Linda F Nazar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3982842/publications.pdf

Version: 2024-02-01

767 642 67,014 278 119 256 citations h-index g-index papers 307 307 307 30110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy, 2022, 7, 83-93.	39.5	249
2	Tuning the Solvation Structure in Aqueous Zinc Batteries to Maximize Zn-Ion Intercalation and Optimize Dendrite-Free Zinc Plating. ACS Energy Letters, 2022, 7, 533-540.	17.4	62
3	Exploiting the paddle-wheel mechanism for the design of fast ion conductors. Nature Reviews Materials, 2022, 7, 389-405.	48.7	83
4	Charging sustainable batteries. Nature Sustainability, 2022, 5, 176-178.	23.7	70
5	Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule, 2022, 6, 1103-1120.	24.0	131
6	Enabling High Capacity and Coulombic Efficiency for Liâ€NCM811 Cells Using a Highly Concentrated Electrolyte. Batteries and Supercaps, 2021, 4, 294-303.	4.7	13
7	A High Capacity All Solidâ€State Liâ€Sulfur Battery Enabled by Conversionâ€Intercalation Hybrid Cathode Architecture. Advanced Functional Materials, 2021, 31, 2004239.	14.9	45
8	Fast Liâ€lon Conductivity in Superadamantanoid Lithium Thioborate Halides. Angewandte Chemie, 2021, 133, 7051-7056.	2.0	2
9	Fast Li″on Conductivity in Superadamantanoid Lithium Thioborate Halides. Angewandte Chemie - International Edition, 2021, 60, 6975-6980.	13.8	15
10	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie, 2021, 133, 10975-10982.	2.0	10
11	The Role of Metal Substitution in Tuning Anion Redox in Sodium Metal Layered Oxides Revealed by Xâ€Ray Spectroscopy and Theory. Angewandte Chemie - International Edition, 2021, 60, 10880-10887.	13.8	32
12	Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. Energy and Environmental Science, 2021, 14, 4858-4867.	30.8	29
13	Fast Ion-Conducting Thioboracite with a Perovskite Topology and Argyrodite-like Lithium Substructure. Journal of the American Chemical Society, 2021, 143, 6952-6961.	13.7	16
14	Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries. Accounts of Chemical Research, 2021, 54, 2717-2728.	15.6	121
15	Lithium Ytterbium-Based Halide Solid Electrolytes for High Voltage All-Solid-State Batteries. , 2021, 3, 930-938.		80
16	Inhibiting Oxygen Release from Liâ€rich, Mnâ€rich Layered Oxides at the Surface with a Solution Processable Oxygen Scavenger Polymer. Advanced Energy Materials, 2021, 11, 2100552.	19.5	64
17	Toward the Development of a High-Voltage Mg Cathode Using a Chromium Sulfide Host. , 2021, 3, 1213-1220.		12
18	Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes. Trends in Chemistry, 2021, 3, 807-818.	8.5	27

#	Article	IF	CITATIONS
19	Secondary lithium and other alkali-air batteries. , 2021, , 125-156.		O
20	Influence of Aliovalent Cation Substitution and Mechanical Compression on Li-lon Conductivity and Diffusivity in Argyrodite Solid Electrolytes. Chemistry of Materials, 2021, 33, 146-157.	6.7	62
21	Quantifying and Suppressing Proton Intercalation to Enable Highâ€Voltage Znâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2102016.	19.5	48
22	Nanotechnology for a Sustainable Future: Addressing Global Challenges with the International Network4Sustainable Nanotechnology. ACS Nano, 2021, 15, 18608-18623.	14.6	76
23	High-Voltage Superionic Halide Solid Electrolytes for All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2020, 5, 533-539.	17.4	250
24	Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Materials, 2020, 32, 178-184.	18.0	45
25	High-Voltage Phosphate Cathodes for Rechargeable Ca-lon Batteries. ACS Energy Letters, 2020, 5, 3203-3211.	17.4	65
26	Targeting Superionic Conductivity by Turning on Anion Rotation at Room Temperature in Fast Ion Conductors. Matter, 2020, 2, 1667-1684.	10.0	69
27	Design Rules for High-Valent Redox in Intercalation Electrodes. Joule, 2020, 4, 1369-1397.	24.0	80
28	Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12550-12557.	7.1	218
29	A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy and Environmental Science, 2020, 13, 2056-2063.	30.8	148
30	Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 2020, 120, 6626-6683.	47.7	593
31	Direct Nanoâ€Synthesis Methods Notably Benefit Mgâ€Battery Cathode Performance. Small Methods, 2020, 4, 2000029.	8.6	33
32	Stable High-Temperature Cycling of Na Metal Batteries on Na ₃ V ₂ (PO ₄) ₃ and Na ₂ FeP ₂ O ₇ Cathodes in NaFSI-Rich Organic Ionic Plastic Crystal Electrolytes. Journal of Physical Chemistry Letters, 2020, 11, 2092-2100.	4.6	27
33	A Lithium Oxythioborosilicate Solid Electrolyte Glass with Superionic Conductivity. Advanced Energy Materials, 2020, 10, 1902783.	19.5	50
34	Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule, 2020, 4, 771-799.	24.0	1,164
35	Impact of the Li substructure on the diffusion pathways in alpha and beta Li ₃ PS ₄ : an <i>in situ</i> high temperature neutron diffraction study. Journal of Materials Chemistry A, 2020, 8, 12446-12456.	10.3	37
36	Reversible Calcium Plating and Stripping at Room Temperature Using a Borate Salt. ACS Energy Letters, 2019, 4, 2271-2276.	17.4	142

