Jae-Young Seong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3981840/publications.pdf

Version: 2024-02-01

126907 149698 3,855 117 33 56 citations g-index h-index papers 119 119 119 4622 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antiobesity therapeutics with complementary dualâ€agonist activities at glucagon and glucagonâ€like peptide <scp>1</scp> receptors. Diabetes, Obesity and Metabolism, 2022, 24, 50-60.	4.4	2
2	Spexin Regulates Hypothalamic Leptin Action on Feeding Behavior. Biomolecules, 2022, 12, 236.	4.0	10
3	A NanoBiT assay to monitor membrane proteins trafficking for drug discovery and drug development. Communications Biology, 2022, 5, 212.	4.4	5
4	Analysis of CCR2 splice variant expression patterns and functional properties. Cell and Bioscience, 2022, 12, 59.	4.8	6
5	FAM19A5l Affects Mustard Oil-Induced Peripheral Nociception in Zebrafish. Molecular Neurobiology, 2021, 58, 4770-4785.	4.0	7
6	Alterations in Dendritic Spine Maturation and Neurite Development Mediated by FAM19A1. Cells, 2021, 10, 1868.	4.1	0
7	Serum FAM19A5 in neuromyelitis optica spectrum disorders: Can it be a new biomarker representing clinical status?. Multiple Sclerosis Journal, 2020, 26, 1700-1707.	3.0	5
8	The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation. Biomedicines, 2020, 8, 623.	3.2	10
9	CXCR7: a \hat{l}^2 -arrestin-biased receptor that potentiates cell migration and recruits \hat{l}^2 -arrestin2 exclusively through $\hat{Gl}^2\hat{l}^3$ subunits and GRK2. Cell and Bioscience, 2020, 10, 134.	4.8	37
10	The unique expression profile of FAM19A1 in the mouse brain and its association with hyperactivity, long-term memory and fear acquisition. Scientific Reports, 2020, 10, 3969.	3.3	10
11	Brain-specific chemokine FAM19A5 induces hypothalamic inflammation. Biochemical and Biophysical Research Communications, 2020, 523, 829-834.	2.1	18
12	Exploring the molecular structures that confer ligand selectivity for galanin type II and III receptors. PLoS ONE, 2020, 15, e0230872.	2.5	4
13	Serum FAM19A5 levels: A novel biomarker for neuroinflammation and neurodegeneration in major depressive disorder. Brain, Behavior, and Immunity, 2020, 87, 852-859.	4.1	27
14	Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels. Molecules and Cells, 2020, 43, 909-920.	2.6	16
15	Title is missing!. , 2020, 15, e0230872.		O
16	Title is missing!. , 2020, 15, e0230872.		0
17	Title is missing!. , 2020, 15, e0230872.		O
18	Title is missing!. , 2020, 15, e0230872.		0

#	Article	IF	CITATIONS
19	Overexpression of Spexin 1 in the Dorsal Habenula Reduces Anxiety in Zebrafish. Frontiers in Neural Circuits, 2019, 13, 53.	2.8	22
20	FAM19A5 Expression During Embryogenesis and in the Adult Traumatic Brain of FAM19A5-LacZ Knock-in Mice. Frontiers in Neuroscience, 2019, 13, 917.	2.8	17
21	Spexin-Based Galanin Receptor Type 2 Agonist for Comorbid Mood Disorders and Abnormal Body Weight. Frontiers in Neuroscience, 2019, 13, 391.	2.8	35
22	SP-8356, a (1S)-(–)-verbenone derivative, exerts in vitro and in vivo anti-breast cancer effects by inhibiting NF-κB signaling. Scientific Reports, 2019, 9, 6595.	3.3	17
23	Distribution and neuronal circuit of spexin $1/2$ neurons in the zebrafish CNS. Scientific Reports, 2019, 9, 5025.	3.3	23
