List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3982147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2013, 2, 48-55.	3.1	501
2	Associations of nonâ€ s ymbolic and symbolic numerical magnitude processing with mathematical competence: a metaâ€analysis. Developmental Science, 2017, 20, e12372.	2.4	493
3	The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 2009, 103, 469-479.	1.4	339
4	Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. Journal of Experimental Child Psychology, 2009, 103, 186-201.	1.4	293
5	Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 2011, 108, 278-292.	1.4	231
6	Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 2012, 30, 344-357.	1.7	212
7	How is phonological processing related to individual differences in children's arithmetic skills?. Developmental Science, 2010, 13, 508-520.	2.4	178
8	Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage, 2011, 57, 771-781.	4.2	167
9	Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses. NeuroImage, 2014, 87, 311-322.	4.2	161
10	Arithmetic in the developing brain: A review of brain imaging studies. Developmental Cognitive Neuroscience, 2018, 30, 265-279.	4.0	161
11	Modelling relations between sensory processing, speech perception, orthographic and phonological ability, and literacy achievement. Brain and Language, 2008, 106, 29-40.	1.6	140
12	Neuroeducation $\hat{a} \in \hat{a}$ A Critical Overview of An Emerging Field. Neuroethics, 2012, 5, 105-117.	2.8	137
13	Associations of Number Line Estimation With Mathematical Competence: AÂMetaâ€analysis. Child Development, 2018, 89, 1467-1484.	3.0	137
14	Phonological processing and arithmetic fact retrieval: Evidence from developmental dyslexia. Neuropsychologia, 2010, 48, 3973-3981.	1.6	125
15	The principles and practices of educational neuroscience: Comment on Bowers (2016) Psychological Review, 2016, 123, 620-627.	3.8	110
16	Towards a further characterization of phonological and literacy problems in Dutchâ€speaking children with dyslexia. British Journal of Developmental Psychology, 2010, 28, 5-31.	1.7	103
17	Numerical Magnitude Representations and Individual Differences in Children's Arithmetic Strategy Use. Mind, Brain, and Education, 2012, 6, 129-136.	1.9	91
18	Connecting Education and Cognitive Neuroscience: Where will the journey take us?. Educational Philosophy and Theory, 2011, 43, 37-42.	1.8	88

#	Article	IF	CITATIONS
19	A validation of eye movements as a measure of elementary school children's developing number sense. Cognitive Development, 2008, 23, 409-422.	1.3	83
20	Neurophysiological evidence for the validity of verbal strategy reports in mental arithmetic. Biological Psychology, 2011, 87, 128-136.	2.2	81
21	Oscillatory EEG correlates of arithmetic strategy use in addition and subtraction. Experimental Brain Research, 2009, 195, 635-642.	1.5	80
22	Evidence for distinct magnitude systems for symbolic and non-symbolic number. Psychological Research, 2017, 81, 231-242.	1.7	72
23	Does numerical processing uniquely predict first graders' future development of single-digit arithmetic?. Learning and Individual Differences, 2015, 37, 153-160.	2.7	64
24	Frequency of Home Numeracy Activities Is Differentially Related to Basic Number Processing and Calculation Skills in Kindergartners. Frontiers in Psychology, 2018, 9, 340.	2.1	64
25	Mathematical learning disabilities in children with 22q11.2 deletion syndrome: A review. Developmental Disabilities Research Reviews, 2009, 15, 4-10.	2.9	62
26	Acquisition and use of shortcut strategies by traditionally schooled children. Educational Studies in Mathematics, 2009, 71, 1-17.	2.8	61
27	Individual differences in kindergarten math achievement: The integrative roles of approximation skills and working memory. Learning and Individual Differences, 2013, 28, 119-129.	2.7	61
28	Visual Number Beats Abstract Numerical Magnitude: Format-dependent Representation of Arabic Digits and Dot Patterns in Human Parietal Cortex. Journal of Cognitive Neuroscience, 2015, 27, 1376-1387.	2.3	57
29	Profiles of children's arithmetic fact development: A model-based clustering approach. Journal of Experimental Child Psychology, 2015, 133, 29-46.	1.4	53
30	Oscillatory EEG Correlates of Arithmetic Strategies: A Training Study. Frontiers in Psychology, 2012, 3, 428.	2.1	52
31	Unpacking symbolic number comparison and its relation with arithmetic in adults. Cognition, 2017, 165, 26-38.	2.2	52
32	Children's Mapping between Non-Symbolic and Symbolic Numerical Magnitudes and Its Association with Timed and Untimed Tests of Mathematics Achievement. PLoS ONE, 2014, 9, e93565.	2.5	51
33	Dyscalculia and dyslexia: Different behavioral, yet similar brain activity profiles during arithmetic. NeuroImage: Clinical, 2018, 18, 663-674.	2.7	51
34	Probing the Relationship Between Home Numeracy and Children's Mathematical Skills: A Systematic Review. Frontiers in Psychology, 2020, 11, 2074.	2.1	51
35	Next directions in measurement of the home mathematics environment: An international and interdisciplinary perspective. Journal of Numerical Cognition, 2021, 7, 195-220.	1.2	50
36	Arithmetic strategy development and its domain-specific and domain-general cognitive correlates: A longitudinal study in children with persistent mathematical learning difficulties. Research in Developmental Disabilities, 2014, 35, 3001-3013.	2.2	47

