Graeme C Hays

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3982841/publications.pdf Version: 2024-02-01

		9264	13379
206	19,711	74	130
papers	citations	h-index	g-index
210	210	210	15021
all docs	docs citations	times ranked	citing authors

CRAEME C HAVE

#	Article	IF	CITATIONS
1	Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization. Diversity and Distributions, 2022, 28, 810-829.	4.1	16
2	Inter-annual variability in breeding census data across species and regions. Marine Biology, 2022, 169, 1.	1.5	6
3	Travel routes to remote ocean targets reveal the map sense resolution for a marine migrant. Journal of the Royal Society Interface, 2022, 19, 20210859.	3.4	10
4	A review of how the biology of male sea turtles may help mitigate female-biased hatchling sex ratio skews in a warming climate. Marine Biology, 2022, 169, .	1.5	11
5	Changes in mean body size in an expanding population of a threatened species. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	12
6	Optimising sample sizes for animal distribution analysis using tracking data. Methods in Ecology and Evolution, 2021, 12, 288-297.	5.2	16
7	Human disturbance causes widespread disruption of animal movement. Nature Ecology and Evolution, 2021, 5, 513-519.	7.8	90
8	Mutualism promotes site selection in a large marine planktivore. Ecology and Evolution, 2021, 11, 5606-5623.	1.9	11
9	A standardisation framework for bioâ€logging data to advance ecological research and conservation. Methods in Ecology and Evolution, 2021, 12, 996-1007.	5.2	39
10	Impact of marine heatwaves for sea turtle nest temperatures. Biology Letters, 2021, 17, 20210038.	2.3	12
11	Why do Argos satellite tags stop relaying data?. Ecology and Evolution, 2021, 11, 7093-7101.	1.9	8
12	High accuracy tracking reveals how small conservation areas can protect marine megafauna. Ecological Applications, 2021, 31, e02418.	3.8	15
13	Reply to: Caution over the use of ecological big data for conservation. Nature, 2021, 595, E20-E28.	27.8	4
14	Reconstructing past thermal conditions in beach microclimates. Global Change Biology, 2021, 27, 6592-6601.	9.5	8
15	Extreme rainfall events and cooling of sea turtle clutches: Implications in the face of climate warming. Ecology and Evolution, 2021, 11, 560-565.	1.9	25
16	Conservation importance of previously undescribed abundance trends: increase in loggerhead turtle numbers nesting on an Atlantic island. Oryx, 2020, 54, 315-322.	1.0	20
17	Fidelity to foraging sites after long migrations. Journal of Animal Ecology, 2020, 89, 1008-1016.	2.8	80
18	A review of a decade of lessons from one of the world's largest MPAs: conservation gains and key challenges. Marine Biology, 2020, 167, 1.	1.5	47