24	Monitoring GPCR-& amp; $\#946$; -arrestin $1/2$ Interactions in Real Time Living Systems to Accelerate Drug Discovery. Journal of Visualized Experiments, 2019, , .	0.3	7
25	Replacement of the C-terminal Trp-cage of exendin-4 with a fatty acid improves therapeutic utility. Biochemical Pharmacology, 2018, 151, 59-68.	4.4	24
26	mRNA expression and metabolic regulation of npy and agrp $1/2$ in the zebrafish brain. Neuroscience Letters, 2018, 668, 73-79.	2.1	45
27	Nafamostat mesilate negatively regulates the metastasis of triple-negative breast cancer cells. Archives of Pharmacal Research, 2018, 41, 229-242.	6.3	17
28	Conformational signatures in \hat{l}^2 -arrestin2 reveal natural biased agonism at a G-protein-coupled receptor. Communications Biology, 2018, 1, 128.	4.4	50
29	<i>GABBR2</i> mutations determine phenotype in rett syndrome and epileptic encephalopathy. Annals of Neurology, 2017, 82, 466-478.	5. 3	66
30	FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2. Scientific Reports, 2017, 7, 15575.	3.3	34
31	Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors. Biomolecules and Therapeutics, 2017, 25, 57-68.	2.4	4
32	NME1L Negatively Regulates IGF1â€Dependent Proliferation of Breast Cancer Cells. Journal of Cellular Biochemistry, 2016, 117, 1454-1463.	2.6	4
33	Development of Spexin-based Human Galanin Receptor Type II-Specific Agonists with Increased Stability in Serum and Anxiolytic Effect in Mice. Scientific Reports, 2016, 6, 21453.	3.3	61
34	The accessory proteins REEP5 and REEP6 refine CXCR1-mediated cellular responses and lung cancer progression. Scientific Reports, 2016, 6, 39041.	3.3	19
35	Distribution of galanin receptor 2b neurons and interaction with galanin in the zebrafish central nervous system. Neuroscience Letters, 2016, 628, 153-160.	2.1	9
36	Characterization of Functional Domains in NME1L Regulation of NF-κB Signaling. Molecules and Cells, 2016, 39, 403-409.	2.6	0

#	Article	IF	CITATIONS
37	Soluble overexpression and purification of bioactive human CCL2 in E. coli by maltose-binding protein. Molecular Biology Reports, 2015, 42, 651-663.	2.3	14
38	Histidine7.36(305) in the conserved peptide receptor activation domain of the gonadotropin releasing hormone receptor couples peptide binding and receptor activation. Molecular and Cellular Endocrinology, 2015, 402, 95-106.	3.2	4
39	Ligand Binding Pocket Formed by Evolutionarily Conserved Residues in the Glucagon-like Peptide-1 (GLP-1) Receptor Core Domain. Journal of Biological Chemistry, 2015, 290, 5696-5706.	3.4	24
40	Dimer of arfaptin 2 regulates NF- \hat{l}° B signaling by interacting with IKK \hat{l}^{2} /NEMO and inhibiting IKK \hat{l}^{2} kinase activity. Cellular Signalling, 2015, 27, 2173-2181.	3.6	5
41	Prevertebrate Local Gene Duplication Facilitated Expansion of the Neuropeptide GPCR Superfamily. Molecular Biology and Evolution, 2015, 32, 2803-2817.	8.9	54
42	A Novel Long-Acting Glucagon-Like Peptide-1 Agonist with Improved Efficacy in Insulin Secretion and β-Cell Growth. Endocrinology and Metabolism, 2014, 29, 320.	3.0	11
43	Neuropeptide GPCRs in Neuroendocrinology. Frontiers in Endocrinology, 2014, 5, 41.	3.5	9
44	Does Kisspeptin Belong to the Proposed RF-Amide Peptide Family?. Frontiers in Endocrinology, 2014, 5, 134.	3.5	25