#	Article	IF	CITATIONS
37	Enhancing arithmetic in pre-schoolers with comparison or number line estimation training: Does it matter?. Learning and Instruction, 2016, 46, 1-11.	3.2	47
38	Strategy over operation: neural activation in subtraction and multiplication during fact retrieval and procedural strategy use in children. Human Brain Mapping, 2017, 38, 4657-4670.	3.6	47
39	Mathematical disabilities in children with velo-cardio-facial syndrome. Neuropsychologia, 2007, 45, 885-895.	1.6	46
40	Basic number processing and difficulties in single-digit arithmetic: Evidence from Velo-Cardio-Facial Syndrome. Cortex, 2009, 45, 177-188.	2.4	45
41	Measuring the approximate number system in children: Exploring the relationships among different tasks. Learning and Individual Differences, 2014, 29, 50-58.	2.7	45
42	Left fronto-parietal white matter correlates with individual differences in children's ability to solve additions and multiplications: A tractography study. NeuroImage, 2014, 90, 117-127.	4.2	44
43	Motor development in schoolâ€aged children with 22q11 deletion (velocardiofacial/DiGeorge) Tj ETQq1 1 0.7843	14 rgBT /(2.1	Overlock 10
44	Neural networks for short-term memory for order differentiate high and low proficiency bilinguals. NeuroImage, 2008, 42, 1698-1713.	4.2	42
45	Gender equality in 4―to 5â€yearâ€old preschoolers' early numerical competencies. Developmental Science, 2019, 22, e12718.	2.4	42
46	Multi-method brain imaging reveals impaired representations of number as well as altered connectivity in adults with dyscalculia. NeuroImage, 2019, 190, 289-302.	4.2	40
47	Solving Subtraction Problems by Means of Indirect Addition. Mathematical Thinking and Learning, 2009, 11, 79-91.	1.2	39
48	Symbolic Numerical Magnitude Processing Is as Important to Arithmetic as Phonological Awareness Is to Reading. PLoS ONE, 2016, 11, e0151045.	2.5	39
49	Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2016, 2, 20-41.	1.2	38
50	Singleâ€digit arithmetic in children with dyslexia. Dyslexia, 2010, 16, 183-191.	1.5	37
51	Frequency, efficiency and flexibility of indirect addition in two learning environments. Learning and Instruction, 2010, 20, 205-215.	3.2	37
52	Cognitive neuroscience meets mathematics education. Educational Research Review, 2010, 5, 97-105.	7.8	37
53	Four-year olds $\hat{a} \in \mathbb{M}$ understanding of repeating and growing patterns and its association with early numerical ability. Early Childhood Research Quarterly, 2019, 49, 152-163.	2.7	37
54	More than number sense: The additional role of executive functions and metacognition in arithmetic. Journal of Experimental Child Psychology, 2019, 182, 38-60.	1.4	36