#	Article	IF	CITATIONS
19	Addressing tagging location bias to assess space use by marine animals. Journal of Applied Ecology, 2020, 57, 1981-1987.	4.0	13
20	Impact of heavy rainfall events and shading on the temperature of sea turtle nests. Marine Biology, 2020, 167, 1.	1.5	24
21	A global review of green turtle diet: sea surface temperature as a potential driver of omnivory levels. Marine Biology, 2020, 167, 1.	1.5	56
22	Open Ocean Reorientation and Challenges of Island Finding by Sea Turtles during Long-Distance Migration. Current Biology, 2020, 30, 3236-3242.e3.	3.9	26
23	Satellite Tagging and Photographic Identification Reveal Connectivity Between Two UNESCO World Heritage Areas for Reef Manta Rays. Frontiers in Marine Science, 2020, 7, .	2.5	11
24	Production of male hatchlings at a remote South Pacific green sea turtle rookery: conservation implications in a female-dominated world. Marine Biology, 2020, 167, 1.	1.5	15
25	Quantifying prey availability using the foraging plasticity of a marine predator, the little penguin. Functional Ecology, 2020, 34, 1626-1639.	3.6	11
26	Longâ€ŧerm photoâ€id and satellite tracking reveal sexâ€biased survival linked to movements in an endangered species. Ecology, 2020, 101, e03027.	3.2	34
27	Phenological shuffling of major marine phytoplankton groups over the last six decades. Diversity and Distributions, 2020, 26, 536-548.	4.1	14
28	Estimates of marine turtle nesting populations in the south-west Indian Ocean indicate the importance of the Chagos Archipelago. Oryx, 2020, 54, 332-343.	1.0	33
29	Global spatial risk assessment of sharks under the footprint of fisheries. Nature, 2019, 572, 461-466.	27.8	254
30	Animal-Borne Telemetry: An Integral Component of the Ocean Observing Toolkit. Frontiers in Marine Science, 2019, 6, .	2.5	127
31	Powering Ocean Giants: The Energetics of Shark and Ray Megafauna. Trends in Ecology and Evolution, 2019, 34, 1009-1021.	8.7	31
32	Drones for research on sea turtles and other marine vertebrates – A review. Biological Conservation, 2019, 238, 108214.	4.1	69
33	The importance of migratory connectivity for global ocean policy. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191472.	2.6	80
34	Green turtle diet is dominated by seagrass in the Western Indian Ocean except amongst gravid females. Marine Biology, 2019, 166, 1.	1.5	20
35	Overhauling Ocean Spatial Planning to Improve Marine Megafauna Conservation. Frontiers in Marine Science, 2019, 6, .	2.5	65
36	Translating Marine Animal Tracking Data into Conservation Policy and Management. Trends in Ecology and Evolution, 2019, 34, 459-473.	8.7	256

#	Article	IF	CITATIONS
37	Assessing reliance on vector navigation in the long-distance oceanic migrations of green sea turtles. Behavioral Ecology, 2019, 30, 68-79.	2.2	12
38	Rare longâ€distance dispersal of a marine angiosperm across the Pacific Ocean. Global Ecology and Biogeography, 2018, 27, 487-496.	5.8	41
39	Complex movement patterns by foraging loggerhead sea turtles outside the breeding season identified using Argosâ€linked Fastlocâ€Global Positioning System. Marine Ecology, 2018, 39, e12489.	1.1	29
40	Ocean currents, individual movements and genetic structuring of populations. Marine Biology, 2018, 165, 1.	1.5	17
41	Optimism for mitigation of climate warming impacts for sea turtles through nest shading and relocation. Scientific Reports, 2018, 8, 17625.	3.3	36
42	Satellite Tracking Sea Turtles: Opportunities and Challenges to Address Key Questions. Frontiers in Marine Science, 2018, 5, .	2.5	80
43	Molecular Analysis of Predator Scats Reveals Role of Salps in Temperate Inshore Food Webs. Frontiers in Marine Science, 2018, 5, .	2.5	24
44	A Paradigm Shift in the Trophic Importance of Jellyfish?. Trends in Ecology and Evolution, 2018, 33, 874-884.	8.7	160
45	A Review of Patterns of Multiple Paternity Across Sea Turtle Rookeries. Advances in Marine Biology, 2018, 79, 1-31.	1.4	40
46	New Tools to Identify the Location of Seagrass Meadows: Marine Grazers as Habitat Indicators. Frontiers in Marine Science, 2018, 5, .	2.5	28
47	Individual specialization in a migratory grazer reflects long-term diet selectivity on a foraging ground: implications for isotope-based tracking. Oecologia, 2018, 188, 429-439.	2.0	25
48	Population viability at extreme sex-ratio skews produced by temperature-dependent sex determination. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162576.	2.6	119
49	Mismatch between marine plankton range movements and the velocity of climate change. Nature Communications, 2017, 8, 14434.	12.8	94
50	How numbers of nesting sea turtles can be overestimated by nearly a factor of two. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162581.	2.6	72
51	Diel and seasonal patterns in activity and home range size of green turtles on their foraging grounds revealed by extended Fastloc-GPS tracking. Marine Biology, 2017, 164, 1.	1.5	61
52	Climate change and temperatureâ€linked hatchling mortality at a globally important sea turtle nesting site. Global Change Biology, 2017, 23, 4922-4931.	9.5	87
53	Ocean currents and marine life. Current Biology, 2017, 27, R470-R473.	3.9	58
54	Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles. Marine Biology, 2017, 164, 1.	1.5	27