45	A Splicing Variant of NME1 Negatively Regulates NF-κB Signaling and Inhibits Cancer Metastasis by Interacting with IKKβ. Journal of Biological Chemistry, 2014, 289, 17709-17720.	3.4	21
46	Coevolution of the Spexin/Galanin/Kisspeptin Family: Spexin Activates Galanin Receptor Type II and III. Endocrinology, 2014, 155, 1864-1873.	2.8	172
47	MOLECULAR EVOLUTION OF GPCRS: GLP1/GLP1 receptors. Journal of Molecular Endocrinology, 2014, 52, T15-T27.	2.5	18
48	Identification of a novel insect neuropeptide, CNMa and its receptor. FEBS Letters, 2014, 588, 2037-2041.	2.8	51
49	Local Duplication of Gonadotropin-Releasing Hormone (GnRH) Receptor before Two Rounds of Whole Genome Duplication and Origin of the Mammalian GnRH Receptor. PLoS ONE, 2014, 9, e87901.	2.5	25
50	Apoptotic Death of Prostate Cancer Cells by a Gonadotropin-Releasing Hormone-II Antagonist. PLoS ONE, 2014, 9, e99723.	2.5	9
51	Synchronous activation of gonadotropin-releasing hormone gene transcription and secretion by pulsatile kisspeptin stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5677-5682.	7.1	56
52	CXCL14 enhances proliferation and migration of NCIâ€H460 human lung cancer cells overexpressing the glycoproteins containing heparan sulfate or sialic acid. Journal of Cellular Biochemistry, 2013, 114, 1084-1096.	2.6	19
53	Gonadotropin-Releasing Hormone Stimulates the Biosynthesis of Pregnenolone Sulfate and Dehydroepiandrosterone Sulfate in the Hypothalamus. Endocrinology, 2013, 154, 2114-2128.	2.8	11
54	Expansion of Secretin-Like G Protein-Coupled Receptors and Their Peptide Ligands via Local Duplications Before and After Two Rounds of Whole-Genome Duplication. Molecular Biology and Evolution, 2013, 30, 1119-1130.	8.9	61

#	Article	IF	CITATIONS
55	Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3526-34.	7.1	129
56	A Novel Glucagon-Related Peptide (GCRP) and Its Receptor GCRPR Account for Coevolution of Their Family Members in Vertebrates. PLoS ONE, 2013, 8, e65420.	2.5	28
57	Structural and Molecular Conservation of Glucagon-Like Peptide-1 and Its Receptor Confers Selective Ligand-Receptor Interaction. Frontiers in Endocrinology, 2012, 3, 141.	3.5	31
58	Spatiotemporal Expression and Functional Implication of CXCL14 in the Developing Mice Cerebellum. Molecules and Cells, 2012, 34, 289-294.	2.6	12
59	Evolutionarily Conserved Residues at Glucagon-like Peptide-1 (GLP-1) Receptor Core Confer Ligand-induced Receptor Activation. Journal of Biological Chemistry, 2012, 287, 3873-3884.	3.4	20
60	Anti-Cancer Activity of a Novel Small Molecule Compound That Simultaneously Activates p53 and Inhibits NF-ÎB Signaling. PLoS ONE, 2012, 7, e44259.	2.5	13
61	Molecular Coevolution of Neuropeptides Gonadotropin-Releasing Hormone and Kisspeptin with their Cognate G Protein-Coupled Receptors. Frontiers in Neuroscience, 2012, 6, 3.	2.8	40
62	Revisiting the evolution of gonadotropin-releasing hormones and their receptors in vertebrates: Secrets hidden in genomes. General and Comparative Endocrinology, 2011, 170, 68-78.	1.8	110
63	Insulin Contributes to Fine-Tuning of the Pancreatic Beta-Cell Response to Glucagon-Like Peptide-1. Molecules and Cells, 2011, 32, 389-396.	2.6	10
64	Class-C SOX Transcription Factors Control GnRH Gene Expression via the Intronic Transcriptional Enhancer. Molecular Endocrinology, 2011, 25, 1184-1196.	3.7	21