#	Article	IF	CITATIONS
55	The potential relevance of cognitive neuroscience for the development and use of technology-enhanced learning. Learning, Media and Technology, 2015, 40, 131-151.	3.2	35
56	Children's representation of symbolic magnitude: The development of the priming distance effect. Journal of Experimental Child Psychology, 2009, 103, 480-489.	1.4	34
57	Symbolic magnitude processing in elementary school children: A group administered paper-and-pencil measure (SYMP Test). Behavior Research Methods, 2017, 49, 1361-1373.	4.0	34
58	The association between children's numerical magnitude processing and mental multi-digit subtraction. Acta Psychologica, 2014, 145, 75-83.	1.5	33
59	The association between numerical magnitude processing and mental versus algorithmic multi-digit subtraction in children. Learning and Instruction, 2015, 35, 42-50.	3.2	33
60	Investigating the relationship between two home numeracy measures: A questionnaire and observations during Lego building and book reading. British Journal of Developmental Psychology, 2018, 36, 354-370.	1.7	31
61	Developmental trajectories of children's symbolic numerical magnitude processing skills and associated cognitive competencies. Journal of Experimental Child Psychology, 2018, 166, 232-250.	1.4	28
62	Cross-domain associations of key cognitive correlates of early reading and early arithmetic in 5-year-olds. Early Childhood Research Quarterly, 2020, 51, 144-152.	2.7	28
63	Jump or compensate? Strategy flexibility in the number domain up to 100. ZDM - International Journal on Mathematics Education, 2009, 41, 581-590.	2.2	27
64	Cognitive neuroscience meets mathematics education: It takes two to Tango. Educational Research Review, 2011, 6, 232-237.	7.8	26
65	An electrophysiological investigation of non-symbolic magnitude processing: Numerical distance effects in children with and without mathematical learning disabilities. Cortex, 2013, 49, 2162-2177.	2.4	24
66	Spontaneous focusing on Arabic number symbols and its association with early mathematical competencies. Early Childhood Research Quarterly, 2019, 48, 111-121.	2.7	24
67	Numerical magnitude processing in children with mild intellectual disabilities. Research in Developmental Disabilities, 2011, 32, 2853-2859.	2.2	23
68	Numerical magnitude processing deficits in children with mathematical difficulties are independent of intelligence. Research in Developmental Disabilities, 2014, 35, 2603-2613.	2.2	23
69	Mathematical Difficulties and White Matter Abnormalities in Subacute Pediatric Mild Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1567-1578.	3.4	22
70	Brain activity during arithmetic in symbolic and non-symbolic formats in 9–12 year old children. Neuropsychologia, 2016, 86, 19-28.	1.6	22
71	Interference and problem size effect in multiplication fact solving: Individual differences in brain activations and arithmetic performance. NeuroImage, 2018, 172, 718-727.	4.2	22
72	Patterning counts: Individual differences in children's calculation are uniquely predicted by sequence patterning. Journal of Experimental Child Psychology, 2019, 177, 152-165.	1.4	22

BERT DE SMEDT

#	Article	IF	CITATIONS
73	No Association Between the Home Math Environment and Numerical and Patterning Skills in a Large and Diverse Sample of 5- to 6-year-olds. Frontiers in Psychology, 2020, 11, 547626.	2.1	22
74	Cognitive correlates of dyslexia, dyscalculia and comorbid dyslexia/dyscalculia: Effects of numerical magnitude processing and phonological processing. Research in Developmental Disabilities, 2020, 107, 103806.	2.2	22
75	Longitudinal changes in mathematical abilities and white matter following paediatric mild traumatic brain injury. Brain Injury, 2015, 29, 1701-1710.	1.2	21
76	Individual differences in children's mathematics achievement. Progress in Brain Research, 2016, 227, 105-130.	1.4	21
77	Metacognition across domains: Is the association between arithmetic and metacognitive monitoring domain-specific?. PLoS ONE, 2020, 15, e0229932.	2.5	21
78	Insecure attachment is associated with math anxiety in middle childhood. Frontiers in Psychology, 2015, 6, 1596.	2.1	20
79	Traveling down the road: from cognitive neuroscience to mathematics education … and back. ZDM - International Journal on Mathematics Education, 2010, 42, 649-654.	2.2	19
80	The development of numerical magnitude processing and its association with working memory in children with mild intellectual disabilities. Research in Developmental Disabilities, 2013, 34, 3361-3371.	2.2	19
81	Young Children's Patterning Competencies and Mathematical Development: A Review. , 2019, , 139-161.		19
82	Developmental brain dynamics of numerical and arithmetic abilities. Npj Science of Learning, 2021, 6, 22.	2.8	19
83	A Review on Treatment-Related Brain Changes in Aphasia. Neurobiology of Language (Cambridge, Mass), 2020, 1, 402-433.	3.1	18
84	Subtraction by addition strategy use in children of varying mathematical achievement level: A choice/no-choice study. Journal of Numerical Cognition, 2018, 4, 215-234.	1.2	18
85	What the eyes already â€~know': using eye movement measurement to tap into children's implicit numerical magnitude representations. Infant and Child Development, 2010, 19, 175-186.	1.5	17
86	The Numerical Stroop Effect in Primary School Children: A Comparison of Low, Normal, and High Achievers. Child Neuropsychology, 2010, 16, 461-477.	1.3	17
87	The neural representation of Arabic digits in visual cortex. Frontiers in Human Neuroscience, 2015, 9, 517.	2.0	17
88	Are preschoolers who spontaneously create patterns better in mathematics?. British Journal of Educational Psychology, 2020, 90, 753-769.	2.9	17
89	Are Individual Differences in Arithmetic Fact Retrieval in Children Related to Inhibition?. Frontiers in Psychology, 2016, 7, 825.	2.1	16
90	Numerical magnitude processing impairments in genetic syndromes: a crossâ€syndrome comparison of Turner and 22q11.2 deletion syndromes. Developmental Science, 2017, 20, e12458.	2.4	16