#	Article	IF	Citations
37	New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. Journal of the American Chemical Society, 2019, 141, 19002-19013.	13.7	221
38	MXene Materials as Electrodes for Lithium-Sulfur Batteries. , 2019, , 381-398.		4
39	Coupled Cationâ€"Anion Dynamics Enhances Cation Mobility in Room-Temperature Superionic Solid-State Electrolytes. Journal of the American Chemical Society, 2019, 141, 19360-19372.	13.7	91
40	Correlated Migration Invokes Higher Na ⁺ â€lon Conductivity in NaSICONâ€Type Solid Electrolytes. Advanced Energy Materials, 2019, 9, 1902373.	19.5	162
41	Energy Spotlight. ACS Energy Letters, 2019, 4, 2763-2769.	17.4	1
42	An Entropically Stabilized Fast-Ion Conductor: Li _{3.25} [Si _{0.25} P _{0.75}]S ₄ . Chemistry of Materials, 2019, 31, 7801-7811.	6.7	62
43	Impact of the Mechanical Properties of a Functionalized Cross-Linked Binder on the Longevity of Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22481-22491.	8.0	22
44	Boosting Solidâ€State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angewandte Chemie, 2019, 131, 8773-8778.	2.0	44
45	Boosting Solid‧tate Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angewandte Chemie - International Edition, 2019, 58, 8681-8686.	13.8	325
46	The Waterloo Institute for Nanotechnology: Societal Impact and a Sustainable Future. ACS Nano, 2019, 13, 12247-12253.	14.6	1
47	Solvent-Engineered Design of Argyrodite Li $<$ sub $>$ 6 $<$ /sub $>$ PS $<$ sub $>$ 5 $<$ /sub $>$ X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity. ACS Energy Letters, 2019, 4, 265-270.	17.4	207
48	Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy-Density Lithium-Sulfur Batteries. Joule, 2019, 3, 136-148.	24.0	256
49	Aqueous <i>vs.</i> nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy and Environmental Science, 2018, 11, 881-892.	30.8	604
50	Correlation of Structure and Fast Ion Conductivity in the Solid Solution Series Li _{1+2<i>x</i>} Zn _{1â€"<i>x</i>} PS ₄ . Chemistry of Materials, 2018, 30, 592-596.	6.7	42
51	Fe ₂ O ₃ Nanoparticle Seed Catalysts Enhance Cyclability on Deep (Dis)charge in Aprotic LiO ₂ Batteries. Advanced Energy Materials, 2018, 8, 1703513.	19.5	43
52	A 4 V Na ⁺ Intercalation Material in a New Naâ€lon Cathode Family. Advanced Energy Materials, 2018, 8, 1701729.	19.5	18
53	Na ₁₁ Sn ₂ PS ₁₂ : a new solid state sodium superionic conductor. Energy and Environmental Science, 2018, 11, 87-93.	30.8	222
54	NaV _{1.25} Ti _{0.75} O ₄ : A Potential Post-Spinel Cathode Material for Mg Batteries. Chemistry of Materials, 2018, 30, 121-128.	6.7	37

#	Article	IF	Citations
55	Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12389-12394.	7.1	49
56	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed Inâ€Situ. Angewandte Chemie - International Edition, 2018, 57, 9795-9798.	13.8	134
57	Stabilizing Lithium Plating by a Biphasic Surface Layer Formed Inâ€Situ. Angewandte Chemie, 2018, 130, 9943-9946.	2.0	39
58	Insights into Mg ²⁺ Intercalation in a Zero-Strain Material: Thiospinel Mg _{<i>x</i>} Zr ₂ S ₄ . Chemistry of Materials, 2018, 30, 4683-4693.	6.7	36
59	Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy, 2018, 3, 783-791.	39.5	421
60	A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science, 2018, 361, 777-781.	12.6	356
61	Correlating Ion Mobility and Single Crystal Structure in Sodium-Ion Chalcogenide-Based Solid State Fast Ion Conductors: Na ₁₁ Sn ₂ PnS ₁₂ (Pn = Sb, P). Chemistry of Materials, 2018, 30, 7413-7417.	6.7	59
62	New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976.	30.8	894
63	Electrochemical performance of Na _{0.6}]O ₂ cathodes with high-working average voltage for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5858-5864.	10.3	35
64	In Situ NMR Observation of the Temporal Speciation of Lithium Sulfur Batteries during Electrochemical Cycling. Journal of Physical Chemistry C, 2017, 121, 6011-6017.	3.1	43
65	Monovalent versus Divalent Cation Diffusion in Thiospinel Ti ₂ S ₄ . Journal of Physical Chemistry Letters, 2017, 8, 2253-2257.	4.6	37
66	Inhibiting Polysulfide Shuttle in Lithium–Sulfur Batteries through Lowâ€lonâ€Pairing Salts and a Triflamide Solvent. Angewandte Chemie - International Edition, 2017, 56, 6192-6197.	13.8	109
67	Inhibiting Polysulfide Shuttle in Lithium–Sulfur Batteries through Lowâ€Ionâ€Pairing Salts and a Triflamide Solvent. Angewandte Chemie, 2017, 129, 6288-6293.	2.0	82
68	Directing the Lithium–Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries. ACS Central Science, 2017, 3, 605-613.	11.3	164
69	Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries. ACS Energy Letters, 2017, 2, 1122-1127.	17.4	294
70	Stabilization of Lithium Transition Metal Silicates in the Olivine Structure. Inorganic Chemistry, 2017, 56, 9931-9937.	4.0	4
71	A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2, .	39.5	864
72	An InÂVivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal. Joule, 2017, 1, 871-886.	24.0	271