65	Regulatory Roles of Heterogeneous Nuclear Ribonucleoprotein M and Nova-1 Protein in Alternative Splicing of Dopamine D2 Receptor Pre-mRNA. Journal of Biological Chemistry, 2011, 286, 25301-25308.	3.4	29
66	Secretoneurin stimulates the production and release of luteinizing hormone in mouse $\hat{L^2T2}$ gonadotropin cells. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E288-E297.	3.5	27
67	Tyr1 and Ile7 of Glucose-Dependent Insulinotropic Polypeptide (GIP) Confer Differential Ligand Selectivity toward GIP and Glucagon-like Peptide-1 Receptors. Molecules and Cells, 2010, 30, 149-154.	2.6	18
68	Regulation of IîB Kinase by Gî2L through Recruitment of the Protein Phosphatases. Molecules and Cells, 2010, 30, 527-532.	2.6	16
69	Splicing variants of the orphan G-protein-coupled receptor GPR56 regulate the activity of transcription factors associated with tumorigenesis. Journal of Cancer Research and Clinical Oncology, 2010, 136, 47-53.	2.5	37
70	Suppression of NF-κB signaling by KEAP1 regulation of IKKβ activity through autophagic degradation and inhibition of phosphorylation. Cellular Signalling, 2010, 22, 1645-1654.	3.6	185
71	Molecular coevolution of kisspeptins and their receptors from fish to mammals. Annals of the New York Academy of Sciences, 2010, 1200, 67-74.	3.8	74
72	Intermolecular cross-talk between NTR1 and NTR2 neurotensin receptor promotes intracellular sequestration and functional inhibition of NTR1 receptors. Biochemical and Biophysical Research Communications, 2010, 391, 1007-1013.	2.1	22

#	Article	IF	CITATIONS
73	Nova-1 Mediates Glucocorticoid-induced Inhibition of Pre-mRNA Splicing of Gonadotropin-releasing Hormone Transcripts. Journal of Biological Chemistry, 2009, 284, 12792-12800.	3.4	13
74	A Gonadotropin-Releasing Hormone-II Antagonist Induces Autophagy of Prostate Cancer Cells. Cancer Research, 2009, 69, 923-931.	0.9	46
75	Neurosteroid biosynthesis: Enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Frontiers in Neuroendocrinology, 2009, 30, 259-301.	5.2	318
76	Lysophosphatidic acid signaling through LPA receptor subtype 1 induces colony scattering of gastrointestinal cancer cells. Journal of Cancer Research and Clinical Oncology, 2009, 135, 45-52.	2.5	16
77	Phylogenetic History, Pharmacological Features, and Signal Transduction of Neurotensin Receptors in Vertebrates. Annals of the New York Academy of Sciences, 2009, 1163, 169-178.	3.8	22
78	Steroid Biosynthesis within the Frog Brain. Annals of the New York Academy of Sciences, 2009, 1163, 83-92.	3.8	29
79	Molecular cloning of the bullfrog kisspeptin receptor GPR54 with high sensitivity to Xenopus kisspeptin. Peptides, 2009, 30, 171-179.	2.4	42
80	Molecular interaction between kisspeptin decapeptide analogs and a lipid membrane. Archives of Biochemistry and Biophysics, 2009, 485, 109-114.	3.0	10
81	Molecular Evolution of Multiple Forms of Kisspeptins and GPR54 Receptors in Vertebrates. Endocrinology, 2009, 150, 2837-2846.	2.8	213
82	Extracellular loop 3 (ECL3) and ECL3-proximal transmembrane domains VI and VII of the mesotocin and vasotocin receptors confer differential ligand selectivity and signaling activity. General and Comparative Endocrinology, 2008, 156, 71-82.	1.8	4
83	GÎ ² L regulates TNFα-induced NF-Đ ^o B signaling by directly inhibiting the activation of IĐ ^o B kinase. Cellular Signalling, 2008, 20, 2127-2133.	3.6	8