#	Article	IF	CITATIONS
91	Verbal and actionâ€based measures of kindergartners' SFON and their associations with numberâ€related utterances during picture book reading. British Journal of Educational Psychology, 2018, 88, 550-565.	2.9	16
92	Adults' use of subtraction by addition. Acta Psychologica, 2010, 135, 323-329.	1.5	15
93	Children's use of addition to solve twoâ€digit subtraction problems. British Journal of Psychology, 2013, 104, 495-511.	2.3	15
94	Children's understanding of the addition/subtraction complement principle. British Journal of Educational Psychology, 2016, 86, 382-396.	2.9	15
95	The neural basis of metacognitive monitoring during arithmetic in the developing brain. Human Brain Mapping, 2020, 41, 4562-4573.	3.6	15
96	Use of indirect addition in adults' mental subtraction in the number domain up to 1,000. British Journal of Psychology, 2011, 102, 585-597.	2.3	14
97	Numerical matching judgments in children with mathematical learning disabilities. Research in Developmental Disabilities, 2013, 34, 3182-3189.	2.2	14
98	Subtraction by addition in children with mathematical learning disabilities. Learning and Instruction, 2014, 30, 1-8.	3.2	14
99	Family demographic profiles and their relationship with the quality of executive functioning subcomponents in kindergarten. British Journal of Developmental Psychology, 2016, 34, 226-244.	1.7	14
100	Associations Between Repeating Patterning, Growing Patterning, and Numerical Ability: A Longitudinal Panel Study in 4―to 6â€Year Olds. Child Development, 2021, 92, 1354-1368.	3.0	14
101	Children's use of subtraction by addition on large single-digit subtractions. Educational Studies in Mathematics, 2012, 79, 335-349.	2.8	13
102	The arithmetic problem size effect in children: an event-related potential study. Frontiers in Human Neuroscience, 2014, 8, 756.	2.0	13
103	The role of physical digit representation and numerical magnitude representation in children's multiplication fact retrieval. Journal of Experimental Child Psychology, 2016, 152, 41-53.	1.4	13
104	Interference during the retrieval of arithmetic and lexico-semantic knowledge modulates similar brain regions: Evidence from functional magnetic resonance imaging (fMRI). Cortex, 2019, 120, 375-393.	2.4	13
105	Stimulating preschoolers' focus on structure in repeating and growing patterns. Learning and Instruction, 2021, 74, 101444.	3.2	13
106	No relation between 2D : 4D fetal testosterone marker and dyslexia. NeuroReport, 2007, 18, 1487-1491.	. 1.2	12
107	Language and Arithmetic. , 2018, , 51-74.		12

Are children's spontaneous number focusing tendencies related to their home numeracy environment?. ZDM - International Journal on Mathematics Education, 2020, 52, 729-742.