#	Article	IF	CITATIONS
55	Global sea turtle conservation successes. Science Advances, 2017, 3, e1600730.	10.3	236
56	Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Functional Ecology, 2017, 31, 2310-2319.	3.6	114
57	Are vertical migrations driven by circadian behaviour? Decoupling of activity and depth use in a large riverine elasmobranch, the freshwater sawfish (Pristis pristis). Hydrobiologia, 2017, 787, 181-191.	2.0	38
58	Male hatchling production in sea turtles from one of the world's largest marine protected areas, the Chagos Archipelago. Scientific Reports, 2016, 6, 20339.	3.3	36
59	Using climatic suitability thresholds to identify past, present and future population viability. Ecological Indicators, 2016, 71, 551-556.	6.3	48
60	Key Questions in Marine Megafauna Movement Ecology. Trends in Ecology and Evolution, 2016, 31, 463-475.	8.7	397
61	Sand temperatures for nesting sea turtles in the Caribbean: Implications for hatchling sex ratios in the face of climate change. Journal of Experimental Marine Biology and Ecology, 2016, 474, 92-99.	1.5	73
62	Spatial variation in directional swimming enables juvenile sea turtles to reach and remain in productive waters. Marine Ecology - Progress Series, 2016, 557, 247-259.	1.9	28
63	Current-Oriented Swimming by Jellyfish and Its Role in Bloom Maintenance. Current Biology, 2015, 25, 342-347.	3.9	80
64	Disentangling the cause of a catastrophic population decline in a large marine mammal. Ecology, 2015, 96, 2834-2847.	3.2	50
65	New insights: animalâ€borne cameras and accelerometers reveal the secret lives of cryptic species. Journal of Animal Ecology, 2015, 84, 587-589.	2.8	17
66	Quantifying wildlifeâ€watching ecotourism intensity on an endangered marine vertebrate. Animal Conservation, 2015, 18, 517-528.	2.9	23
67	Predators help protect carbon stocks in blue carbon ecosystems. Nature Climate Change, 2015, 5, 1038-1045.	18.8	181
68	Population-level perspectives on global change: genetic and demographic analyses indicate various scales, timing, and causes of scyphozoan jellyfish blooms. Biological Invasions, 2015, 17, 851-867.	2.4	34
69	The accuracy of Fastlocâ€ <scp>GPS</scp> locations and implications for animal tracking. Methods in Ecology and Evolution, 2014, 5, 1162-1169.	5.2	134
70	Route optimisation and solving <scp>Z</scp> ermelo's navigation problem during long distance migration in cross flows. Ecology Letters, 2014, 17, 137-143.	6.4	72
71	Use of Longâ€Distance Migration Patterns of an Endangered Species to Inform Conservation Planning for the World's Largest Marine Protected Area. Conservation Biology, 2014, 28, 1636-1644.	4.7	83
72	Pan-Atlantic analysis of the overlap of a highly migratory species, the leatherback turtle, with pelagic longline fisheries. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133065.	2.6	93