84	Identification of Farnesyl Pyrophosphate and N-Arachidonylglycine as Endogenous Ligands for GPR92. Journal of Biological Chemistry, 2008, 283, 21054-21064.	3.4	120
85	The Novel Cellular Mechanism of Human 5-HT6 Receptor through an Interaction with Fyn. Journal of Biological Chemistry, 2007, 282, 5496-5505.	3.4	127
86	Molecular coâ€evolution of Gonadotropinâ€releasing hormones and their receptors. Animal Cells and Systems, 2007, 11, 93-98.	0.2	1
87	Integrin-Linked Kinase Controls Notch1 Signaling by Down-Regulation of Protein Stability through Fbw7 Ubiquitin Ligase. Molecular and Cellular Biology, 2007, 27, 5565-5574.	2.3	56
88	Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin-13. Molecular and Cellular Endocrinology, 2007, 277, 51-60.	3.2	18
89	Molecular evolution of neuropeptide receptors with regard to maintaining high affinity to their authentic ligands. General and Comparative Endocrinology, 2007, 153, 98-107.	1.8	33
90	Cellular and Molecular Biology of Orphan G Proteinâ€Coupled Receptors. International Review of Cytology, 2006, 252, 163-218.	6.2	49

#	Article	IF	Citations
91	Vasotocin and Mesotocin Stimulate the Biosynthesis of Neurosteroids in the Frog Brain. Journal of Neuroscience, 2006, 26, 6749-6760.	3.6	41
92	Cooperative Actions of Tra2α with 9G8 and SRp30c in the RNA Splicing of the Gonadotropin-releasing Hormone Gene Transcript. Journal of Biological Chemistry, 2006, 281, 401-409.	3.4	13
93	Extracellular Loop 3 (EL3) and EL3-Proximal Transmembrane Helix 7 of the Mammalian Type I and Type II Gonadotropin-Releasing Hormone (GnRH) Receptors Determine Differential Ligand Selectivity to GnRH-I and GnRH-II. Molecular Pharmacology, 2005, 67, 1099-1110.	2.3	25
94	Differential Effects of Gonadotropin-Releasing Hormone (GnRH)-I and GnRH-II on Prostate Cancer Cell Signaling and Death. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4287-4298.	3.6	28
95	Membrane-Proximal Region of the Carboxyl Terminus of the Gonadotropin-Releasing Hormone Receptor (GnRHR) Confers Differential Signal Transduction between Mammalian and Nonmammalian GnRHRs. Molecular Endocrinology, 2005, 19, 722-731.	3.7	37
96	GnRH pre-mRNA splicing: solving the mystery of a nature's knockout, hpg mouse. Biochemical and Biophysical Research Communications, 2005, 326, 261-267.	2.1	12
97	Physiological Function of G Protein-Coupled Receptors (GPCRs) and Research Trends for Orphan GPCRs. Journal of Korean Endocrine Society, 2005, 20, 185.	0.1	0
98	Position of Pro and Ser near Glu7.32in the Extracellular Loop 3 of Mammalian and Nonmammalian Gonadotropin-Releasing Hormone (GnRH) Receptors Is a Critical Determinant for Differential Ligand Selectivity for Mammalian GnRH and Chicken GnRH-II. Molecular Endocrinology, 2004, 18, 105-116.	3.7	35
99	Identification of Amino Acid Residues That Direct Differential Ligand Selectivity of Mammalian and Nonmammalian V1a Type Receptors for Arginine Vasopressin and Vasotocin. Journal of Biological Chemistry, 2004, 279, 54445-54453.	3.4	37
100	Proliferation of TSU-Pr1, a human prostatic carcinoma cell line is stimulated by gonadotropin-releasing hormone. Life Sciences, 2004, 74, 3141-3152.	4.3	9