2.2 12

#	Article	IF	CITATIONS
109	Atypical Neuropsychological Profile in a Boy with 22q11.2 Deletion Syndrome Keywords:. Child Neuropsychology, 2005, 11, 87-108.	1.3	11
110	Coherent motion sensitivity predicts individual differences in subtraction. Research in Developmental Disabilities, 2011, 32, 1075-1080.	2.2	11
111	Arithmetic difficulties in children with mild traumatic brain injury at the subacute stage of recovery. Developmental Medicine and Child Neurology, 2015, 57, 1042-1048.	2.1	11
112	The remarkably frequent, efficient, and adaptive use of the subtraction by addition strategy: A choice/no-choice study in fourth- to sixth-graders with varying mathematical achievement levels. Learning and Individual Differences, 2022, 93, 102107.	2.7	11
113	Using addition to solve large subtractions in the number domain up to 20. Acta Psychologica, 2010, 133, 163-169.	1.5	10
114	Young Children's Early Mathematical Competencies: The Role of Mathematical Focusing Tendencies. , 2020, , 23-42.		10
115	Individual Differences in Arithmetic Fact Retrieval. , 2016, , 219-243.		9
116	Neurobiological Origins of Mathematical Learning Disabilities or Dyscalculia: A Review of Brain Imaging Data. , 2019, , 367-384.		9
117	The association of grey matter volume and cortical complexity with individual differences in children's arithmetic fluency. Neuropsychologia, 2020, 137, 107293.	1.6	9
118	Potential applications of cognitive neuroscience to mathematics education. ZDM - International Journal on Mathematics Education, 2016, 48, 249-253.	2.2	8
119	Relating individual differences in white matter pathways to children's arithmetic fluency: a spherical deconvolution study. Brain Structure and Function, 2019, 224, 337-350.	2.3	8
120	Fact retrieval or compacted counting in arithmetic—A neurophysiological investigation of two hypotheses Journal of Experimental Psychology: Learning Memory and Cognition, 2022, 48, 199-212.	0.9	8
121	Mathematical language and mathematical abilities in preschool: A systematic literature review. Educational Research Review, 2022, 36, 100457.	7.8	8
122	The Effect of a Numerical Domino Game on Numerical Magnitude Processing in Children With Mild Intellectual Disabilities. Mind, Brain, and Education, 2015, 9, 29-39.	1.9	7
123	When errors count: an EEG study on numerical error monitoring under performance pressure. ZDM - International Journal on Mathematics Education, 2016, 48, 351-363.	2.2	7
124	Editorial: Associations between Reading and Mathematics: Genetic, Brain Imaging, Cognitive and Educational Perspectives. Frontiers in Psychology, 2017, 8, 600.	2.1	7
125	Editorial: Individual Differences in Arithmetical Development. Frontiers in Psychology, 2019, 10, 2672.	2.1	7
126	Too anxious to be confident? A panel longitudinal study into the interplay of mathematics anxiety and metacognitive monitoring in arithmetic achievement Journal of Educational Psychology, 2021, 113, 1550-1564.	2.9	7