#	Article	IF	CITATIONS
73	Protected species use of a coastal marine migratory corridor connecting marine protected areas. Marine Biology, 2014, 161, 1455-1466.	1.5	100
74	Ontogeny of long distance migration. Ecology, 2014, 95, 2840-2850.	3.2	108
75	Effects of rising temperature on the viability of an important sea turtle rookery. Nature Climate Change, 2014, 4, 513-518.	18.8	101
76	Multiâ€decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change. Global Change Biology, 2014, 20, 140-146.	9.5	48
77	Tracking animals to their death. Journal of Animal Ecology, 2014, 83, 5-6.	2.8	6
78	Ecosystem relevance of variable jellyfish biomass in the Irish Sea between years, regions and water types. Estuarine, Coastal and Shelf Science, 2014, 149, 302-312.	2.1	18
79	Different male vs. female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles. Frontiers in Marine Science, 2014, 1, .	2.5	114
80	Ecological and Societal Benefits of Jellyfish. , 2014, , 105-127.		48
81	Animal Navigation: Salmon Track Magnetic Variation. Current Biology, 2013, 23, R144-R145.	3.9	9
82	Publishing the best original research in animal ecology: looking forward from 2013. Journal of Animal Ecology, 2013, 82, 1-2.	2.8	4
83	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	4.0	605
84	Phenological response of sea turtles to environmental variation across a species' northern range. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122397.	2.6	55
85	Identification of genetically and oceanographically distinct blooms of jellyfish. Journal of the Royal Society Interface, 2013, 10, 20120920.	3.4	54
86	Since turtles cannot talk: what beak movement sensors can tell us about the feeding ecology of neritic loggerhead turtles, <i><scp>C</scp>aretta caretta</i> . Marine Ecology, 2013, 34, 321-333.	1.1	20
87	Satellite tracking large numbers of individuals to infer population level dispersal and core areas for the protection of an endangered species. Diversity and Distributions, 2013, 19, 834-844.	4.1	130
88	Evidence-based marine protected area planning for a highly mobile endangered marine vertebrate. Biological Conservation, 2013, 161, 101-109.	4.1	113
89	Global patterns for upper ceilings on migration distance in sea turtles and comparisons with fish, birds and mammals. Functional Ecology, 2013, 27, 748-756.	3.6	118

Does prey size matter? Novel observations of feeding in the leatherback turtle (<i>Dermochelys) Tj ETQq0 0 0 rgBT/Qverlock $\frac{1}{38}$ 0 Tf 50 6

#	Article	IF	CITATIONS
91	High activity and Lévy searches: jellyfish can search the water column like fish. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 465-473.	2.6	111
92	Natal site and offshore swimming influence fitness and long-distance ocean transport in young sea turtles. Marine Biology, 2012, 159, 2117-2126.	1.5	61
93	Lost at sea: genetic, oceanographic and meteorological evidence for storm-forced dispersal. Journal of the Royal Society Interface, 2012, 9, 1725-1732.	3.4	61
94	Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change, 2012, 2, 271-275.	18.8	249
95	Dive performance in a small-bodied, semi-aquatic mammal in the wild. Journal of Mammalogy, 2012, 93, 198-210.	1.3	16
96	Orientation of migrating leatherback turtles in relation to ocean currents. Animal Behaviour, 2012, 84, 1491-1500.	1.9	21
97	Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 389-421.	2.0	134
98	Long-term changes in abundance and distribution of microzooplankton in the NE Atlantic and North Sea. Journal of Plankton Research, 2012, 34, 83-91.	1.8	18
99	Life in the really slow lane: loggerhead sea turtles mature late relative to other reptiles. Functional Ecology, 2012, 26, 227-235.	3.6	74
100	Acceleration data reveal the energy management strategy of a marine ectotherm during reproduction. Functional Ecology, 2012, 26, 324-333.	3.6	78
101	A little movement orientated to the geomagnetic field makes a big difference in strong flows. Marine Biology, 2012, 159, 481-488.	1.5	52
102	Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 302
103	A biologist's guide to assessing ocean currents: a review. Marine Ecology - Progress Series, 2012, 457, 285-301.	1.9	76
104	Convergent evolution in locomotory patterns of flying and swimming animals. Nature Communications, 2011, 2, 352.	12.8	96
105	Have jellyfish in the Irish Sea benefited from climate change and overfishing?. Global Change Biology, 2011, 17, 767-782.	9.5	109
106	Animal Orientation Strategies for Movement in Flows. Current Biology, 2011, 21, R861-R870.	3.9	227
107	Global patterns of epipelagic gelatinous zooplankton biomass. Marine Biology, 2011, 158, 2429-2436.	1.5	47
108	Large-scale sampling reveals the spatio-temporal distributions of the jellyfish Aurelia aurita and	1.5	27