101	Effect of ascorbic acid supplementation on testicular steroidogenesis and germ cell death in cadmium-treated male rats. Molecular and Cellular Endocrinology, 2004, 221, 57-66.	3.2	85
102	Cloning and characterization of androgen receptor from bullfrog, Rana catesbeiana. General and Comparative Endocrinology, 2003, 134, 10-17.	1.8	3
103	Preferential ligand selectivity of the monkey type-II gonadotropin-releasing hormone (GnRH) receptor for GnRH-2 and its analogs. Molecular and Cellular Endocrinology, 2003, 209, 33-42.	3.2	19
104	Differential G protein coupling preference of mammalian and nonmammalian gonadotropin-releasing hormone receptors. Molecular and Cellular Endocrinology, 2003, 205, 89-98.	3.2	36
105	Excision of the First Intron from the Gonadotropin-releasing Hormone (GnRH) Transcript Serves as a Key Regulatory Step for GnRH Biosynthesis. Journal of Biological Chemistry, 2003, 278, 18037-18044.	3.4	25
106	Ala/Thr201 in Extracellular Loop 2 and Leu/Phe290 in Transmembrane Domain 6 of Type 1 Frog Gonadotropin-Releasing Hormone Receptor Confer Differential Ligand Sensitivity and Signal Transduction. Endocrinology, 2003, 144, 454-466.	2.8	42
107	GnRH-II analogs for selective activation and inhibition of non-mammalian and type-II mammalian GnRH receptors. Molecules and Cells, 2003, 16, 173-9.	2.6	20
108	GnRH pre-mRNA splicing: role of exonic splicing enhancer. Progress in Brain Research, 2002, 141, 209-219.	1.4	5

#	ARTICLE	IF	CITATION
109	Exonic Splicing Enhancer-Dependent Splicing of the Gonadotropin-Releasing Hormone Premessenger Ribonucleic Acid Is Mediated by $Tra2\hat{l}\pm$, a 40-Kilodalton Serine/Arginine-Rich Protein. Molecular Endocrinology, 2002, 16, 2426-2438.	3.7	22
110	Analysis of exonic splicing enhancers in the mouse gonadotropin-releasing hormone (GnRH) gene. Molecular and Cellular Endocrinology, 2001, 173, 157-166.	3.2	10
111	First Intron Excision of GnRH Pre-mRNA During Postnatal Development of Normal Mice and Adult Hypogonadal Mice. Endocrinology, 2001, 142, 4454-4461.	2.8	7
112	Enhanced Splicing of the First Intron from the Gonadotropin-Releasing Hormone (GnRH) Primary Transcript Is a Prerequisite for Mature GnRH Messenger RNA: Presence of GnRH Neuron-Specific Splicing Factors. Molecular Endocrinology, 1999, 13, 1882-1895.	3.7	12
113	Differential regulation of gonadotropin-releasing hormone (GnRH) receptor expression in the posterior mediobasal hypothalamus by steroid hormones: implication of GnRH neuronal activity. Molecular Brain Research, 1998, 53, 226-235.	2.3	36
114	Acute Increase of GABAergic Neurotransmission Exerts a Stimulatory Effect on GnRH Gene Expression in the Preoptic/Anterior Hypothalamic Area of Ovariectomized, Estrogen- and Progesterone-Treated Adult Female Rats. Neuroendocrinology, 1995, 61, 486-492.	2.5	31
115	Activation of Central GABA _A - but Not of GABA _B – Receptors Rapidly Reduces Pituitary LH Release and GnRH Gene Expression in the Preoptic/Anterior Hypothalamic Area of Ovariectomized Rats. Neuroendocrinology, 1995, 61, 655-662.	2.5	70
116	Presence of gonadotropin-releasing hormone mRNA in the rat olfactory piriform cortex. Brain Research, 1994, 648, 148-151.	2.2	15
117	NMDA Receptor Antagonist Decreases the Progesterone-Induced Increase in GnRH Gene Expression in the Rat Hypothalamus. Neuroendocrinology, 1993, 58, 234-239.	2.5	28