#	Article	IF	Citations
73	Structural Evolution and Redox Processes Involved in the Electrochemical Cycling of P2–Na _{0.67} [Mn _{0.66} Fe _{0.20} Cu _{0.14}]O ₂ . Chemistry of Materials, 2017, 29, 6684-6697.	6.7	112
74	Interwoven MXene Nanosheet/Carbonâ€Nanotube Composites as Li–S Cathode Hosts. Advanced Materials, 2017, 29, 1603040.	21.0	606
7 5	A Comprehensive Approach toward Stable Lithium–Sulfur Batteries with High Volumetric Energy Density. Advanced Energy Materials, 2017, 7, 1601630.	19.5	277
76	Methods and Protocols for Electrochemical Energy Storage Materials Research. Chemistry of Materials, 2017, 29, 90-105.	6.7	141
77	The Nature and Impact of Side Reactions in Glymeâ€based Sodium–Oxygen Batteries. ChemSusChem, 2016, 9, 1795-1803.	6.8	76
78	Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle. Advanced Energy Materials, 2016, 6, 1501636.	19.5	623
79	Lithiumâ€Sulfur Batteries: Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle (Adv. Energy Mater. 6/2016). Advanced Energy Materials, 2016, 6, .	19.5	5
80	A high capacity thiospinel cathode for Mg batteries. Energy and Environmental Science, 2016, 9, 2273-2277.	30.8	349
81	A conditioning-free magnesium chloride complex electrolyte for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2016, 4, 7160-7164.	10.3	78
82	Implications of 4 e [–] Oxygen Reduction via Iodide Redox Mediation in Li–O ₂ Batteries. ACS Energy Letters, 2016, 1, 747-756.	17.4	145
83	Transport Properties of Polysulfide Species in Lithium–Sulfur Battery Electrolytes: Coupling of Experiment and Theory. ACS Central Science, 2016, 2, 560-568.	11.3	71
84	<i>In Situ</i> Monitoring of Fast Li-Ion Conductor Li ₇ P ₃ S ₁₁ Crystallization Inside a Hot-Press Setup. Chemistry of Materials, 2016, 28, 6152-6165.	6.7	138
85	Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium-Oxygen Batteries. Journal of the American Chemical Society, 2016, 138, 11219-11226.	13.7	90
86	<i>Operando</i> Nanobeam Diffraction to Follow the Decomposition of Individual Li ₂ O ₂ Grains in a Nonaqueous Liâ€'O ₂ Battery. Journal of Physical Chemistry Letters, 2016, 7, 3388-3394.	4.6	14
87	Prussian Blue MgLi Hybrid Batteries. Advanced Science, 2016, 3, 1600044.	11.2	89
88	Screening for positive electrodes for magnesium batteries: a protocol for studies at elevated temperatures. Chemical Communications, 2016, 52, 12458-12461.	4.1	86
89	Advances in understanding mechanisms underpinning lithium–air batteries. Nature Energy, 2016, 1, .	39.5	1,050
90	Impact of intermediate sites on bulk diffusion barriers: Mg intercalation in Mg ₂ Mo ₃ O ₈ . Journal of Materials Chemistry A, 2016, 4, 17643-17648.	10.3	27

#	Article	IF	Citations
91	A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy, 2016, $1,\dots$	39.5	2,167
92	Advances in lithiumâ \in "sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016, 1, .	39.5	1,710
93	Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-Ion Batteries by Structural Lithium Substitution. Chemistry of Materials, 2016, 28, 9064-9076.	6.7	191
94	Amorphous TiS ₃ /S/C Composite Positive Electrodes with High Capacity for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2016, 163, A1730-A1735.	2.9	7
95	Layered TiS ₂ Positive Electrode for Mg Batteries. ACS Energy Letters, 2016, 1, 297-301.	17.4	310
96	A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Materials Horizons, 2016, 3, 130-136.	12.2	409
97	Long-Life and High-Areal-Capacity Li–S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption. ACS Nano, 2016, 10, 4111-4118.	14.6	376
98	<i>In Situ</i> Reactive Assembly of Scalable Core–Shell Sulfur–MnO ₂ Composite Cathodes. ACS Nano, 2016, 10, 4192-4198.	14.6	351
99	Investigation of the Mechanism of Mg Insertion in Birnessite in Nonaqueous and Aqueous Rechargeable Mg-Ion Batteries. Chemistry of Materials, 2016, 28, 534-542.	6.7	287
100	A Nitrogen and Sulfur Dualâ€Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 6021-6028.	21.0	703
101	Uptake of CO ₂ in Layered P2-Na _{0.67} Mn _{0.5} Fe _{0.5} O ₂ : Insertion of Carbonate Anions. Chemistry of Materials, 2015, 27, 2515-2524.	6.7	162
102	The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nature Chemistry, 2015, 7, 496-501.	13.6	273
103	A highly efficient polysulfide mediator for lithium–sulfur batteries. Nature Communications, 2015, 6, 5682.	12.8	1,691
104	A highly active nanostructured metallic oxide cathode for aprotic Li–O ₂ batteries. Energy and Environmental Science, 2015, 8, 1292-1298.	30.8	213
105	Sulfur Cathodes Based on Conductive MXene Nanosheets for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 3907-3911.	13.8	1,006
106	The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 3431-3448.	13.8	1,772
107	Radical or Not Radical: Revisiting Lithium–Sulfur Electrochemistry in Nonaqueous Electrolytes. Advanced Energy Materials, 2015, 5, 1401801.	19.5	270
108	Synthesis, Structure, and Na-Ion Migration in Na ₄ NiP ₂ O ₇ F ₂ : A Prospective High Voltage Positive Electrode Material for the Na-Ion Battery. Chemistry of Materials, 2015, 27, 885-891.	6.7	39