#	Article	IF	CITATIONS
109	Toxic marine microalgae and shellfish poisoning in the British isles: history, review of epidemiology, and future implications. Environmental Health, 2011, 10, 54.	4.0	75
110	<i>N</i> -dimensional animal energetic niches clarify behavioural options in a variable marine environment. Journal of Experimental Biology, 2011, 214, 646-656.	1.7	29
111	Fisheries bycatch data provide insights into the distribution of the mauve stinger (Pelagia noctiluca) around Ireland. ICES Journal of Marine Science, 2011, 68, 436-443.	2.5	33
112	Use of respiration rates of scyphozoan jellyfish to estimate their effects on the food web. Hydrobiologia, 2010, 645, 135-152.	2.0	28
113	The biology and ecology of the ocean sunfish Mola mola: a review of current knowledge and future research perspectives. Reviews in Fish Biology and Fisheries, 2010, 20, 471-487.	4.9	98
114	Satellite tracking the world's largest jelly predator, the ocean sunfish, Mola mola, in the Western Pacific. Journal of Experimental Marine Biology and Ecology, 2010, 393, 32-42.	1.5	43
115	Spatio-temporal foraging patterns of a giant zooplanktivore, the leatherback turtle. Journal of Marine Systems, 2010, 81, 225-234.	2.1	75
116	Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Animal Behaviour, 2010, 80, 571-581.	1.9	153
117	Breeding Periodicity for Male Sea Turtles, Operational Sex Ratios, and Implications in the Face of Climate Change. Conservation Biology, 2010, 24, 1636-1643.	4.7	155
118	BIODIVERSITY RESEARCH: Fidelity to foraging sites, consistency of migration routes and habitat modulation of home range by sea turtles. Diversity and Distributions, 2010, 16, 840-853.	4.1	175
119	Unravelling migratory connectivity in marine turtles using multiple methods. Journal of Applied Ecology, 2010, 47, 769-778.	4.0	86
120	Evidence from genetic and Lagrangian drifter data for transatlantic transport of small juvenile green turtles. Journal of Biogeography, 2010, 37, 1752-1766.	3.0	90
121	Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 2010, 465, 1066-1069.	27.8	746
122	When surfacers do not dive: multiple significance of extended surface times in marine turtles. Journal of Experimental Biology, 2010, 213, 1328-1337.	1.7	58
123	Ontogenetic development of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles. Journal of the Royal Society Interface, 2010, 7, 1319-1327.	3.4	165
124	Behaviour and buoyancy regulation in the deepest-diving reptile: the leatherback turtle. Journal of Experimental Biology, 2010, 213, 4074-4083.	1.7	49
125	Global research priorities for sea turtles: informing management and conservation in the 21st century. Endangered Species Research, 2010, 11, 245-269.	2.4	487
126	Inter-annual variability in the home range of breeding turtles: Implications for current and future conservation management. Biological Conservation, 2010, 143, 722-730.	4.1	110

