
Benedict-Tilman Berger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3982589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement. Cell Chemical Biology, 2018, 25, 206-214.e11.	5.2	197
2	Binding Kinetics Survey of the Drugged Kinome. Journal of the American Chemical Society, 2018, 140, 15774-15782.	13.7	57
3	SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). Journal of Medicinal Chemistry, 2019, 62, 2830-2836.	6.4	56
4	Development, Optimization, and Structure–Activity Relationships of Covalent-Reversible JAK3 Inhibitors Based on a Tricyclic Imidazo[5,4- <i>d</i>]pyrrolo[2,3- <i>b</i>]pyridine Scaffold. Journal of Medicinal Chemistry, 2018, 61, 5350-5366.	6.4	46
5	Furo[3,2â€ <i>b</i>]pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway. Angewandte Chemie - International Edition, 2019, 58, 1062-1066.	13.8	38
6	Structure-kinetic relationship reveals the mechanism of selectivity of FAK inhibitors over PYK2. Cell Chemical Biology, 2021, 28, 686-698.e7.	5.2	36
7	Characterization of a dual <scp>BET</scp> / <scp>HDAC</scp> inhibitor for treatment of pancreatic ductal adenocarcinoma. International Journal of Cancer, 2020, 147, 2847-2861.	5.1	34
8	Furo[3,2â€b]pyridine: A Privileged Scaffold for Highly Selective Kinase Inhibitors and Effective Modulators of the Hedgehog Pathway. Angewandte Chemie, 2019, 131, 1074-1078.	2.0	32
9	Mutation in Abl kinase with altered drug-binding kinetics indicates a novel mechanism of imatinib resistance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
10	Identification of molecular targets for the targeted treatment of gastric cancer using dasatinib. Oncotarget, 2020, 11, 535-549.	1.8	29
11	Structure-Based Design of Selective Salt-Inducible Kinase Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 8142-8160.	6.4	28
12	Optimization of pyrazolo[1,5-a]pyrimidines lead to the identification of a highly selective casein kinase 2 inhibitor. European Journal of Medicinal Chemistry, 2020, 208, 112770.	5.5	27
13	Controlling the Covalent Reactivity of a Kinase Inhibitor with Light. Angewandte Chemie - International Edition, 2021, 60, 20178-20183.	13.8	23
14	NVPâ€BHG712: Effects of Regioisomers on the Affinity and Selectivity toward the EPHrin Family. ChemMedChem, 2018, 13, 1629-1633.	3.2	20
15	Fast Iterative Synthetic Approach toward Identification of Novel Highly Selective p38 MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 10757-10782.	6.4	18
16	A Highly Selective Chemical Probe for Activin Receptor-like Kinases ALK4 and ALK5. ACS Chemical Biology, 2020, 15, 862-870.	3.4	15
17	Bioisosteric Replacement of Arylamide-Linked Spine Residues with <i>N</i> -Acylhydrazones and Selenophenes as a Design Strategy to Novel Dibenzosuberone Derivatives as Type I 1/2 p38α MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 7347-7354.	6.4	14
18	Design of a "Two-in-One―Mutant-Selective Epidermal Growth Factor Receptor Inhibitor That Spans the Orthosteric and Allosteric Sites. Journal of Medicinal Chemistry, 2022, 65, 1370-1383.	6.4	13

#	Article	IF	CITATIONS
19	Selective targeting of the αC and DFG-out pocket in p38 MAPK. European Journal of Medicinal Chemistry, 2020, 208, 112721.	5.5	12
20	Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core. European Journal of Medicinal Chemistry, 2021, 215, 113299.	5.5	12
21	Illuminating the Dark: Highly Selective Inhibition of Serine/Threonine Kinase 17A with Pyrazolo[1,5- <i>a</i>]pyrimidine-Based Macrocycles. Journal of Medicinal Chemistry, 2022, 65, 7799-7817.	6.4	11
22	Novel, highly potent PROTACs targeting AURORA-A kinase. Current Research in Chemical Biology, 2022, 2, 100032.	2.9	9
23	Conformational plasticity of the ULK3 kinase domain. Biochemical Journal, 2021, 478, 2811-2823.	3.7	8
24	Single tracer-based protocol for broad-spectrum kinase profiling in live cells with NanoBRET. STAR Protocols, 2021, 2, 100822.	1.2	8
25	Discovery of a Potent Dual SLK/STK10 Inhibitor Based on a Maleimide Scaffold. Journal of Medicinal Chemistry, 2021, 64, 13259-13278.	6.4	6
26	A Toolbox for the Generation of Chemical Probes for Baculovirus IAP Repeat Containing Proteins. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	6
27	Development of a Selective Dual Discoidin Domain Receptor (DDR)/p38 Kinase Chemical Probe. Journal of Medicinal Chemistry, 2021, 64, 13451-13474.	6.4	4
28	Design and Development of a Chemical Probe for Pseudokinase Ca2+/calmodulin-Dependent Ser/Thr Kinase. Journal of Medicinal Chemistry, 2021, 64, 14358-14376.	6.4	3
29	Aurora Kinase A Is Involved in Controlling the Localization of Aquaporin-2 in Renal Principal Cells. International Journal of Molecular Sciences, 2022, 23, 763.	4.1	3
30	Controlling the Covalent Reactivity of a Kinase Inhibitor with Light. Angewandte Chemie, 2021, 133, 20340-20345.	2.0	2
31	Structure-Kinetic-Relationship Reveals the Mechanism of Selectivity of FAK Inhibitors Over PYK2. SSRN Electronic Journal, 0, , .	0.4	2
32	Resistance to kinase inhibition through shortened target engagement. Molecular and Cellular Oncology, 2022, 9, 2029999.	0.7	1