#	Article	IF	Citations
109	Perovskite–Nitrogenâ€Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium–Air Batteries. ChemSusChem, 2015, 8, 1058-1065.	6.8	92
110	Carbon Nanotube-Based Supercapacitors with Excellent ac Line Filtering and Rate Capability <i>via</i> lmproved Interfacial Impedance. ACS Nano, 2015, 9, 7248-7255.	14.6	202
111	Structure of the high voltage phase of layered P2-Na ₂ 2(sub>and the positive effect of Ni substitution on its stability. Energy and Environmental Science, 2015, 8, 2512-2523.	30.8	331
112	Direct, Soft Chemical Route to Mesoporous Metallic Lead Ruthenium Pyrochlore and Investigation of its Electrochemical Properties. Chemistry of Materials, 2015, 27, 2322-2331.	6.7	19
113	Nanostructured Metal Carbides for Aprotic Li–O ₂ Batteries: New Insights into Interfacial Reactions and Cathode Stability. Journal of Physical Chemistry Letters, 2015, 6, 2252-2258.	4.6	111
114	Reviewâ€"The Importance of Chemical Interactions between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2015, 162, A2567-A2576.	2.9	294
115	A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries. ACS Central Science, 2015, 1, 510-515.	11.3	175
116	Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chemical Communications, 2015, 51, 2308-2311.	4.1	206
117	Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery. Advanced Energy Materials, 2015, 5, 1400867.	19.5	192
118	Lithium-sulfur batteries. MRS Bulletin, 2014, 39, 436-442.	3.5	284
119	Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries. Energy and Environmental Science, 2014, 7, 2697-2705.	30.8	339
120	Li2MnSiO4/carbon nanofiber cathodes for Li-ion batteries. Ionics, 2014, 20, 1351-1359.	2.4	18
121	Electrochemical Properties of Siâ€Ge Heterostructures as an Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2014, 24, 1458-1464.	14.9	78
122	The Importance of Nanometric Passivating Films on Cathodes for Li–Air Batteries. ACS Nano, 2014, 8, 12483-12493.	14.6	131
123	Nature of Li ₂ O ₂ Oxidation in a Li–O ₂ Battery Revealed by Operando X-ray Diffraction. Journal of the American Chemical Society, 2014, 136, 16335-16344.	13.7	283
124	Gentle reduction of SBA-15 silica to its silicon replica with retention of morphology. RSC Advances, 2014, 4, 22048-22052.	3.6	4
125	Stable Cycling of a Scalable Graphene-Encapsulated Nanocomposite for Lithium–Sulfur Batteries. ACS Applied Materials & Diterfaces, 2014, 6, 10917-10923.	8.0	80
126	Kinetics of Oxygen Reduction in Aprotic Li–O ₂ Cells: A Model-Based Study. Journal of Physical Chemistry Letters, 2014, 5, 3486-3491.	4.6	48

#	Article	IF	CITATIONS
127	Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Communications, 2014, 5, 4759.	12.8	1,122
128	Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy, 2014, 10, 192-200.	16.0	168
129	Bimodal Mesoporous Carbon Nanofibers with High Porosity: Freestanding and Embedded in Membranes for Lithium–Sulfur Batteries. Chemistry of Materials, 2014, 26, 3879-3886.	6.7	80
130	The effects of moisture contamination in the Li-O2 battery. Journal of Power Sources, 2014, 268, 565-574.	7.8	81
131	Sulfur Speciation in Liâ \in "S Batteries Determined by Operando X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 3227-3232.	4.6	462
132	Tailoring Porosity in Carbon Nanospheres for Lithium–Sulfur Battery Cathodes. ACS Nano, 2013, 7, 10920-10930.	14.6	439
133	Bi-Functional N-Doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for Metal Air Battery Applications. Journal of the Electrochemical Society, 2013, 160, A2244-A2250.	2.9	57
134	Highly Active Graphene Nanosheets Prepared via Extremely Rapid Heating as Efficient Zinc-Air Battery Electrode Material. Journal of the Electrochemical Society, 2013, 160, F910-F915.	2.9	57
135	Ultra-rapid microwave synthesis of triplite LiFeSO4F. Journal of Materials Chemistry A, 2013, 1, 2990.	10.3	43
136	Oxygen Reduction Reaction Using MnO ₂ Nanotubes/Nitrogen-Doped Exfoliated Graphene Hybrid Catalyst for Li-O ₂ Battery Applications. Journal of the Electrochemical Society, 2013, 160, A344-A350.	2.9	84
137	The Role of Catalysts and Peroxide Oxidation in Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2013, 52, 392-396.	13.8	347
138	Fabrication of Three-Dimensional Carbon Nanotube and Metal Oxide Hybrid Mesoporous Architectures. ACS Nano, 2013, 7, 4281-4288.	14.6	72
139	Hydrothermal Synthesis and Electrochemical Properties of Li ₂ CoSiO ₄ /C Nanospheres. Chemistry of Materials, 2013, 25, 1024-1031.	6.7	44
140	Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy and Environmental Science, 2013, 6, 1772.	30.8	586
141	Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4. Energy and Environmental Science, 2013, 6, 2257.	30.8	228
142	Na _{4â€Î±} M _{2+α/2} (P ₂ O ₇) ₂ (2/3 â‰∯± â‰₱/8, I	M = Fe,) Tj 19.5	j ETQq0 0 0 r 155
143	New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes. Accounts of Chemical Research, 2013, 46, 1135-1143.	15.6	1,166
144	Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Nature Chemistry, 2012, 4, 1004-1010.	13.6	507