#	Article	IF	CITATIONS
127	Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends in Ecology and Evolution, 2010, 25, 602-610.	8.7	134
128	Use of respiration rates of scyphozoan jellyfish to estimate their effects on the food web. , 2010, , 135-152.		1
129	Vertical niche overlap by two ocean giants with similar diets: Ocean sunfish and leatherback turtles. Journal of Experimental Marine Biology and Ecology, 2009, 370, 134-143.	1.5	36
130	Satellite tracking of the World's largest bony fish, the ocean sunfish (Mola mola L) in the North East Atlantic. Journal of Experimental Marine Biology and Ecology, 2009, 370, 127-133.	1.5	75
131	Microhabitat selection by sea turtles in a dynamic thermal marine environment. Journal of Animal Ecology, 2009, 78, 14-21.	2.8	122
132	The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology and Evolution, 2009, 24, 312-322.	8.7	676
133	Long-Term GPS Tracking of Ocean Sunfish Mola mola Offers a New Direction in Fish Monitoring. PLoS ONE, 2009, 4, e7351.	2.5	60
134	Chapter 2 Vulnerability of Marine Turtles to Climate Change. Advances in Marine Biology, 2009, 56, 151-211.	1.4	149
135	Travelling through a warming world: climate change and migratory species. Endangered Species Research, 2009, 7, 87-99.	2.4	297
136	Harnessing the Sun: Testing a Novel Attachment Method to Record Fine Scale Movements in Ocean Sunfish (Mola mola). Reviews: Methods and Technologies in Fish Biology and Fisheries, 2009, , 229-242.	0.6	10
137	Scaling laws of marine predator search behaviour. Nature, 2008, 451, 1098-1102.	27.8	852
138	Measuring the state of consciousness in a free-living diving sea turtle. Journal of Experimental Marine Biology and Ecology, 2008, 356, 115-120.	1.5	49
139	Sea turtles: A review of some key recent discoveries and remaining questions. Journal of Experimental Marine Biology and Ecology, 2008, 356, 1-7.	1.5	56
140	Ocean surface warming: The North Atlantic remains within the envelope of previous recorded conditions. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 155-162.	1.4	18
141	The role of infrequent and extraordinary deep dives in leatherback turtles (Dermochelys coriacea). Journal of Experimental Biology, 2008, 211, 2566-2575.	1.7	59
142	Diving behaviour of jellyfish equipped with electronic tags. Journal of Plankton Research, 2007, 30, 325-331.	1.8	36
143	Behavioral Inference of Diving Metabolic Rate in Freeâ€Ranging Leatherback Turtles. Physiological and Biochemical Zoology, 2007, 80, 209-219.	1.5	45
144	MEASUREMENT ERROR CAUSES SCALE-DEPENDENT THRESHOLD EROSION OF BIOLOGICAL SIGNALS IN ANIMAL MOVEMENT DATA. , 2007, 17, 628-638.		101

#	Article	IF	CITATIONS
145	Recording the free-living behaviour of small-bodied, shallow-diving animals with data loggers. Journal of Animal Ecology, 2007, 76, 183-190.	2.8	27
146	Applying the Heat to Research Techniques for Species Conservation. Conservation Biology, 2007, 21, 271-273.	4.7	29
147	Allometric scaling of lung volume and its consequences for marine turtle diving performance. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, 360-367.	1.8	45
148	The energy density of jellyfish: Estimates from bomb-calorimetry and proximate-composition. Journal of Experimental Marine Biology and Ecology, 2007, 343, 239-252.	1.5	181
149	Novel GPS tracking of sea turtles as a tool for conservation management. Journal of Experimental Marine Biology and Ecology, 2007, 347, 58-68.	1.5	131
150	A novel technique for measuring heart rate in a free swimming marine vertebrate. Journal of Experimental Marine Biology and Ecology, 2007, 349, 45-51.	1.5	3
151	Flipper beat frequency and amplitude changes in diving green turtles, Chelonia mydas. Marine Biology, 2007, 150, 1003-1009.	1.5	50
152	The broad-scale distribution of five jellyfish species across a temperate coastal environment. Hydrobiologia, 2007, 579, 29-39.	2.0	97
153	Stranding events provide indirect insights into the seasonality and persistence of jellyfish medusae (Cnidaria: Scyphozoa). Hydrobiologia, 2007, 589, 1-13.	2.0	42
154	JELLYFISH AGGREGATIONS AND LEATHERBACK TURTLE FORAGING PATTERNS IN A TEMPERATE COASTAL ENVIRONMENT. Ecology, 2006, 87, 1967-1972.	3.2	173
155	FLEXIBLE FORAGING MOVEMENTS OF LEATHERBACK TURTLES ACROSS THE NORTH ATLANTIC OCEAN. Ecology, 2006, 87, 2647-2656.	3.2	145
156	The ocean sunfish Mola mola: insights into distribution, abundance and behaviour in the Irish and Celtic Seas. Journal of the Marine Biological Association of the United Kingdom, 2006, 86, 1237-1243.	0.8	41
157	Are green turtles globally endangered?. Global Ecology and Biogeography, 2006, 15, 21-26.	5.8	106
158	Keeping pace with movement analysis. Journal of Animal Ecology, 2006, 75, 1045-1045.	2.8	0
159	Detecting female precise natal philopatry in green turtles using assignment methods. Molecular Ecology, 2006, 16, 61-74.	3.9	84
160	Thermal niche, large-scale movements and implications of climate change for a critically endangered marine vertebrate. Global Change Biology, 2006, 12, 1330-1338.	9.5	168
161	Tools for studying animal behaviour: validation of dive profiles relayed via the Argos satellite system. Animal Behaviour, 2006, 71, 989-993.	1.9	32
162	Long-term monitoring of leatherback turtle diving behaviour during oceanic movements. Journal of Experimental Marine Biology and Ecology, 2006, 328, 197-210.	1.5	39

