capillary electrophoresis for DNA sequencing with ultra violet absorption detection. Journal of Chromatography A, 2002, 960, 229-239.	3.7	16
97	Capillary Electrophoresis of Nucleic Acids at the Single-Cell Level. , 0, , 75-91.		Ο