#	Article	IF	Citations
145	New composite materials for lithium-ion batteries. Electrochimica Acta, 2012, 84, 145-154.	5.2	38
146	Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chemical Communications, 2012, 48, 1233-1235.	4.1	415
147	Sodium and sodium-ion energy storage batteries. Current Opinion in Solid State and Materials Science, 2012, 16, 168-177.	11.5	1,251
148	Synthesis of monolithic meso–macroporous silica and carbon with tunable pore size. Chemical Communications, 2012, 48, 4335.	4.1	11
149	Reply to Comment on "Positive Electrode Materials for Li-Ion and Li-Batteries― Chemistry of Materials, 2012, 24, 2244-2245.	6.7	0
150	Anion-Induced Solid Solution Electrochemical Behavior in Iron Tavorite Phosphates. Chemistry of Materials, 2012, 24, 966-968.	6.7	19
151	Screening for Superoxide Reactivity in Li-O ₂ Batteries: Effect on Li ₂ O ₂ /LiOH Crystallization. Journal of the American Chemical Society, 2012, 134, 2902-2905.	13.7	669
152	Lithium metal fluorosulfate polymorphs as positive electrodes for Li-ion batteries: synthetic strategies and effect of cation ordering. Energy and Environmental Science, 2012, 5, 6238.	30.8	62
153	Surfaceâ€Initiated Growth of Thin Oxide Coatings for Li–Sulfur Battery Cathodes. Advanced Energy Materials, 2012, 2, 1490-1496.	19.5	156
154	Challenges Facing Lithium Batteries and Electrical Doubleâ€Layer Capacitors. Angewandte Chemie - International Edition, 2012, 51, 9994-10024.	13.8	2,407
155	Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery. Journal of Physical Chemistry C, 2012, 116, 19653-19658.	3.1	454
156	The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries. Energy and Environmental Science, 2012, 5, 9558.	30.8	169
157	Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F. Journal of Materials Chemistry, 2012, 22, 4759.	6.7	49
158	Nonâ€Aqueous and Hybrid Liâ€O ₂ Batteries. Advanced Energy Materials, 2012, 2, 801-815.	19.5	454
159	Oxide Catalysts for Rechargeable Highâ€Capacity Li–O ₂ Batteries. Advanced Energy Materials, 2012, 2, 903-910.	19.5	172
160	Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2012, 51, 3591-3595.	13.8	1,021
161	Investigation of hydrogen absorption in Li7VN4 and Li7MnN4. Physical Chemistry Chemical Physics, 2011, 13, 8889.	2.8	6
162	Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation. Journal of Materials Chemistry, 2011, 21, 10085.	6.7	53

#	Article	IF	CITATIONS
163	⁶ Li 1D EXSY NMR Spectroscopy: A New Tool for Studying Lithium Dynamics in Paramagnetic Materials Applied to Monoclinic Li ₂ VPO ₄ F. Journal of Physical Chemistry C, 2011, 115, 22603-22608.	3.1	32
164	Advanced materials for lithium batteries. Journal of Materials Chemistry, 2011, 21, 9810.	6.7	11
165	High "C―rate Li-S cathodes: sulfur imbibed bimodal porous carbons. Energy and Environmental Science, 2011, 4, 2878.	30.8	446
166	Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nature Communications, 2011, 2, 325.	12.8	803
167	Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy and Environmental Science, 2011, 4, 4532.	30.8	242
168	Alkali-ion Conduction Paths in LiFeSO ₄ F and NaFeSO ₄ F Tavorite-Type Cathode Materials. Chemistry of Materials, 2011, 23, 2278-2284.	6.7	156
169	Decomposition Reaction of Lithium Bis(oxalato)borate in the Rechargeable Lithium-Oxygen Cell. Electrochemical and Solid-State Letters, 2011, 14, A185.	2.2	51
170	Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries. Chemistry of Materials, 2011, 23, 3593-3600.	6.7	274
171	Structure and Electrochemistry of Two-Electron Redox Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure. Chemistry of Materials, 2011, 23, 5138-5148.	6.7	107
172	Influence of particle size on solid solution formation and phase interfaces in Li0.5FePO4 revealed by 31P and 7Li solid state NMR spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 5171.	2.8	29
173	Electrochemical energy storage to power the 21st century. MRS Bulletin, 2011, 36, 486-493.	3.5	139
174	Positive Electrode Materials for Li-Ion and Li-Batteries. Chemistry of Materials, 2010, 22, 691-714.	6.7	1,569
175	Crystal Structure and Electrochemical Properties of A ₂ MPO ₄ F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chemistry of Materials, 2010, 22, 1059-1070.	6.7	300
176	Comment on "Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties― Advanced Functional Materials, 2010, 20, 186-188.	14.9	24
177	Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries. Advanced Functional Materials, 2010, 20, 3818-3834.	14.9	257
178	Scalable Synthesis of Tavorite LiFeSO ₄ F and NaFeSO ₄ F Cathode Materials. Angewandte Chemie - International Edition, 2010, 49, 8738-8742.	13.8	176
179	Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nature Chemistry, 2010, 2, 286-293.	13.6	448
180	Advances in Li–S batteries. Journal of Materials Chemistry, 2010, 20, 9821.	6.7	1,765