#	Article	IF	CITATIONS
163	Expanded thermal niche for a diving vertebrate: A leatherback turtle diving into near-freezing water. Journal of Experimental Marine Biology and Ecology, 2006, 335, 221-226.	1.5	66
164	The behaviour of a hawksbill turtle data-logged during the passage of hurricane Georges through the Caribbean. Marine and Freshwater Behaviour and Physiology, 2006, 39, 307-313.	0.9	12
165	Rhythmic Throat Oscillations in Nesting Green Turtles (Chelonia mydas). Chelonian Conservation and Biology, 2006, 5, 299-301.	0.6	1
166	Animal-borne sensors successfully capture the real-time thermal properties of ocean basins. Limnology and Oceanography: Methods, 2005, 3, 392-398.	2.0	46
167	Climate change and marine plankton. Trends in Ecology and Evolution, 2005, 20, 337-344.	8.7	928
168	First records of dive durations for a hibernating sea turtle. Biology Letters, 2005, 1, 82-86.	2.3	114
169	Polyandry in a marine turtle: Females make the best of a bad job. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6530-6535.	7.1	139
170	Pan-Atlantic leatherback turtle movements. Nature, 2004, 429, 522-522.	27.8	153
171	First records of oceanic dive profiles for leatherback turtles, Dermochelys coriacea, indicate behavioural plasticity associated with long-distance migration. Animal Behaviour, 2004, 67, 733-743.	1.9	100
172	How well does the Continuous Plankton Recorder (CPR) sample zooplankton? A comparison with the Longhurst Hardy Plankton Recorder (LHPR) in the northeast Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 1283-1294.	1.4	27
173	Good news for sea turtles. Trends in Ecology and Evolution, 2004, 19, 349-351.	8.7	50
174	THE IMPLICATIONS OF LUNG-REGULATED BUOYANCY CONTROL FOR DIVE DEPTH AND DURATION. Ecology, 2004, 85, 1137-1145.	3.2	84
175	A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia, 2003, 503, 163-170.	2.0	494
176	Variation in reproductive output of marine turtles. Journal of Experimental Marine Biology and Ecology, 2003, 288, 95-109.	1.5	180
177	A review of long-distance movements by marine turtles, and the possible role of ocean currents. Oikos, 2003, 103, 293-302.	2.7	240
178	Climate change and sea turtles: a 150â€year reconstruction of incubation temperatures at a major marine turtle rookery. Global Change Biology, 2003, 9, 642-646.	9.5	135
179	Island-finding ability of marine turtles. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S5-7.	2.6	61
180	A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. , 2003, , 163-170.		105