#	Article	IF	CITATIONS
127	The association between symbolic and nonsymbolic numerical magnitude processing and mental versus algorithmic subtraction in adults. Acta Psychologica, 2016, 165, 34-42.	1.5	6
128	Arithmetic skills correlate negatively with the overlap of symbolic and non-symbolic number representations in the brain. Cortex, 2018, 101, 306-308.	2.4	6
129	The mathematical, motivational, and cognitive characteristics of high mathematics achievers in primary school Journal of Educational Psychology, 2022, 114, 992-1004.	2.9	6
130	Arithmetic learning in children: An fMRI training study. Neuropsychologia, 2022, 169, 108183.	1.6	6
131	The neural substrates of the problem size and interference effect in children's multiplication: An fMRI study. Brain Research, 2019, 1714, 147-157.	2.2	5
132	The Contribution of Numerical Magnitude Comparison and Phonological Processing to Individual Differences in Fourth Graders' Multiplication Fact Ability. PLoS ONE, 2016, 11, e0158335.	2.5	5
133	Is the long-term association between symbolic numerical magnitude processing and arithmetic bi-directional?. Journal of Numerical Cognition, 2019, 5, 358-370.	1.2	5
134	Individual differences in mathematical cognition: a Bert's eye view. Current Opinion in Behavioral Sciences, 2022, 46, 101175.	3.9	5
135	A validation of a multi-spatialscale method for multivariate pattern analysis. , 2014, , .		4
136	Disentangling Neural Sources of Problem Size and Interference Effects in Multiplication. Journal of Cognitive Neuroscience, 2019, 31, 453-467.	2.3	4
137	Oscillatory electroencephalographic patterns of arithmetic problem solving in fourth graders. Scientific Reports, 2021, 11, 23278.	3.3	4
138	Distinguishing between cognitive explanations of the problem size effect in mental arithmetic via representational similarity analysis of fMRI data. Neuropsychologia, 2019, 132, 107120.	1.6	3
139	Spontaneous focusing on Arabic number symbols: A unique component of children's early mathematical development?. Mathematical Thinking and Learning, 2022, 24, 38-51.	1.2	3
140	Subtraction by addition: A remarkably natural and clever way to subtract?. , 2021, , 117-141.		3
141	The value of structural brain imaging in explaining individual differences in children's arithmetic fluency. Cortex, 2021, 144, 99-108.	2.4	3
142	The Complexity of Basic Number Processing: A Commentary from a Neurocognitive Perspective. Research in Mathematics Education, 2019, , 123-132.	0.3	3
143	Design of the Game-Based Learning Environment "Dudeman & Sidegirl: Operation Clean World,―a Numerical Magnitude Processing Training. , 2015, , 9-26.		3
144	Kindergartners' Spontaneous Focus on Number During Picture Book Reading. ICME-13 Monographs, 2018, , 87-99.	1.0	3

#	Article	IF	CITATIONS
145	Glossary of technical terms in cognitive neuroscience. ZDM - International Journal on Mathematics Education, 2010, 42, 661-663.	2.2	2
146	Applications of Neuroscience to Mathematics Education. , 0, , 612-632.		2
147	Longitudinal associations between spontaneous number focusing tendencies, numerical abilities, and mathematics achievement in 4- to 7-year-olds Journal of Educational Psychology, 2022, 114, 37-55.	2.9	2
148	Reactive and proactive control in arithmetical strategy selection. Journal of Numerical Cognition, 2017, 3, 598-619.	1.2	2
149	Introduction to the Special Section on "Numerical and Mathematical Processing― Mind, Brain, and Education, 2012, 6, 117-118.	1.9	1
150	Spontaneous focusing on Arabic number symbols: A unique component of children's early mathematical development?. Mathematical Thinking and Learning, 2020, 22, 281-295.	1.2	1
151	Towards Greater Collaboration in Educational Neuroscience: Perspectives From the 2018Earli IG22Conference. Mind, Brain, and Education, 2020, 14, 124-129.	1.9	1
152	Upper Elementary School Children's Adaptive Use of Subtraction by Addition: A Choice/No-Choice Replication Study Involving Two Choice Conditions. Implementation and Replication Studies in Mathematics Education, 2021, 1, 111-138.	0.6	1
153	Can the interference effect in multiplication fact retrieval be modulated by an arithmetic training? An fMRI study. Neuropsychologia, 2021, 157, 107849.	1.6	1
154	Aging effects and feasibility of statistical learning tasks across modalities. Aging, Neuropsychology, and Cognition, 2023, 30, 201-230.	1.3	1
155	Learning and education in numerical cognition: We do need education. , 2021, , 181-203.		Ο
156	Commentary on the Chapter by Ferdinand Rivera, "Neural Correlates of Gender, Culture, and Race and Implications to Embodied Thinking in Mathematics― Advances in Mathematics Education, 2012, , 545-550.	0.2	0
157	Neurowetenschappelijke inzichten in de ontwikkeling van rekenstoornissen of dyscalculie. , 2017, , 317-325.		0
158	The importance of replicating meta-analyses: Commentary on "Conceptual replication and extension of the relation between the number line estimation task and mathematical competence across seven studies― Journal of Numerical Cognition, 2021, 7, 479-482.	1.2	0
159	Title is missing!. , 2020, 15, e0229932.		0
160	Title is missing!. , 2020, 15, e0229932.		0
161	Title is missing!. , 2020, 15, e0229932.		0
162	Title is missing!. , 2020, 15, e0229932.		0

#	Article	IF	CITATIONS
163	Title is missing!. , 2020, 15, e0229932.		0
164	Title is missing!. , 2020, 15, e0229932.		0

Title is missing!. , 2020, 15, e0229932. 164