#	Article	IF	CITATIONS
181	Tavorite Lithium Iron Fluorophosphate Cathode Materials: Phase Transition and Electrochemistry of LiFePO[sub 4]F–Li[sub 2]FePO[sub 4]F. Electrochemical and Solid-State Letters, 2010, 13, A43.	2.2	145
182	Synthesis of Li4V(PO4)2F2 and 6,7Li NMR studies of its lithium ion dynamics. Journal of Materials Chemistry, 2010, 20, 4340.	6.7	14
183	Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant. Journal of Materials Chemistry, 2010, 20, 3834.	6.7	47
184	Agitation induced loading of sulfur into carbon CMK-3 nanotubes: efficient scavenging of noble metals from aqueous solution. Chemical Communications, 2010, 46, 1658.	4.1	17
185	Nano-network electronic conduction in iron and nickel olivine phosphates. , 2010, , 199-204.		1
186	Simple Synthesis of Graphitic Ordered Mesoporous Carbon Materials by a Solidâ€State Method Using Metal Phthalocyanines. Angewandte Chemie - International Edition, 2009, 48, 5661-5665.	13.8	120
187	A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials, 2009, 8, 500-506.	27.5	5,250
188	Proof of Intercrystallite Ionic Transport in LiMPO $<$ sub $>$ 4 $<$ /sub $>$ Electrodes (M = Fe, Mn). Journal of the American Chemical Society, 2009, 131, 6044-6045.	13.7	91
189	Anodes and Composite Anodes: An Overview. , 2009, , 112-143.		2
190	Layered Lithium Vanadium Fluorophosphate, Li $<$ sub $>$ 5 $<$ /sub $>$ 0(PO $<$ sub $>$ 4 $<$ /sub $>$) $<$ sub $>$ 2 $<$ /sub $>$ F $<$ sub $>$ 2 $<$ /sub $>$ 1. A 4 V Class Positive Electrode Material for Lithium-Ion Batteries. Chemistry of Materials, 2008, 20, 4240-4248.	6.7	61
191	Proof of Supervalent Doping in Olivine LiFePO ₄ . Chemistry of Materials, 2008, 20, 6313-6315.	6.7	223
192	Strategic synthesis of SBA-15 nanorods. Chemical Communications, 2008, , 4288.	4.1	38
193	On the Stability of LiFePO[sub 4] Olivine Cathodes under Various Conditions (Electrolyte Solutions,) Tj ETQq1 1 (0.784314 2.2	rgBT/Overlo
194	Surface Chemistry of LiFePO[sub 4] Studied by Mol^ssbauer and X-Ray Photoelectron Spectroscopy and Its Effect on Electrochemical Properties. Journal of the Electrochemical Society, 2007, 154, A283.	2.9	175
195	Carbon/MoO2Composite Based on Porous Semi-Graphitized Nanorod Assemblies from In Situ Reaction of Tri-Block Polymers. Chemistry of Materials, 2007, 19, 374-383.	6.7	100
196	Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources, 2007, 165, 491-499.	7.8	619
197	A multifunctional 3.5 V iron-based phosphate cathode for rechargeableÂbatteries. Nature Materials, 2007, 6, 749-753.	27.5	870
198	Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion/electron transport. Faraday Discussions, 2007, 134, 119-141.	3.2	115

#	Article	lF	Citations
199	Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. Journal of Materials Chemistry, 2007, 17, 3248.	6.7	290
200	More on the performance of LiFePO4 electrodesâ€"The effect of synthesis route, solution composition, aging, and temperature. Journal of Power Sources, 2007, 174, 1241-1250.	7.8	139
201	Small Polaron Hopping in LixFePO4Solid Solutions:Â Coupled Lithium-Ion and Electron Mobility. Journal of the American Chemical Society, 2006, 128, 11416-11422.	13.7	196
202	Dimensional Reduction:  Synthesis and Structure of Layered Li5M(PO4)2F2 (M = V, Cr). Chemistry of Materials, 2006, 18, 1745-1752.	6.7	46
203	X-ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li1-xCo1/3Ni1/3Mn1/3O2 (x = 0 â†' 1). Chemistry of Materials, 2006, 18, 1901-1910.	6.7	252
204	Phonons and Thermodynamics of Unmixed and Disordered Li0.6FePO4. Journal of Physical Chemistry B, 2006, 110, 22732-22735.	2.6	23
205	6Li NMR Studies of Cation Disorder and Transition Metal Ordering in Li[Ni1/3Mn1/3Co1/3]O2 Using Ultrafast Magic Angle Spinning. Chemistry of Materials, 2005, 17, 6560-6566.	6.7	95
206	Facile Reversible Displacement Reaction of Cu[sub 3]P with Lithium at Low Potential. Electrochemical and Solid-State Letters, 2004, 7, A187.	2.2	64
207	Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials, 2004, 3, 147-152.	27.5	1,019
208	Li2.5V2(PO4)3:Â A Room-Temperature Analogue to the Fast-Ion Conducting High-Temperature Î ³ -Phase of Li3V2(PO4)3. Chemistry of Materials, 2004, 16, 1456-1465.	6.7	218
209	Crystal Structure and Electrochemical Behavior of Li2CuP: A Surprising Reversible Crystalline—Amorphous Transformation ChemInform, 2004, 35, no.	0.0	0
210	Li2.5V2(PO4)3: A Room-Temperature Analogue to the Fast-Ion Conducting High-Temperature Î ³ -Phase of Li3V2(PO4)3 ChemInform, 2004, 35, no.	0.0	4
211	Electrochemical Property:Â Structure Relationships in Monoclinic Li3-yV2(PO4)3. Journal of the American Chemical Society, 2003, 125, 10402-10411.	13.7	509
212	Charge Ordering in Lithium Vanadium Phosphates:Â Electrode Materials for Lithium-Ion Batteries. Journal of the American Chemical Society, 2003, 125, 326-327.	13.7	258
213	Charge Ordering in Lithium Vanadium Phosphates: Electrode Materials for Lithium-Ion Batteries ChemInform, 2003, 34, no.	0.0	0
214	Electrochemical Property: Structure Relationships in Monoclinic Li3-yV2(PO4)3 ChemInform, 2003, 34, no.	0.0	0
215	Crystallographic investigation of the Co–B–O system. Journal of Solid State Chemistry, 2003, 174, 189-197.	2.9	37
216	Crystal Structure and Electrochemical Behavior of Li2CuP:  a Surprising Reversible CrystallineⰒAmorphous Transformation. Chemistry of Materials, 2003, 15, 4890-4892.	6.7	42