#	Article	IF	CITATIONS
181	Habitat utilization by juvenile hawksbill turtles (Eretmochelys imbricata, Linnaeus, 1766) around a shallow water coral reef. Journal of Natural History, 2003, 37, 1269-1280.	0.5	45
182	Estimating the number of green and loggerhead turtles nesting annually in the Mediterranean. Oryx, 2002, 36, 227-235.	1.0	152
183	Change in body mass associated with long-term fasting in a marine reptile: the case of green turtles (Chelonia mydas) at Ascension Island. Canadian Journal of Zoology, 2002, 80, 1299-1302.	1.0	70
184	Comparison between zooplankton data collected by the Continuous Plankton Recorder survey in the English Channel and by WP-2 nets at station L4, Plymouth (UK). Journal of Sea Research, 2001, 46, 223-232.	1.6	50
185	Diel changes in the near-surface biomass of zooplankton and the carbon content of vertical migrants. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 1063-1068.	1.4	16
186	Nesting of green turtles (Chelonia mydas) at Ascension Island, South Atlantic. Biological Conservation, 2001, 97, 151-158.	4.1	101
187	Two hundred years after a commercial marine turtle fishery: the current status of marine turtles nesting in the Cayman Islands. Oryx, 2001, 35, 145.	1.0	18
188	Testing the navigational abilities of ocean migrants: displacement experiments on green sea turtles () Tj ETQq0 (0 0 rgBT /0	Overlock 10 T
189	Two hundred years after a commercial marine turtle fishery: the current status of marine turtles nesting in the Cayman Islands. Oryx, 2001, 35, 145-151.	1.0	34
190	Trophic status drives interannual variability in nesting numbers of marine turtles. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1481-1487.	2.6	159
191	Metabolic Heating and the Prediction of Sex Ratios for Green Turtles (Chelonia mydas). Physiological and Biochemical Zoology, 2001, 74, 161-170.	1.5	129
192	Sea turtle diving and foraging behaviour around the Greek Island of Kefalonia. Journal of the Marine Biological Association of the United Kingdom, 2000, 80, 761-762.	0.8	33
193	The Implications of Variable Remigration Intervals for the Assessment of Population Size in Marine Turtles. Journal of Theoretical Biology, 2000, 206, 221-227.	1.7	111
194	The diving behaviour of green turtles at Ascension Island. Animal Behaviour, 2000, 59, 577-586.	1.9	132
195	Large scale spatial variations in the seasonal abundance of Calanus finmarchicus. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 315-326.	1.4	79
196	A technique for the in situ assessment of the vertical nitrogen flux caused by the diel vertical migration of zooplankton. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1085-1089.	1.4	11
197	Inter- and Intra-Beach Thermal Variation for Green Turtle Nests on Ascension Island, South Atlantic. Journal of the Marine Biological Association of the United Kingdom, 1995, 75, 405-411.	0.8	31
198	Ontogenetic and seasonal variation in the diel vertical migration of the copepods Metridia lucens and Metridia longa. Limnology and Oceanography, 1995, 40, 1461-1465.	3.1	69

#	Article	IF	CITATIONS
199	Spatio-temporal patterns in the diel vertical migration of the copepod Metridia lucens in the northeast Atlantic derived from the Continuous Plankton Recorder survey. Limnology and Oceanography, 1995, 40, 469-475.	3.1	29
200	Zooplankton avoidance activity. Nature, 1995, 376, 650-650.	27.8	29
201	Mesh selection and filtration efficiency of the Continuous Plankton Recorder. Journal of Plankton Research, 1994, 16, 403-412.	1.8	44
202	Sampling by the continuous plankton recorder survey. Progress in Oceanography, 1994, 34, 237-256.	3.2	210
203	Nest placement by loggerhead turtles, Caretta caretta. Animal Behaviour, 1993, 45, 47-53.	1.9	73
204	Reproductive investment by green turtles nesting on Ascension Island. Canadian Journal of Zoology, 1993, 71, 1098-1103.	1.0	29
205	Reproductive Investment and Optimum Clutch Size of Loggerhead Sea Turtles (Caretta caretta). Journal of Animal Ecology, 1991, 60, 455.	2.8	42
206	Remigration and Beach Fidelity of Loggerhead Turtles Nesting on the Island of Cephalonia, Greece. Journal of Herpetology, 1991, 25, 232.	0.5	10