#	Article	IF	CITATIONS
217	Reversible Lithium Uptake by FeP[sub 2]. Electrochemical and Solid-State Letters, 2003, 6, A162.	2.2	115
218	Synthesis and Characterization of Mesoporous Indium Tin Oxide Possessing an Electronically Conductive Framework. Journal of the American Chemical Society, 2002, 124, 8516-8517.	13.7	90
219	A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox Chemistry. Science, 2002, 296, 2012-2015.	12.6	282
220	Study of the formation of mesoporous titania via a template approach and of subsequent Li insertion. Journal of Materials Chemistry, 2002, 12, 3245-3253.	6.7	47
221	In vitro evaluation of the dehydration characteristics of silicone hydrogel and conventional hydrogel contact lens materials. Contact Lens and Anterior Eye, 2002, 25, 147-156.	1.7	61
222	Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries. Advanced Materials, 2002, 14, 1525-1528.	21.0	561
223	Reversible lithium uptake by CoP3 at low potential: role of the anion. Electrochemistry Communications, 2002, 4, 516-520.	4.7	218
224	Structure and Ion Exchange Properties of a New Cobalt Borate with a Tunnel Structure "Templated― by Na+. Journal of the American Chemical Society, 2002, 124, 6522-6523.	13.7	89
225	Approaching Theoretical Capacity of LiFePO[sub 4] at Room Temperature at High Rates. Electrochemical and Solid-State Letters, 2001, 4, A170.	2.2	1,336
226	Nanostructured materials for energy storage. Solid State Sciences, 2001, 3, 191-200.	0.7	146
227	The true crystal structure of Li17M4 (M=Ge, Sn, Pb)–revised from Li22M5. Journal of Alloys and Compounds, 2001, 329, 82-91.	5.5	125
228	Title is missing!. Journal of Materials Chemistry, 2001, 11, 3228-3233.	6.7	34
229	Layered Lithium Iron Nitride:Â A Promising Anode Material for Li-Ion Batteries. Journal of the American Chemical Society, 2001, 123, 8598-8599.	13.7	105
230	A new class of materials for lithium-ion batteries: iron(III) borates. Journal of Power Sources, 2001, 97-98, 254-257.	7.8	62
231	Grafted Metal Oxide/Polymer/Carbon Nanostructures Exhibiting Fast Transport Properties. Angewandte Chemie - International Edition, 2001, 40, 3880-3884.	13.8	17
232	Uptake of lithium by layered molybdenum oxide and its tin exchanged derivatives: high volumetric capacity materials. Solid State Ionics, 2000, 133, 37-50.	2.7	65
233	Rhombohedral Form of Li3V2(PO4)3as a Cathode in Li-Ion Batteries. Chemistry of Materials, 2000, 12, 3240-3242.	6.7	251
234	A Powder Neutron Diffraction Investigation of the Two Rhombohedral NASICON Analogues:Â î³-Na3Fe2(PO4)3and Li3Fe2(PO4)3. Chemistry of Materials, 2000, 12, 525-532.	6.7	167

#	Article	IF	CITATIONS
235	Mesostructured iron sulfides. Chemical Communications, 2000, , 1749-1750.	4.1	6
236	Electrochemical and multinuclear solid-state NMR studies of tin composite oxide glasses as anodes for Li ion batteries. Journal of Materials Chemistry, 2000, 10, 1241-1249.	6.7	53
237	Speciation and Thermal Transformation in Alumina Sols: Structures of the Polyhydroxyoxoaluminum Cluster [Al3008(OH)56(H2O)26]18+and Its Î-Keggin Moieté. Journal of the American Chemical Society, 2000, 122, 3777-3778.	13.7	174
238	An Inorganic Tire-Tread Lattice: Hydrothermal Synthesis of the Layered Vanadate [N(CH3)4]5V18O46 with a Supercell Structure. Angewandte Chemie - International Edition, 1999, 38, 2888-2891.	13.8	66
239	The Role of Oxygen in Low-potential Li Insertion in Metal Oxide Anode Materials. Materials Research Society Symposia Proceedings, 1999, 575, 173.	0.1	1
240	On the Nature of Li Insertion in Tin Composite Oxide Glasses. Electrochemical and Solid-State Letters, 1999, 2, 367.	2.2	71
241	Solid-State 2H NMR Determination of Poly(aniline) Conformation Within a MoO3 Nanocomposite. Advanced Materials, 1998, 10, 449-452.	21.0	17
242	Surfactant-Mediated Incorporation of Poly(p-phenylene) into MoO3â€. Chemistry of Materials, 1998, 10, 2588-2591.	6.7	53
243	Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels. Journal of Materials Chemistry, 1998, 8, 1019-1027.	6.7	109
244	Todorokite as a Li Insertion Cathode: Comparison of a Large Tunnel Framework "―Structure with Its Related Layered Structures. Journal of the Electrochemical Society, 1998, 145, 3746-3757.	2.9	53
245	Design and Synthesis of Vanadium Pentoxide/Polypyrrole Hybrid Electrochemical Materials. Materials Research Society Symposia Proceedings, 1998, 519, 191.	0.1	O
246	Iron Oxides as Anodic Materials in Li Rechargeable Batteries. Materials Research Society Symposia Proceedings, 1998, 548, 71.	0.1	5
247	Electrochemical Li Insertion in Lamellar (Birnessite) and Tunnel Manganese Oxides (Todorokite). Materials Research Society Symposia Proceedings, 1997, 496, 385.	0.1	1
248	Low Potential Li Insertion in Transition Metal Oxides. Materials Research Society Symposia Proceedings, 1997, 496, 601.	0.1	1
249	Polymer-Oxide Anode Materials. Materials Research Society Symposia Proceedings, 1997, 496, 499.	0.1	1
250	Electrochemical Li Insertion into Conductive Polymer/  V 2 O 5 Nanocomposites. Journal of the Electrochemical Society, 1997, 144, 3886-3895.	2.9	142
251	Formation of Peptizable Boehmites by Hydrolysis of Aluminum Nitrate in Aqueous Solution. Journal of Colloid and Interface Science, 1997, 188, 257-269.	9.4	50
252	Electrochemical Lithium Intercalation into a Polyaniline/  V 2 O 5 Nanocomposite. Journal of the Electrochemical Society, 1996, 143, L181-L183.	2.9	178

#	Article	IF	Citations
253	Hydrothermal Synthesis and Crystal Structure of a Novel Layered Vanadate with 1,4-Diazabicyclo[2.2.2]octane as the Structure-Directing Agent: (C6H14N2)V6O14·H2O. Chemistry of Materials, 1996, 8, 327-329.	6.7	78
254	Concurrent Polymerization and Insertion of Aniline in Molybdenum Trioxide:Â Formation and Properties of a [Poly(aniline)]0.24MoO3Nanocomposite. Chemistry of Materials, 1996, 8, 2005-2015.	6.7	211
255	Vanadium Oxide/Polypyrrole Aerogel Nanocomposites. Materials Research Society Symposia Proceedings, 1996, 435, 611.	0.1	5
256	Characterization of Peptized Boehmite Systems: An27Al Nuclear Magnetic Resonance Study. Journal of Colloid and Interface Science, 1995, 176, 432-441.	9.4	22
257	A novel way to study the initial stages of soap-free emulsion polymerizations: The intercalation of polystyrene oligomers into hydrotalcite. Journal of Polymer Science Part A, 1995, 33, 1409-1417.	2.3	16
258	Synthesis and properties of a new (PEO) \times [Na(H2O)]0.25MoO3 nanocomposite. Journal of Materials Chemistry, 1995, 5, 1985.	6.7	46
259	The New Approach of Intercalation Material for The Application of Rechargeable Lithium Batteries. Active and Passive Electronic Components, 1994, 17, 1-8.	0.3	2
260	The New Phenomenon of Lithium Electrochemical (De)Intercalation in Mineral Clay Materials and Their Potential Application in Rechargeable Batteries. Active and Passive Electronic Components, 1994, 16, 145-152.	0.3	3
261	The synthesis and crystal structure of a novel oxyfluorinated microporous gallium phosphate using diaminobutane as a template. Journal of the Chemical Society Chemical Communications, 1994, , 2349.	2.0	19
262	Intercalation of large cluster cations in TaS2. Journal of Materials Chemistry, 1994, 4, 1419.	6.7	17
263	Insertion of poly(p-phenylenevinylene) in layered MoO3. Journal of the American Chemical Society, 1992, 114, 6239-6240.	13.7	116
264	27Al MAS NMR studies of a new polyoxyaluminium cluster and its selective transformation to five-coordinate aluminium in the solid state. Journal of the Chemical Society Chemical Communications, 1992, , 251.	2.0	26
265	Aging processes of alumina sol-gels: characterization of new aluminum polyoxycations by aluminum-27 NMR spectroscopy. Chemistry of Materials, 1991, 3, 602-610.	6.7	152
266	Aluminum and gallium oxide-pillared molybdenum oxide (MoO3). Journal of the American Chemical Society, 1991, 113, 5889-5890.	13.7	50
267	Small-Angle Neutron Scattering and 27Al Nmr Studies on the Microstructure and Composition of Alumina Sol-Gels. Materials Research Society Symposia Proceedings, 1990, 180, 117.	0.1	6
268	Early Stages of Alumina Sol-Gel Formation in Acidic Media: An 27Al Nuclear Magnetic Resonance Spectroscopy Investigation. Journal of the American Ceramic Society, 1988, 71, C-85-C-87.	3.8	46
269	Investigation of the Effect of Dimethylformamide Addition on Alumina Sol-Gel Formation by ²⁷ Al NMR and Rheology Measurements. Materials Research Society Symposia Proceedings, 1988, 121, 133.	0.1	5
270	Intercalation of a large iron sulphur cation into TaS2 by ion exchange with a dispersion of the disulphide. Journal of the Chemical Society Chemical Communications, 1986, , 570.	2.0	36

#	Article	IF	CITATION
271	Taking metal atom chemistry out of the cold. Coordination Chemistry Reviews, 1983, 48, 203-242.	18.8	17
272	The superparamagnetism of very small particles supported by zeolite-Y. Hyperfine Interactions, 1983, 16, 653-656.	0.5	15
273	Solution-Phase Metal Atom Preparation of Catalytically Active Zeolite-Encapsulated Metal Clusters; Characterization and Application to the Selective Reduction of CO to Butene. Angewandte Chemie International Edition in English, 1983, 22, 624-625.	4.4	24
274	Solution Phase Metal Atom Preparation of Catalytically Active Zeolite-Encapsulated Metal Clusters; Characterization and Application to the Selective Reduction of Carbon Monoxide to Butene. Angewandte Chemie International Edition in English, 1983, 22, 898-919.	4.4	7
275	Metal atoms in solution: versatile reagents for preparing metal cluster-zeolite catalysts; application to the selective reduction of carbon monoxide to butene. Journal of Molecular Catalysis, 1983, 21, 313-329.	1.2	52
276	Solvated nickel atoms and nickel slurries: nickel atom-toluene microsolution and matrix optical spectroscopy. Inorganic Chemistry, 1981, 20, 3635-3639.	4.0	3
277	Metal vapor microsolution optical spectroscopy. Journal of the American Chemical Society, 1981, 103, 2453-2456.	13.7	25
278	The Importance of Nanotechnology in Developing Better Energy Storage Materials for Automotive Transport. , 0, , .		1